首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Localized Ca(2+)-release events, Ca(2+)sparks, have been suggested to be the 'elementary building blocks' of the calcium signalling system in all types of muscles. In striated muscles these occur at regular intervals along the fibre corresponding to the sarcomeric structures which do not exist in smooth muscle. We showed previously that in visceral and vascular myocytes Ca(2+)sparks occurred much more frequently at certain sites (frequent discharge sites [FDSs]). In this paper, we have related the position of FDSs to the distribution of the sarcoplasmic reticulum in the same living myocyte. The three-dimensional distribution of the SR in freshly isolated rabbit portal vein myocytes was visualized by means of high-resolution confocal imaging after staining with DiOC(6)and/or BODIPY TR-X ryanodine. Both fluorochromes revealed a similar staining pattern indicating a helical arrangement of well-developed superficial SR which occupied about 6% of the cell volume. Computing the frequency of spontaneous Ca(2+)sparks detected by means of fluo-4 fluorescence revealed that in about 70% of myocytes there was only one major FDS located on a prominent portion of superficial SR network usually within 1-2 microm of the nuclear envelope, although a few sparks occurred at other sites scattered generally in superficial locations throughout the cell. Polarized mitochondria were readily identified by accumulation of tetramethylrhodamine ethyl ester (TMRE). These were closely associated with the SR network in extra-nuclear regions. TMRE staining, however, failed to reveal any mitochondria near the FDS-related SR element. When observed, propagating [Ca(2+)](i)waves and associated myocyte contractions were initiated at FDSs. This study provide first insight into the three-dimensional arrangement of the SR in living smooth muscle cells and relates the peculiarity of the structural organization of the myocyte to the features of Ca(2+)signalling at subcellular level.  相似文献   

2.
To study the function and regulation of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel, we expressed the RyR2 proteins in a Chinese hamster ovary (CHO) cell line, and assayed its function by single channel current recording and confocal imaging of intracellular Ca(2+) ([Ca(2+)](i)). The 16-kb cDNA encoding the full-length RyR2 was introduced into CHO cells using lipofectAmine and electroporation methods. Incorporation of microsomal membrane vesicles isolated from these transfected cells into lipid bilayer membrane resulted in single Ca(2+) release channel activities similar to those of the native Ca(2+) release channels from rabbit cardiac muscle SR membranes, both in terms of gating kinetics, conductance, and ryanodine modification. The expressed RyR2 channels were found to exhibit more frequent transitions to subconductance states than the native RyR2 channels and RyR1 expressed in CHO cells. Caffeine, an exogenous activator of RyR, induced release of [Ca(2+)](i) from these cells. Confocal imaging of cells expressing RyR2 did not detect spontaneous or caffeine-induced local Ca(2+) release events (i.e., "Ca(2+) sparks") typically seen in cardiac muscle. Our data show that the RyR2 expressed in CHO cells forms functional Ca(2+) release channels. Furthermore, the lack of localized Ca(2+) release events in these cells suggests that Ca(2+) sparks observed in cardiac muscle may involve cooperative gating of a group of Ca(2+) release channels and/or their interaction with muscle-specific proteins.  相似文献   

3.
Identification of interstitial cells of Cajal in the rabbit portal vein   总被引:9,自引:0,他引:9  
Two layers of interstitial cells (ICs) of Cajal were detected by c-kit and methylene blue staining in the media of the rabbit portal vein in subendothelial intramuscular and deeper intramuscular positions, displaced radially from each other by about 40-70 microm. Two morphologically distinct types of ICs were found among enzymatically dispersed cells from this vessel: small multipolar cells with stellate-shaped bodies not exceeding 20 microm, and spindle-shaped cells from 40 to 300 microm in length with numerous branching processes. Relaxed smooth muscle cells (SMCs) had a more constant length (90-150 microm). The cell membrane capacitance was 46.5+/-2.2 pF in SMCs, 39.7+/-2.4 pF in spindle-shaped ICs and 27.8+/-0.7 pF in multipolar ICs. Although darker under phase contrast, after loading with fluo-4 AM, single isolated ICs of both types usually had brighter fluorescence than SMCs and displayed various spontaneous calcium events, including Ca(2+) sparks and Ca(2+) waves. Ca(2+) waves were usually followed by contraction of SMCs but no change in shape of ICs. In some ICs spontaneous [Ca(2+)](i) transients (lasting about 2s) which propagated towards the end of the processes were observed. Physical contacts between the processes of ICs and the body of one or more SMCs survived the isolation procedure. Application of noradrenaline (1-10 microM), caffeine (1-10 mM) or high-K(+) solution (60mM) led to a rise of [Ca(2+)](i) in both SMCs and ICs evoking contraction of SMCs but not ICs. No differences in electrophysiological characteristics between single enzymatically isolated IC and SMC were detected; thus, the resting membrane potential estimated under current-clamp conditions was -46.5+/-2.0 mV in spindle-shaped ICs and -45.6+/-2.7 mV in SMCs. Under voltage-clamp, both ICs and SMCs revealed a well-developed voltage-gated nifedipine-sensitive L-type Ca(2+) current, a set of K(+) currents, including spontaneous transient outward currents (STOCs) but no Na(+) current. This study for the first time directly demonstrated the presence in vascular tissue of ICs. Possible roles for ICs including their involvement in spontaneous activity of the vessel were discussed.  相似文献   

