首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Long interspersed (L1) and Alu elements are actively amplified in the human genome through retrotransposition of their RNA intermediates by the -100 still retrotranspositionally fully competent L1 elements. Retrotransposition can cause inherited disease if such an element is inserted near or within a functional gene. Using direct cDNA sequencing as the primary assay for comprehensive NF1 mutation analysis, we uncovered in 18 unrelated index patients splicing alterations not readily explained at the genomic level by an underlying point-mutation or deletion. Improved PCR protocols avoiding allelic drop-out of the mutant alleles uncovered insertions of fourteen Alu elements, three L1 elements, and one poly(T) stretch to cause these splicing defects. Taken together, the 18 pathogenic L1 endonuclease-mediated de novo insertions represent the largest number of this type of mutations characterized in a single human gene. Our findings show that retrotransposon insertions account for as many as -0.4% of all NF1 mutations. Since altered splicing was the main effect of the inserted elements, the current finding was facilitated by the use of RNA-based mutation analysis protocols, resulting in improved detection compared to gDNA-based approaches. Six different insertions clustered in a relatively small 1.5-kb region (NF1 exons 21(16)-23(18)) within the 280-kb NF1 gene. Furthermore, three different specific integration sites, one of them located in this cluster region, were each used twice, i.e. NM_000267.3(NF1):c.1642-1_1642 in intron 14(10c), NM_000267.3(NF1):c.2835_2836 in exon 21(16), and NM_000267.3(NF1):c.4319_4320 in exon 33(25). Identification of three loci that each served twice as integration site for independent retrotransposition events as well as 1.5-kb cluster region harboring six independent insertions supports the notion of non-random insertion of retrotransposons in the human genome. Currently, little is known about which features make sites particularly vulnerable to L1 EN-mediated insertions. The here identified integration sites may serve to elucidate these features in future studies.  相似文献   

3.
Site-selected transposon mutagenesis at the hcf106 locus in maize.   总被引:6,自引:1,他引:5       下载免费PDF全文
The High chlorophyll fluorescence106 (Hcf106) gene in maize is required for chloroplast membrane biogenesis, and the hcf106-mum1 allele is caused by the insertion of a Robertson's Mutator Mu1 element into the promoter of the gene. Seedlings homozygous for hcf106-mum1 are pale green and die 3 weeks after germination, but only in the presence of Mutator activity conferred by active, autonomous Mu regulatory transposons elsewhere in the genome. When Mutator activity is lost, the mutant phenotype is suppressed, and homozygous plants have an almost wild-type phenotype. To isolate derivative alleles at the hcf106 locus that no longer require Mutator activity for phenotypic expression, we have developed a method for site-selected transposon mutagenesis in maize. This procedure, first described for Caenorhabditis elegans and Drosophila, involves using polymerase chain reaction (PCR) to screen pools of individuals for insertions and deletions in genes of known sequence. Pools of seedlings segregating for the progenitor allele hcf106-mum1 were screened by PCR for insertions and deletions associated with Robertson's Mutator. In a 360-bp target region, two new insertions and one deletion were identified in only 700 Mu-active gametes screened. One of the insertions was in the progenitor hcf106-mum1 allele and the other was in the wild-type allele, but all three new alleles were found to have break-points at the same nucleotide in the first intron. Unlike the hcf-106-mum1 progenitor allele, the deletion and one of the insertions conferred pale green seedling lethal phenotypes in the absence of mutator activity. However, the second insertion had a weak, viable phenotype under these conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
Hoxb13 mutations cause overgrowth of caudal spinal cord and tail vertebrae   总被引:3,自引:0,他引:3  
To address the expression and function of Hoxb13, the 5' most Hox gene in the HoxB cluster, we have generated mice with loss-of-function and beta-galactosidase reporter insertion alleles of this gene. Mice homozygous for Hoxb13 loss-of-function mutations show overgrowth in all major structures derived from the tail bud, including the developing secondary neural tube (SNT), the caudal spinal ganglia, and the caudal vertebrae. Using the beta-galactosidase reporter allele of Hoxb13, also a loss-of-function allele, we found that the expression patterns of Hoxb13 in the developing spinal cord and caudal mesoderm are closely associated with overgrowth phenotypes in the tails of homozygous mutant animals. These phenotypes can be explained by the observed increased cell proliferation and decreased levels of apoptosis within the tail of homozygous mutant mice. This analysis of Hoxb13 function suggests that this 5' Hox gene may act as an inhibitor of neuronal cell proliferation, an activator of apoptotic pathways in the SNT, and as a general repressor of growth in the caudal vertebrae.  相似文献   

