首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Sandler  A Andersson 《Cryobiology》1987,24(4):285-291
It was the aim of this study to investigate the influence of the glucose concentration of the post-thaw culture medium on islet B-cell survival after cryopreservation by the combined assessments of islet recovery, islet DNA and insulin contents, and insulin release. Collagenase isolated mouse islets were kept in culture for 3 days in the presence of 11.1 mM glucose and then transferred to freezing ampoules containing Hanks' solution supplemented with 10% calf serum and 2 M dimethyl sulfoxide. After a 20-min incubation at 0 degrees C the islets were cooled at a rate of 25 degrees C/min to -70 degrees C and subsequently plunged into liquid nitrogen. After 2 hr the frozen islets were rapidly thawed at 37 degrees C, transferred to culture dishes, and cultured for another 3 days in the presence of 2.8, 5.6, 11.1, 16.7, or 28 mM glucose. Nonfrozen control islets were treated identically after a preceding 3-day culture at 11.1 mM glucose. The percentage recovery of cryopreserved islets was decreased compared to that of nonfrozen islets, but was increased when higher glucose concentrations were used in the post-thaw culture medium. Since the DNA content of the cryopreserved islets was slightly decreased, the overall survival rate of the cryopreserved B-cells, when cultured at the higher glucose concentrations after thawing, was found to be about 75%. The insulin content of the cryopreserved islets was decreased but the glucose-stimulated insulin release was essentially the same as that of the nonfrozen islets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Knowledge of protective effects of corticosteroids on traumatized cells prompted us to test the potential benefit of islet cryopreservation in the presence of hydrocortisone. Neonatal murine islets were isolated by collagenase, followed by 2- to 3-day tissue culture. Precryopreservation glucose-stimulated (50-500 mg/dl) insulin release was 25-388% above basal (mean = 113%) in 18/20 fresh islet preparations. Subsequent freezing was done in RPMI 1640 medium plus 10% (v/v) heat-inactivated fetal calf serum and 10% (v/v) Me2SO with or without 1 mg/ml hydrocortisone at 0.25 degrees C per minute in a programmed freezing system, to -80 degrees C, and stored for greater than 60 days at -196 degrees C. Thawing, by transfer to room air, was followed by dilution, 4x (v/v), in 4 degrees C RPMI plus 10% protein, after which glucose-stimulated insulin release was reassessed, showing 56-280% response over basal in 3/8 steroid-treated preparation and 20-220% response in 3/10 control preparations. Basal insulin release was 0.72 ng/microgram protein/hr in fresh islets (N = 20) and 0.22 ng/microgram protein/hr after freeze-thawing. We conclude that functional islet survival by this method is approximately 30% and that hydrocortisone did not improve viability.  相似文献   

3.
The aim of this study was to determine the optimal conditions (effect of culture time before and after cryopreservation) for cryopreservation of specific pathogen-free pig islet cells. METHODS: (1) Glucose-induced insulin secretion by fresh islet cells cultured for 10 days was compared to that by islet cells cryopreserved 7 days after isolation and cultured 3 days after thawing. (2) Islet cells were cryopreserved 1, 7, or 14 days after isolation and cultured 3, 7, 14, or 21 days after thawing. Islet cell number, insulin content, and insulin response under perifusion tests were investigated. RESULTS: (1) Insulin response by cryopreserved islet cells was identical to that by fresh islet cells (basal/stimulation index: 2. 13 +/- 0.19 vs 2.17 +/- 0.16, n = 4, NS), although the amount of secreted insulin was reduced by 40% (area under the curve: 2136 +/- 198 pM/10(4) cells/180 min vs 3564 +/- 636 pM/10(4) cells/180 min, P = 0.104). (2) Cell number 6 days after thawing was reduced by 54, 40, and 63% when cryopreservations were carried out at D1, D7, and D14. (3) Insulin content in cultured or cryopreserved islet cells increased between 7 and 14 days of culture. (4) Whatever the culture time before and after cryopreservation, insulin secretion in response to glucose was maintained. The insulin release was the highest for islet cells cryopreserved 14 days after isolation and cultured 14 days after thawing (stimulation index: 6.19 +/- 2.68). CONCLUSIONS: SPF pig islet cells remained functional after cryopreservation in polyethylene glycol and it may be important to culture islet cells over 14 days before and after cryopreservation.  相似文献   