4.
The mechanisms by which Pi depletion rapidly regulates gene expression and cellular function have not been clarified. Here, we found a rapid increase in intracellular ionized calcium [Ca(2+)](i) by phosphate depletion in LLC-PK(1) cells using confocal microscopy with the green-fluorescence protein based calcium indicator "yellow cameleon 2.1." The increase of [Ca(2+)](i) was observed in the presence or absence of extracellular Ca(2+). At the same time, an approximately twofold increase in intracellular inositol 1,4,5-triphosphate (IP(3)) occurred in response to the acute Pi depletion in the medium. Furthermore, 2-aminoethoxydiphenyl borate completely blocked the [Ca(2+)](i) increase induced by Pi depletion. These results suggest that Pi depletion causes IP(3)-mediated release of Ca(2+) from intracellular Ca(2+) pools and rapidly increases [Ca(2+)](i) in LLC-PK(1) cells.  相似文献   

5.
Ca(2+) sparks are highly localized cytosolic Ca(2+) transients caused by a release of Ca(2+) from the sarcoplasmic reticulum via ryanodine receptors (RyRs); they are the elementary events underlying global changes in Ca(2+) in skeletal and cardiac muscle. In smooth muscle and some neurons, Ca(2+) sparks activate large conductance Ca(2+)-activated K(+) channels (BK channels) in the spark microdomain, causing spontaneous transient outward currents (STOCs) that regulate membrane potential and, hence, voltage-gated channels. Using the fluorescent Ca(2+) indicator fluo-3 and a high speed widefield digital imaging system, it was possible to capture the total increase in fluorescence (i.e., the signal mass) during a spark in smooth muscle cells, which is the first time such a direct approach has been used in any system. The signal mass is proportional to the total quantity of Ca(2+) released into the cytosol, and its rate of rise is proportional to the Ca(2+) current flowing through the RyRs during a spark (I(Ca(spark))). Thus, Ca(2+) currents through RyRs can be monitored inside the cell under physiological conditions. Since the magnitude of I(Ca(spark)) in different sparks varies more than fivefold, Ca(2+) sparks appear to be caused by the concerted opening of a number of RyRs. Sparks with the same underlying Ca(2+) current cause STOCs, whose amplitudes vary more than threefold, a finding that is best explained by variability in coupling ratio (i.e., the ratio of RyRs to BK channels in the spark microdomain). The time course of STOC decay is approximated by a single exponential that is independent of the magnitude of signal mass and has a time constant close to the value of the mean open time of the BK channels, suggesting that STOC decay reflects BK channel kinetics, rather than the time course of [Ca(2+)] decline at the membrane. Computer simulations were carried out to determine the spatiotemporal distribution of the Ca(2+) concentration resulting from the measured range of I(Ca(spark)). At the onset of a spark, the Ca(2+) concentration within 200 nm of the release site reaches a plateau or exceeds the [Ca(2+)](EC50) for the BK channels rapidly in comparison to the rate of rise of STOCs. These findings suggest a model in which the BK channels lie close to the release site and are exposed to a saturating [Ca(2+)] with the rise and fall of the STOCs determined by BK channel kinetics. The mechanism of signaling between RyRs and BK channels may provide a model for Ca(2+) action on a variety of molecular targets within cellular microdomains.  相似文献   