6.
7.
All mRNAs of yeast mitochondria are processed at their 3' ends within a conserved dodecamer sequence, 5'-AAUAAUAUUCUU-3'. A dominant nuclear suppressor, SUV3-I, was previously isolated because it suppresses a dodecamer deletion at the 3' end of the var1 gene. We have tested the effects of SUV3-1 on a mutant containing two adjacent transversions within a dodecamer at the 3' end of fit1, a gene located within the 1,143-base-pair intron of the 21S rRNA gene, whose product is a site-specific endonuclease required in crosses for the quantitative transmission of that intron to 21S alleles that lack it. The fit1 dodecamer mutations blocked both intron transmission and dodecamer cleavage, neither of which was suppressed by SUV3-1 when present in heterozygous or homozygous configurations. Unexpectedly, we found that SUV3-1 completely blocked cleavage of the wild-type fit1 dodecamer and, in SUV3-1 homozygous crosses, intron conversion. In addition, SUV3-1 resulted in at least a 40-fold increase in the amount of excised intron accumulated. Genetic analysis showed that these phenotypes resulted from the same mutation. We conclude that cleavage of a wild-type dodecamer sequence at the 3' end of the fit1 gene is essential for fit1 expression.  相似文献   

8.
9.
Mutation of a CCG sequence in the 5'-untranslated region of the mitochondrially encoded cytochrome b mRNA in Saccharomyces cerevisiae results in destabilization of the message and respiratory deficiency of the mutant strain. This phenotype mimics that of a mutation in the nuclear CBP1 gene. Here it is shown that overexpression of the nuclear CBT1 gene, due to a transposon insertion in the 5'-untranslated region, rescues the respiratory defects resulting from mutating the CCG sequence to ACG. Overexpressing alleles of CBT1 are allelic to soc1, a previously isolated suppressor of cbp1ts-induced temperature sensitivity of respiratory growth. Quantitative primer extension analysis indicated that cbt1 null strains have defects in 5'-end processing of precursor cytochrome b mRNA to the mature form. Cbt1p is also required for stabilizing the mature cytochrome b mRNA after 5' processing.  相似文献   

10.
11.
Molecular Mapping of the ROSY Locus in DROSOPHILA MELANOGASTER   总被引:30,自引:20,他引:10       下载免费PDF全文
The DNA from the chromosomal region of the Drosophila rosy locus has been examined in 83 rosy mutant strains. Several spontaneous and radiation-induced alleles were associated with insertions and deletions, respectively. The lesions are clustered in a 4-kb region. Some of the alleles identified on the DNA map have been located on the genetic map by fine-structure recombination experiments. The genetic and molecular maps are collinear, and the alignment identifies the DNA location of the rosy control region. A rosy RNA of 4.5 kb has been identified; its 5' end lies in or near the control region.  相似文献   