4.
5.
We have previously investigated glucose induction of glucokinase, glucose usage and insulin release in isolated cultured rat pancreatic islets (Liang, Y., Najafit, H., Smith, R. M., Zimmerman, E. C., Magnuson, M. A., Tal, M., and Mastchinsky, F. M. (1992) Diabetes (1992) 41, 792-806). Here we studied the expression and function of GLUT-1 and GLUT-2 glucose transporter isoforms, using the same system, i.e. isolated pancreatic rat islets immediately after isolation or cultured in the presence of 3 or 30 mM glucose for as long as 10 days. We found by immunofluorescence microscopy and Western and Northern blot analysis of islet extracts that GLUT-1 expression was induced in islet beta-cells in tissue culture both with low or high glucose present. The induction of GLUT-1 was specific to beta-cells but was not present in all beta-cells and was not detected in alpha-cells. GLUT-2 expression was also specific for beta-cells and was not observed in all beta-cells. Some beta-cells in culture coexpressed GLUT-1 and GLUT-2. The expression of the two glucose transporters was regulated in the opposite direction in response to glucose concentration in the culture medium. GLUT-1 was more effectively induced when glucose was low, and GLUT-2 expression was more pronounced when glucose was high in the culture media. Another difference between the two glucose transporters was that GLUT-2 expression was increased while GLUT-1 expression was decreased as culturing continued as long as 7 days. Thus, after 7 days of culture GLUT-2 expression in beta-cells was nearly the same at low and high glucose, whereas GLUT-1 was practically absent no matter what the glucose level was. In attempts to correlate GLUT-1 and GLUT-2 expression to beta-cell function glucose uptake and glucose-stimulated insulin release in fresh and cultured islets were measured. In freshly isolated islet glucose uptake was estimated to be 100-fold in excess of actual glucose use. Glucose uptake was reduced by 7-day culture to about one-third of that observed in freshly isolated islets no matter what the glucose concentration of the culture media. We conclude that in the present experimental system GLUT-1 and GLUT-2 expression and function are not closely associated with glucose usage rates or the secretory function of beta-cells.  相似文献   

6.
The possibility of cryopreservation of islets of Langerhans by vitrification using a mixture of cryoprotectants was investigated and the results were compared with a more conventional freezing method using Me2SO as cryoprotectant. Isolated mouse islets were divided into three groups: (1) control islets cultured for 6 days, (2) islets which were cryopreserved by vitrification after 2 days of culture, and (3) islets frozen in 1.5 M Me2SO after 2 days of culture. After warming, islets from groups 2 and 3 were cultured for 4 days. The thus treated islets were investigated with respect to insulin secretion in the presence of 2.5 or 25 mM glucose, survival during postwarming culture, morphology, and capability to reverse streptozotocin-induced diabetes. The insulin secretion in islets from all groups could be stimulated by a factor 5 or more by an increase in the concentration of glucose from 2.5 to 25 mM. The secretion of insulin in the presence of 2.5 mM glucose was similar in all groups of islets. The secretion of insulin in the presence of 25 mM glucose was slightly but not significantly lower in the cryopreserved islets than in the control noncryopreserved islets. The survival of islets during postwarming culture was comparable after cryopreservation with both methods, and islets from both groups could lower serum glucose in streptozotocin diabetic mice. We conclude that islets cryopreserved by the vitrification method are functional in vitro and in vivo. This method is quick, simple, and cheap because the use of complicated freezing equipment is avoided.  相似文献   

7.
Factors affecting viability of IVF-derived bovine blastocysts after freezing and thawing were investigated. A total of 1,101 ova matured and fertilized in vitro were cultured under 2 different conditions, 1) in TCM-199 on granulosa cell monolayers at 5% CO(2) in air and 2) in synthetic oviduct fluid (SOF) medium without somatic cell support at 5% CO(2), 5% O(2), 90% N(2). All blastocysts that developed from the 2 different culture systems were individually classified into 4 grades of embryo quality and were then frozen by conventional slow freezing. Developmental rates of the IVF-derived ova to blastocysts and the survival rates of the frozen-thawed blastocysts were not different between the SOF medium (16 and 49%) and the co-culture system (13 and 61%, respectively). Survival of frozen-thawed blastocysts was affected by embryo quality in both the SOF and co-culture systems (P<0.001). Blastocysts produced in vitro were also individually classified into 3 developmental stages and were then cultured for 3 d in the co-culture system with granulosa cells after freezing and thawing. There was a difference in the survival rate of frozen-thawed embryos between blastocyst developmental stages (early vs mid, P<0.05; mid vs expanded, P<0.01; early vs expanded, P<0.001). The post-thawing survival rate of blastocysts frozen at Day 7 (62%) of culture was higher compared with that of Day 8 (45%), but there was no difference in survival rate between Day 7 and 8 of culture. The results indicate that the quality and developmental stage of blastocysts are important factors influencing their survival after freezing and thawing.  相似文献   