6.
The multiplicity of mechanisms involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in smooth muscle results in both intra- and intercellular heterogeneities in [Ca(2+)](i). Heterogeneity in [Ca(2+)](i) regulation is reflected by the presence of spontaneous, localized [Ca(2+)](i) transients (Ca(2+) sparks) representing Ca(2+) release through ryanodine receptor (RyR) channels. Ca(2+) sparks display variable spatial Ca(2+) distributions with every occurrence within and across cellular regions. Individual sparks are often grouped, and fusion of sparks produces large local elevations in [Ca(2+)](i) that occasionally trigger propagating [Ca(2+)](i) waves. Ca(2+) sparks may modulate membrane potential and thus smooth muscle contractility. Sparks may also be the target of other regulatory factors in smooth muscle. Agonists induce propagating [Ca(2+)](i) oscillations that originate from foci with high spark incidence and also represent Ca(2+) release through RyR channels. With increasing agonist concentration, the peak of regional [Ca(2+)](i) oscillations remains relatively constant, whereas both frequency and propagation velocity increase. In contrast, the global cellular response appears as a concentration-dependent increase in peak as well as mean cellular [Ca(2+)](i), representing a spatial and temporal integration of the oscillations. The significance of agonist-induced [Ca(2+)](i) oscillations lies in the establishment of a global [Ca(2+)](i) level for slower Ca(2+)-dependent physiological processes.  相似文献   

7.
Wang GJ  Lin LC  Chen CF  Cheng JS  Lo YK  Chou KJ  Lee KC  Liu CP  Wu YY  Su W  Chen WC  Jan CR 《Life sciences》2002,71(9):1081-1090
The effects of timosaponin A-III (TA-III), from Rhizoma Anemarrhenae, on Ca(2+) mobilization in vascular endothelial cells and smooth muscle cells and on vascular tension have been explored. TA-III increased intracellular Ca(2+) concentrations ([Ca(2+)](i)) in endothelials cells at a concentration larger than 5 microM with an EC(50) of 15 microM, and increased [Ca(2+)](i) in smooth muscle cells at a concentration larger than 1 microM with an EC(50) of 8 microM. Within 5 min, the [Ca(2+)](i) signal was composed of a gradual rise, and the speed of rising depended on the concentration of TA-III. The [Ca(2+)](i) signal was abolished by removing extracellular Ca(2+) and was recovered after reintroduction of Ca(2+). The TA-III-induced [Ca(2+)](i) increases in smooth muscle cells were partly inhibited by 10 microM nifedipine or 50 microM La(3+), but was insensitive to 10 microM verapamil and diltiazem. TA-III (10-100 microM) inhibited 0.3 microM phenylephrine-induced vascular contraction, which was abolished by pretreatment with 100 microM N(omega)-nitro-L-arginine (L-NNA) or by denuding the aorta. TA-III also increased [Ca(2+)](i) in renal tubular cells with an EC(50) of 8 microM. Collectively, the results show for the first time that TA-III causes [Ca(2+)](i) increases in the vascular system. TA-III acted by causing Ca(2+) influx without releasing intracellular Ca(2+). TA-III induced relaxation of phenylephrine-induced vascular contraction via inducing release of nitric oxide from endothelial cells.  相似文献   

8.
Saino T  Matsuura M  Satoh YI 《Cell calcium》2002,32(3):153-163
Adenosine 5'-triphosphate (ATP), when released from neuronal and non-neuronal tissues, interacts with cell surface receptors produces a broad range of physiological responses. The goal of the present study was to examine the issue of whether vascular smooth muscle cells respond to ATP. To this end, the dynamics of the intracellular concentration of calcium ions ([Ca(2+)](i)) in smooth muscle cells in testicular and cerebral arterioles was examined by laser scanning confocal microscopy. ATP produced an increase in [Ca(2+)](i) in arteriole smooth muscle cells. While P1 purinoceptor agonists had no effect on this process, P2 purinoceptor agonists induced a [Ca(2+)](i) increase and a P2 purinoceptor antagonist, suramin, completely inhibited ATP-induced [Ca(2+)](i) dynamics in both arteriole smooth muscle cells.In testicular arterioles, Ca(2+) channel blockers and the removal of extracellular Ca(2+), but not thapsigargin pretreatment, abolished the ATP-induced [Ca(2+)](i) dynamics. In contrast, Ca(2+) channel blockers and the removal of extracellular Ca(2+) did not completely inhibit ATP-induced [Ca(2+)](i) dynamics in cerebral arterioles. Uridine 5'-triphosphate caused an increase in [Ca(2+)](i) only in cerebral arterioles and alpha,beta-methylene ATP caused an increase in [Ca(2+)](i) in both testicular and cerebral arterioles.We conclude that testicular arteriole smooth muscle cells respond to extracellular ATP via P2X purinoceptors and that cerebral arteriole smooth muscle cells respond via P2X and P2Y purinoceptors.  相似文献   