12.
Transgene insertion is instrumental to identifying genes with defined physiological functions. In this paper, we show that mice homozygous for either TM1 or TM2, two mutant alleles with distinct transgene insertions, exhibited embryo lethality, suggesting that these two alleles play essential roles in embryogenesis. Interestingly, although hemizygous TM1 or TM2 alone did not have obvious alteration in thymocyte development, together, they exhibited a compound effect on thymocyte development, blocking the development from CD4 and CD8 double-negative to double-positive stage of T cells. TM1 and TM2 mutations were mapped to chromosome regions 7E-F1 and 11B5-C, respectively, where we could not identify any known gene that was implicated in a similar function. Thus, TM1 and TM2 represent two novel alleles that define a genetic trait controlling thymocyte development. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorize users.  相似文献   

13.
Mycoplasma pneumoniae is a major cause of tracheobronchitis and pneumonia in older children and young adults. The lack of adequate tools for genetic analysis has hindered the elucidation of function and regulation of mycoplasma virulence determinants. We describe here the use of a transposon vector to deliver the cloned gene for the cytadherence-associated protein HMW1 in M. pneumoniae . A 4.95 kbp Bam HI fragment encoding all but the C-terminal end of HMW1 was cloned into a modified Tn 4001 and transformed into wild-type M. pneumoniae and into a non-cytadhering mutant lacking HMW1–HMW5. Southern blot hybridizations confirmed insertion of the transposon and the presence of both the resident and recombinant hmw1 alleles. Analysis by Western immunoblotting revealed a truncated HMW1 (HMW1') in the transformants, the level of HMW1' being dependent upon the orientation of the hmw1 gene in the transposon and the site of insertion. Similar expression patterns were noted in wild-type and mutant backgrounds. However, expression of wild-type levels of HMW1' in the mutant did not restore adherence. Finally, HMW4 and HMW1 were shown to be products of the same gene, HMW4 being a heat-modified derivative of HMW1.  相似文献   

14.
The debrisoquine-4-hydroxylase polymorphism is a genetic variation in oxidative drug metabolism characterized by two phenotypes, the extensive metabolizer (EM) and poor metabolizer (PM). Of the Caucasian populations of Europe and North America, 5%-10% are of the PM phenotype and are unable to metabolize debrisoquine and numerous other drugs. The defect is caused by several mutant alleles of the CYP2D6 gene, two of which are detected in about 70% of PMs. We have constructed a genomic library from lymphocyte DNA of an EM positively identified by pedigree analysis to be homozygous for the normal CYP2D6 allele. The normal CYP2D6 gene was isolated; was completely sequenced, including 1,531 and 3,522 bp of 5' and 3' flanking DNA, respectively; and was found to contain nine exons within 4,378 bp. Two other genes, designated CYP2D7 and CYP2D8P, were also cloned and sequenced. CYP2D8P contains several gene-disrupting insertions, deletions, and termination codons within its exons, indicating that this is a pseudogene. CYP2D7, which is just downstream of CYP2D8P, is apparently normal, except for the presence, in the first exon, of an insertion that disrupts the reading frame. A hypothesis is presented that the presence of a pseudogene within the CYP2D subfamily transfers detrimental mutations via gene conversions into the CYP2D6 gene, thus accounting for the high frequency of mutations observed in the CYP2D6 gene in humans.  相似文献   

15.
16.
Ejima A  Tsuda M  Takeo S  Ishii K  Matsuo T  Aigaki T 《Genetics》2004,168(4):2077-2087
To better understand the genetic bases of postmating responses in Drosophila melanogaster females, we screened a collection of P{GS} insertion lines and identified two insertions in sarah (sra), whose misexpression in the nervous system induced high levels of ovulation in virgins. The gene sra encodes a protein similar to human Down syndrome critical region 1 (DSCR1). The ovulation phenotype was reproduced in transgenic virgins expressing UAS-sra in the nervous system. The flies also extruded the ovipositor toward courting males as seen in wild-type mated females, supporting the notion that ovulation and behavioral patterns are physiologically coupled. The sra insertions were found to be hypomorphic alleles with reduced expression levels. Females homozygous for these alleles show: (1) spontaneous ovulation in virgins, (2) sterility with impaired meiotic progression, and (3) compromised postmating responses with lower ovulation level, higher remating rate, and shorter period for restoration of receptivity. No obvious defects were observed in the homozygous males. The gene sra is predominantly expressed in oocytes, nurse cells, and the nervous system. Taken together, these results indicate that the expression level of sra is critical for ovulation and female courtship behavior, including their postmating changes.  相似文献   