8.
This study compares the effects of conventional controlled-rate freezing and vitrification on the morphology and metabolism of in vitro-produced bovine blastocysts. Day 7 expanded blastocysts cultured in synthetic oviduct fluid with 5% fetal calf serum were frozen in 1.36 M glycerol, 0.25 M sucrose or vitrified in 25% glycerol, 25% ethylene glycol. Cell alterations and in vitro development were evaluated immediately after thawing or after 72 h. The effect of cryopreservation on inner cell mass and trophectoderm (TE) cell number as well as glucose, pyruvate, and oxygen uptakes, and lactate release by blastocysts were evaluated. Immediately after thawing, blastocysts showed equivalent cell membrane permeabilization after both cryopreservation procedures, while alterations in nuclear staining were more frequent in vitrified embryos. After culture, similar survival and hatching rates were observed. Both procedures decreased cell number immediately after thawing and after 72 h. However, the number of TE cells was lower in frozen embryos than in vitrified ones. In relation to this, frozen blastocysts showed a decrease in glucose, pyruvate, and oxygen uptake, although those parameters were not altered in vitrified embryos. An increased glycolytic activity was also observed in frozen embryos, indicating a stress response to this procedure.  相似文献   

9.
The direct effects of alpha- and beta-interferons on isolated mouse pancreatic islets were investigated in vitro and found to be similar. After 7 h incubation with interferon concentrations above 350 units/ml, glucose-stimulated (pro)insulin biosynthesis was significantly inhibited, with only a slight inhibition of total protein biosynthesis. Inhibition could be abolished in the additional presence of an anti-interferon antibody. Interferon did not affect insulin release, total insulin content, or glucose oxidation of the islets. The stimulation of (pro)insulin biosynthesis by adenosine, D-glyceraldehyde, mannose, N-acetylglucosamine and leucine was also inhibited by interferon, with no effect on insulin release. At concentrations of dsRNA (double-stranded RNA) said to induce interferon (1-100 micrograms/ml), glucose-stimulated (pro)insulin biosynthesis was inhibited without significantly affecting insulin release. The dsRNA may itself inhibit stimulated (pro)insulin biosynthesis or may function indirectly by the induction of interferon.  相似文献   

10.
The ability of the fetal pancreatic islet cells to multiply rendered them a potential tissue for transplantation studies to cure diabetes. A bank of fetal islets could be created with proper storage in liquid nitrogen. The aim of this study is to evaluate the effect of thawing rate and post-thaw culture on the structural and functional integrity of isolated cryopreserved islets of rat fetuses. Fetal rat islets were isolated by the collagenase digestion, cultured for three days, and then cryopreserved using dimethylsulphoxide as cryoprotectant and the step-rate cooling to -40 degrees C before immersing them in liquid nitrogen. The islets were thawed by the slow or fast warming rates using hyperosmolar sucrose solution and then cultured for 1 or 2 days. Insulin and C-peptide contents of the slow thawed islets were higher than those of the control. In the fast thawed islets the contents were similar to those of the control. Insulin and C-peptide release in response to glucose for the slow thawed islets were lower than those of the control and in the fast thawed islets they were similar to that of the control. Histological examination showed irregular periphery and fragmented central part of the large slowly thawed islets, which showed also variable immunohistochemical reaction to anti-insulin serum, ranging from strongly positive reaction to markedly weak reaction. Fast thawed islets showed mostly regular periphery and their reaction to the anti-insulin serum was slightly weaker than that of the control islets. It was concluded that fast thawing and post-thaw culture is much better than slow thawing, as indicated by nearly normal insulin and C-peptide content and release and intact structural integrity.  相似文献   