9.
Smooth muscle cells (SMCs) contain numerous calcium release domains, grouped into regions discharging as a single unit. Laser scanning confocal microscopy, voltage clamp and immunocytochemistry of single SMCs from small mesenteric arteries of guinea-pig were used to study the localisation, function and macromolecular composition of such calcium discharge regions (CDRs). Use of the Ca(2+)-sensitive fluorescent dye fluo-3 or fluo-4 with BODIPY TR-X ryanodine (BTR), a fluorescent derivative of ryanodine, showed spontaneous Ca(2+) sparks originating from regions stained by BTR, located immediately under the plasma membrane, in the arch formed by the sarcoplasmic reticulum surrounding the nucleus. Membrane depolarisation or application of noradrenaline or alpha,beta-methylene ATP, a P2X purinoceptor agonist, elicited Ca(2+) sparks from the same, spontaneous Ca(2+) spark-discharging region. The most active (primary) CDR accounted for nearly 60% of spontaneous transient outward currents at -40 mV and these were of significantly higher amplitude than the ones discharged by secondary CDRs. Immunocytochemical staining for type 1 IP(3) receptors, BK(Ca) channels, P2X(1) purinoceptors or alpha(1) adrenoceptors revealed their juxtaposition with BTR staining at the location typical of the primary CDR. These data suggest the existence of a primary calcium discharge region in SMCs; its position can be predicted from the cell's structure, it acts as a key region for the regulation of membrane potential via Ca(2+) sparks and is a potential link between the external, neurohumoral and the cell's internal, calcium signalling system.  相似文献   

10.
The dynamics of carbachol (CCh)-induced [Ca(2+)](i) changes was related to the kinetics of muscarinic cationic current (mI(cat)) and the effect of Ca(2+) release through ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP(3)Rs) on mI(cat) was evaluated by fast x-y or line-scan confocal imaging of [Ca(2+)](i) combined with simultaneous recording of mI(cat) under whole-cell voltage clamp. When myocytes freshly isolated from the longitudinal layer of the guinea-pig ileum were loaded with the Ca(2+)-sensitive indicator fluo-3, x-y confocal imaging revealed CCh (10 microM)-induced Ca(2+) waves, which propagated from the cell ends towards the myocyte centre at 45.9 +/- 8.8 microms(-1) (n = 13). Initiation of the Ca(2+) wave preceded the appearance of any measurable mI(cat) by 229 +/- 55 ms (n = 7). Furthermore, CCh-induced [Ca(2+)](i) transients peaked 1.22 +/- 0.11s (n = 17) before mI(cat) reached peak amplitude. At -50 mV, spontaneous release of Ca(2+) through RyRs, resulting in Ca(2+) sparks, had no effect on CCh-induced mI(cat) but activated BK channels leading to spontaneous transient outward currents (STOCs). In addition, Ca(2+) release through RyRs induced by brief application of 5 mM caffeine was initiated at the cell centre but did not augment mI(cat) (n = 14). This was not due to an inhibitory effect of caffeine on muscarinic cationic channels (since application of 5 mM caffeine did not inhibit mI(cat) when [Ca(2+)](i) was strongly buffered with Ca(2+)/BAPTA buffer) nor was it due to an effect of caffeine on other mechanisms possibly involved in the regulation of Ca(2+) sensitivity of muscarinic cationic channels (since in the presence of 5 mM caffeine, photorelease of Ca(2+) upon cell dialysis with 5 mM NP-EGTA/3.8 mM Ca(2+) potentiated mI(cat) in the same way as in control). In contrast, IP(3)R-mediated Ca(2+) release upon flash photolysis of "caged" IP(3) (30 microM in the pipette solution) augmented mI(cat) (n = 15), even though [Ca(2+)](i) did not reach the level required for potentiation of mI(cat) during photorelease of Ca(2+) (n = 10). Intracellular calcium stores were visualised by loading of the myocytes with the low-affinity Ca(2+) indicator fluo-3FF AM and consisted of a superficial sarcoplasmic reticulum (SR) network and some perinuclear formation, which appeared to be continuous with the superficial SR. Immunostaining of the myocytes with antibodies to IP(3)R type 1 and to RyRs revealed that IP(3)Rs are predominant in the superficial SR while RyRs are confined to the central region of the cell. These results suggest that IP(3)R-mediated Ca(2+) release plays a central role in the modulation of mI(cat) in the guinea-pig ileum and that IP(3) may sensitise the regulatory mechanisms of the muscarinic cationic channels gating to Ca(2+).  相似文献   