17.
Searches of zebrafish EST and whole genome shotgun sequence databases for sequences encoding the sterol-sensing domain (SSD) protein motif identified two sets of DNA sequences with significant homology to the Drosophila dispatched gene required for release of secreted Hedgehog protein. Using morpholino antisense oligonucleotides, we found that inhibition of one of these genes, designated Disp1, results in a phenotype similar to that of the "you-type" mutants, previously implicated in signalling by Hedgehog proteins in the zebrafish embryo. Injection of disp1 mRNA into embryos homozygous for one such mutation, chameleon (con) results in rescue of the mutant phenotype. Radiation hybrid mapping localised disp1 to the same region of LG20 to which the con mutation was mapped by meiotic recombination analysis. Sequence analysis of disp1 cDNA derived from homozygous con mutant embryos revealed that both mutant alleles are associated with premature termination codons in the disp1 coding sequence. By analysing the expression of markers of specific cell types in the neural tube, pancreas and myotome of con mutant and Disp1 morphant embryos, we conclude that Disp1 activity is essential for the secretion of lipid-modified Hh proteins from midline structures.  相似文献   

18.
19.
The transposable element Tc1 is responsible for most spontaneous mutations that occur in many Caenorhabditis elegans strains. We analyzed the abundance and sequence of mRNAs expressed from five different Tc1 insertions within either hlh-1 (a MyoD homolog) or unc-54 (a myosin heavy chain gene). Each of the mutants expresses substantial quantities of mature mRNA in which most or all of Tc1 has been removed by splicing. Such mRNAs contain small insertions of Tc1 sequences and/or deletions of target gene sequences at the resulting spliced junctions. Most of these mutant mRNAs do not contain premature stop codons, and many are translated in frame to produce proteins that are functional in vivo. The number and variety of splice sites used to remove Tc1 from these mutant pre-mRNAs are remarkable. Two-thirds of the Tc1-containing introns removed from hlh-1 and unc-54 lack either the 5'-GU or AG-3' dinucleotides typically found at the termini of eukaryotic introns. We conclude that splicing to remove Tc1 from mutant pre-mRNAs allows many Tc1 insertions to be phenotypically silent. Such mRNA processing may help Tc1 escape negative selection.  相似文献   

20.
Zahler AM  Tuttle JD  Chisholm AD 《Genetics》2004,167(4):1689-1696
Mutations to the canonical +1G of introns, which are commonly found in many human inherited disease alleles, invariably result in aberrant splicing. Here we report genetic findings in C. elegans that aberrant splicing due to +1G mutations can be suppressed by U1 snRNA mutations. An intronic +1G-to-U mutation, e936, in the C. elegans unc-73 gene causes aberrant splicing and loss of gene function. We previously showed that mutation of the sup-39 gene promotes splicing at the mutant splice donor in e936 mutants. We demonstrate here that sup-39 is a U1 snRNA gene; suppressor mutations in sup-39 are compensatory substitutions in the 5' end, which enhance recognition of the mutant splice donor. sup-6(st19) is an allele-specific suppressor of unc-13(e309), which contains an intronic +1G-to-A transition. The e309 mutation activates a cryptic splice site, and sup-6(st19) restores splicing to the mutant splice donor. sup-6 also encodes a U1 snRNA and the mutant contains a compensatory substitution at its 5' end. This is the first demonstration that U1 snRNAs can act to suppress the effects of mutations to the invariant +1G of introns. These findings are suggestive of a potential treatment of certain alleles of inherited human genetic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号