11.
Interstitial cells of Cajal are believed to play an important role in gastrointestinal tissues by generating and propagating electrical slow waves to gastrointestinal muscles and/or mediating signals from the enteric nervous system. Recently cells with similar morphological characteristics have been found in the wall of blood vessels such as rabbit portal vein and guinea pig mesenteric artery. These non-contractile cells are characterised by the presence of numerous processes and were easily detected in the wall of the rabbit portal vein by staining with methylene blue or by antibodies to the marker of Interstitial Cells of Cajal c-kit. These vascular cells have been termed "interstitial cells" by analogy with interstitial cells found in the gastrointestinal tract. Freshly dispersed interstitial cells from rabbit portal vein and guinea pig mesenteric artery displayed various Ca2+-release events from endo/sarcoplasmic reticulum including fast localised Ca2+ transients (Ca2+ sparks) and longer and slower Ca2+ events. Single interstitial cells from the rabbit portal vein, which is a spontaneously active vessel, also demonstrated rhythmical Ca2+ oscillations associated with membrane depolarisations, which suggests that in this vessel interstitial cells may act as pacemakers for smooth muscle cells. The function of interstitial cells from the mesenteric arteries is yet unknown. This article reviews some of the recent findings regarding interstitial cells from blood vessels obtained by our laboratory using electron microscopy, immunohistochemistry, tight-seal patch-clamp recording, and fluorescence confocal imaging techniques.  相似文献   

12.
The roles played by ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP?Rs) in vascular smooth muscle in the microcirculation remain unclear. Therefore, the function of both RyRs and IP?Rs in Ca(2+) signals and myogenic tone in hamster cremaster muscle feed arteries and downstream arterioles were assessed using confocal imaging and pressure myography. Feed artery vascular smooth muscle displayed Ca(2+) sparks and Ca(2+) waves, which were inhibited by the RyR antagonists ryanodine (10 μM) or tetracaine (100 μM). Despite the inhibition of sparks and waves, ryanodine or tetracaine increased global intracellular Ca(2+) and constricted the arteries. The blockade of IP?Rs with xestospongin D (5 μM) or 2-aminoethoxydiphenyl borate (100 μM) or the inhibition of phospholipase C using U-73122 (10 μM) also attenuated Ca(2+) waves without affecting Ca(2+) sparks. Importantly, the IP?Rs and phospholipase C antagonists decreased global intracellular Ca(2+) and dilated the arteries. In contrast, cremaster arterioles displayed only Ca(2+) waves: Ca(2+) sparks were not observed, and neither ryanodine (10-50 μM) nor tetracaine (100 μM) affected either Ca(2+) signals or arteriolar tone despite the presence of functional RyRs as assessed by responses to the RyR agonist caffeine (10 mM). As in feed arteries, arteriolar Ca(2+) waves were attenuated by xestospongin D (5 μM), 2-aminoethoxydiphenyl borate (100 μM), and U-73122 (10 μM), accompanied by decreased global intracellular Ca(2+) and vasodilation. These findings highlight the contrasting roles played by RyRs and IP?Rs in Ca(2+) signals and myogenic tone in feed arteries and demonstrate important differences in the function of RyRs between feed arteries and downstream arterioles.  相似文献   

13.
14.
Acetylcholine-evoked secretion from the parotid gland is substantially potentiated by cAMP-raising agonists. A potential locus for the action of cAMP is the intracellular signaling pathway resulting in elevated cytosolic calcium levels ([Ca(2+)](i)). This hypothesis was tested in mouse parotid acinar cells. Forskolin dramatically potentiated the carbachol-evoked increase in [Ca(2+)](i), converted oscillatory [Ca(2+)](i) changes into a sustained [Ca(2+)](i) increase, and caused subthreshold concentrations of carbachol to increase [Ca(2+)](i) measurably. This potentiation was found to be independent of Ca(2+) entry and inositol 1,4,5-trisphosphate (InsP(3)) production, suggesting that cAMP-mediated effects on Ca(2+) release was the major underlying mechanism. Consistent with this hypothesis, dibutyryl cAMP dramatically potentiated InsP(3)-evoked Ca(2+) release from streptolysin-O-permeabilized cells. Furthermore, type II InsP(3) receptors (InsP(3)R) were shown to be directly phosphorylated by a protein kinase A (PKA)-mediated mechanism after treatment with forskolin. In contrast, no evidence was obtained to support direct PKA-mediated activation of ryanodine receptors (RyRs). However, inhibition of RyRs in intact cells, demonstrated a role for RyRs in propagating Ca(2+) oscillations and amplifying potentiated Ca(2+) release from InsP(3)Rs. These data indicate that potentiation of Ca(2+) release is primarily the result of PKA-mediated phosphorylation of InsP(3)Rs, and may largely explain the synergistic relationship between cAMP-raising agonists and acetylcholine-evoked secretion in the parotid. In addition, this report supports the emerging consensus that phosphorylation at the level of the Ca(2+) release machinery is a broadly important mechanism by which cells can regulate Ca(2+)-mediated processes.  相似文献   

15.
Pulmonary veins (PVs) contain cardiomyocytes with spontaneous activity that may be responsible for PV arrhythmia. Abnormal Ca(2+) regulation is known to contribute to PV arrhythmogenesis. The purpose of this study was to investigate whether PV cardiomyocytes with spontaneous activity have different intracellular Ca(2+) ([Ca(2+)](i)) transients, Ca(2+) sparks and responses to isoproterenol and ryanodine receptor modulators (magnesium and FK506) than do PV cardiomyocytes without spontaneous activity and left atrial (LA) cardiomyocytes. Through fluorescence and confocal microscopy, we evaluated the [Ca(2+)](i) transients and Ca(2+) sparks in isolated rabbit PV and LA cardiomyocytes. PV cardiomyocytes with spontaneous activity had larger [Ca(2+)](i) transients and sarcoplasmic reticulum (SR) Ca(2+) stores than PV cardiomyocytes without spontaneous activity or LA cardiomyocytes. PV cardiomyocytes with spontaneous activity also had a higher incidence and frequency of Ca(2+) sparks, and had Ca(2+) sparks with larger amplitudes than other cardiomyocytes. Magnesium (5.4 mM) reduced the [Ca(2+)](i) transient amplitude and beating rate in PV cardiomyocytes with spontaneous activity. However, in contrast with other cardiomyocytes, low doses (1.8 mM) of magnesium did not reduce the [Ca(2+)](i) transients amplitude in PV cardiomyocytes with spontaneous activity. FK506 (1 muM) diminished the SR Ca(2+) stores in PV cardiomyocytes with spontaneous activity to a lesser extent than that in other cardiomyocytes. Isoproterenol (10 nM) increased the [Ca(2+)](i) transient amplitude to a lesser extent in LA cardiomyocytes than in PV cardiomyocytes with or without spontaneous activity. In conclusion, our results suggest that enhanced [Ca(2+)](i) transients, increased Ca(2+) sparks and SR Ca(2+) stores may contribute to the spontaneous activity of PV cardiomyocytes.  相似文献   

16.
In cardiac muscle, excitation-contraction (E-C) coupling is determined by the ability of the sarcoplasmic reticulum (SR) to store and release Ca(2+). It has been hypothesized that the Ca(2+) sequestration and release mechanisms might be functionally linked to optimize the E-C coupling process. To explore the relationships between the loading status of the SR and functional state of the Ca(2+) release mechanism, we examined the effects of changes in SR Ca(2+) content on spontaneous Ca(2+) sparks in saponin-permeabilized and patch-clamped rat ventricular myocytes. SR Ca(2+) content was manipulated by pharmacologically altering the capacities of either Ca(2+) uptake or leak. Ca(2+) sparks were recorded using a confocal microscope and Fluo-3 and were quantified considering missed events. SR Ca(2+) content was assessed by application of caffeine. Exposure of permeabilized cells to anti-phospholamban antibodies elevated the SR Ca(2+) content and increased the frequency of sparks. Suppression of the SR Ca(2+) pump by thapsigargin lowered [Ca(2+)](SR) and reduced the frequency of sparks. The ryanodine receptor (RyR) blockers tetracaine and Mg(2+) transiently suppressed the frequency of sparks. Upon washout of the drugs, sparking activity transiently overshot control levels. Low doses of caffeine transiently potentiated sparking activity upon application and transiently depressed the sparks upon removal. In patch-clamped cardiac myocytes, exposure to caffeine produced only a transient increase in the probability of sparks induced by depolarization. We interpret these results in terms of a novel dynamic control scheme for SR Ca(2+) cycling. A central element of this scheme is a luminal Ca(2+) sensor that links the functional activity of RyRs to the loading state of the SR, allowing cells to auto-regulate the size and functional state of their SR Ca(2+) pool. These results are important for understanding the regulation of intracellular Ca(2+) release and contractility in cardiac muscle.  相似文献   

17.
Interstitial cells of Cajal (ICCs) freshly isolated from rabbit portal vein and loaded with the Ca(2+)-sensitive indicator fluo-3 revealed rhythmical [Ca(2+)](i) changes occurring at 0.02-0.1 Hz. Each increase in [Ca(2+)](i) originated from a discrete central region of the ICC and propagated as a [Ca(2+)](i) wave towards the cell periphery, but usually became attenuated before reaching the ends of the cell. In about 40% of ICCs each rhythmical change in [Ca(2+)](i) consisted of an initial [Ca(2+)](i) increase (phase 1) followed by a faster rise in [Ca(2+)](i) (phase 2) and then a decrease in [Ca(2+)](i) (phase 3); the frequency correlated with the rate of rise of [Ca(2+)](i) during phase 1, but not with the peak amplitude. Rhythmical [Ca(2+)](i) changes persisted in nicardipine, but were abolished in Ca(2+)-free solution as well as by SK&F96365, cyclopiazonic acid, thapsigargin, 2-APB, xestospongin C or ryanodine. Intracellular Ca(2+) stores visualised with the low-affinity Ca(2+) indicator fluo-3FF were found to be enriched with ryanodine receptors (RyRs) detected with BODIPY TR-X ryanodine. Rhythmical [Ca(2+)](i) changes originated from a perinuclear S/ER element showing the highest RyR density. Immunostaining with anti-TRPC3,6,7 antibodies revealed the expression of these channel proteins in the ICC plasmalemma. This suggests that these rhythmical [Ca(2+)](i) changes, a key element of ICC pacemaking activity, result from S/ER Ca(2+) release which is mediated via RyRs and IP(3) receptors and is modulated by the activity of S/ER-Ca(2+)-ATPase and TRP channels but not by L-type Ca(2+) channels.  相似文献   

18.
Agonist stimulation of exocrine cells leads to the generation of intracellular Ca(2+) signals driven by inositol 1,4,5-trisphosphate receptors (IP(3)Rs) that rapidly become global due to propagation throughout the cell. In many types of excitable cells the intracellular Ca(2+) signal is propagated by a mechanism of Ca(2+)-induced Ca(2+) release (CICR), mediated by ryanodine receptors (RyRs). Expression of RyRs in salivary gland cells has been demonstrated immunocytochemically although their functional role is not clear. We used microfluorimetry to measure Ca(2+) signals in the cytoplasm, in the endoplasmic reticulum (ER) and in mitochondria. In permeabilized acinar cells caffeine induced a dose-dependent, transient decrease of Ca(2+) concentration in the endoplasmic reticulum ([Ca(2+)](ER)). This decrease was inhibited by ryanodine but was insensitive to heparin. Application of caffeine, however, did not elevate cytosolic Ca(2+) concentration ([Ca(2+)](i)) suggesting fast local buffering of Ca(2+) released through RyRs. Indeed, activation of RyRs produced a robust mitochondrial Ca(2+) transient that was prevented by addition of Ca(2+) chelator BAPTA but not EGTA. When mitochondrial Ca(2+) uptake was blocked, activation of RyRs evoked only a non-transient increase in [Ca(2+)](i) and substantially smaller Ca(2+) release from the ER. Upon simultaneous inhibition of mitochondrial Ca(2+) uptake and either plasmalemmal or ER Ca(2+) ATPase, activation of RyRs caused a transient rise in [Ca(2+)](i). Collectively, our data suggest that Ca(2+) released through RyRs is mostly "tunnelled" to mitochondria, while Ca(2+) ATPases are responsible for the fast initial sequestration of Ca(2+). Ca(2+) uptake by mitochondria is critical for maintaining continuous CICR. A complex interplay between RyRs, mitochondria and Ca(2+) ATPases is accomplished through strategic positioning of mitochondria close to both Ca(2+) release sites in the ER and Ca(2+) pumping sites of the plasmalemma and the ER.  相似文献   

19.
Ca(+) spark has been implicated as a pivotal feedback mechanism for regulating membrane potential and vasomotor tone in systemic arterial smooth muscle cells (SASMCs), but little is known about its properties in pulmonary arterial smooth muscle cells (PASMCs). Using confocal microscopy, we identified spontaneous Ca(2+) sparks in rat intralobar PASMCs and characterized their spatiotemporal properties and physiological functions. Ca(2+) sparks of PASMCs had a lower frequency and smaller amplitude than cardiac sparks. They were abolished by inhibition of ryanodine receptors but not by inhibition of inositol trisphosphate receptors and L-type Ca(2+) channels. Enhanced Ca(2+) influx by BAY K8644, K(+), or high Ca(2+) caused a significant increase in spark frequency. Functionally, enhancing Ca(2+) sparks with caffeine (0.5 mM) caused membrane depolarization in PASMCs, in contrast to hyperpolarization in SASMCs. Norepinephrine and endothelin-1 both caused global elevations in cytosolic Ca(2+) concentration ([Ca(2+)]), but only endothelin-1 increased spark frequency. These results suggest that Ca(2+) sparks of PASMCs are similar to those of SASMCs, originate from ryanodine receptors, and are enhanced by Ca(2+) influx. However, they play a different modulatory role on membrane potential and are under agonist-specific regulation independent of global [Ca(2+)].  相似文献   

20.
In pancreatic acinar cells, inositol 1,4,5-trisphosphate (InsP(3))-dependent cytosolic calcium ([Ca(2+)](i)) increases resulting from agonist stimulation are initiated in an apical "trigger zone," where the vast majority of InsP(3) receptors (InsP(3)R) are localized. At threshold stimulation, [Ca(2+)](i) signals are confined to this region, whereas at concentrations of agonists that optimally evoke secretion, a global Ca(2+) wave results. Simple diffusion of Ca(2+) from the trigger zone is unlikely to account for a global [Ca(2+)](i) elevation. Furthermore, mitochondrial import has been reported to limit Ca(2+) diffusion from the trigger zone. As such, there is no consensus as to how local [Ca(2+)](i) signals become global responses. This study therefore investigated the mechanism responsible for these events. Agonist-evoked [Ca(2+)](i) oscillations were converted to sustained [Ca(2+)](i) increases after inhibition of mitochondrial Ca(2+) import. These [Ca(2+)](i) increases were dependent on Ca(2+) release from the endoplasmic reticulum and were blocked by 100 microM ryanodine. Similarly, "uncaging" of physiological [Ca(2+)](i) levels in whole-cell patch-clamped cells resulted in rapid activation of a Ca(2+)-activated current, the recovery of which was prolonged by inhibition of mitochondrial import. This effect was also abolished by ryanodine receptor (RyR) blockade. Photolysis of d-myo InsP(3) P(4(5))-1-(2-nitrophenyl)-ethyl ester (caged InsP(3)) produced either apically localized or global [Ca(2+)](i) increases in a dose-dependent manner, as visualized by digital imaging. Mitochondrial inhibition permitted apically localized increases to propagate throughout the cell as a wave, but this propagation was inhibited by ryanodine and was not seen for minimal control responses resembling [Ca(2+)](i) puffs. Global [Ca(2+)](i) rises initiated by InsP(3) were also reduced by ryanodine, limiting the increase to a region slightly larger than the trigger zone. These data suggest that, while Ca(2+) release is initially triggered through InsP(3)R, release by RyRs is the dominant mechanism for propagating global waves. In addition, mitochondrial Ca(2+) import controls the spread of Ca(2+) throughout acinar cells by modulating RyR activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号