11.
新生大鼠胰碎片在MEM、DMEM、M-199和RPMI-1640中培养,比较培养不同天数冷冻保存,不同条件处理及液氮贮存不同时间的实验结果。表明新生大鼠胰碎片在RPMI-1640中培养胰岛素分泌量最高,随着培养时间的延长,胰岛素分泌量逐渐升高。培养6d进行冷冻保存为宜。新生大鼠胰碎片在液氮中贮存12个月分泌功能无明显变化。  相似文献   

12.
During freezing, intracellular ice formation (IIF) has been correlated with loss in viability for a wide variety of biological systems. Hence, determination of IIF characteristics is essential in the development of an efficient methodology for cryopreservation. In this study, IIF characteristics of hepatocytes cultured in a collagen matrix were determined using cryomicroscopy. Four factors influenced the IIF behavior of the hepatocytes in the matrix: cooling rate, final cooling temperature, concentration of Me2SO, and time in culture prior to freezing. The maximum cumulative fraction of cells with IIF increased with increasing cooling rate. For cultured cells frozen in Dulbecco's modified Eagle's medium (DMEM), the cooling rate for which 50% of the cells formed ice (B50) was 70 degrees C/min for cells frozen after 1 day in culture and decreased to 15 degrees C/min for cells frozen after 7 days in culture. When cells were frozen in a 0.5 M Me2SO + DMEM solution, the value of B50 decreased from 70 to 50 degrees C/min for cells in culture for 1 day and from 15 to 10 degrees C/min for cells in culture for 7 days. The value of the average temperature for IIF (TIIF) for cultured cells was only slightly depressed by the addition of Me2SO when compared to the IIF behavior of other cell types. The results of this study indicate that the presence of the collagen matrix alters significantly the IIF characteristics of hepatocytes. Thus freezing studies using hepatocytes in suspension are not useful in predicting the freezing behavior of hepatocytes cultured in a collagen matrix. Furthermore, the weak effect of Me2SO on IIF characteristics implies that lower concentrations of Me2SO (0.5 M) may be just as effective in preserving viability. Finally, the value of B50 measured in this study indicates that cooling rates nearly an order of magnitude faster than those previously investigated could be used for cryopreservation of the hepatocytes in a collagen gel.  相似文献   

13.
This study was undertaken to investigate the long-term effects of different substrates, in particular glucose, on the regulation of islet RNA metabolism and the relationship of this regulation to the metabolism and insulin production of the islet B-cell. For this purpose collagenase-isolated mouse islets were used either in the fresh state or after culture for 2 or 5 days in RPMI 1640 plus 10% calf serum supplemented with various test compounds. Islets cultured with 16.7 mM glucose contained more RNA than those cultured with 3.3 mM glucose. Culture of islets in glucose at low concentrations inhibited glucose-stimulated RNA synthesis and this inhibitory effect was reversed by prolonged exposure to high glucose concentrations. Culture with 10 mM leucine and 3.3 mM glucose or with 10 mM 2-ketoisocaproate and 3.3 mM glucose increased the total RNA content of islets as compared to that of islets cultured with 3.3 mM glucose alone. Islets cultured with 5 mM theophylline maintained a high RNA content in the presence of 3.3 mM glucose. Theophylline also increased the islet RNA content when added together with 16.7 mM glucose, as compared to 16.7 mM glucose alone. Theophylline probably exerted this effect by decreasing the rate of RNA degradation. Changes in islet RNA metabolism showed a close correlation to changes in islet total protein biosynthesis, whereas islet (pro)insulin biosynthesis and insulin release exhibited different glucose-dependency patterns. The response of islet oxygen uptake to glucose was similar to that of islet RNA and protein biosynthesis. It is concluded that the RNA content of the pancreatic islets is controlled at the levels of both synthesis and degradation. Glucose stimulates the RNA synthesis and inhibits its degradation. Moreover, the results suggest that regulation of RNA synthesis may be mediated through islet metabolic fluxes and the cAMP system.  相似文献   

14.
Glucose regulates glucokinase activity in cultured islets from rat pancreas   总被引:6,自引:0,他引:6  
In this study, we have used isolated pancreatic islets cultured for 7 days in 3 or 30 mM glucose to explore whether glucokinase is induced or activated by high glucose concentrations and has related enzyme activity to glucose-stimulated insulin release. Islets cultured in low glucose medium or low glucose medium plus 350 ng/ml insulin did not respond to high glucose stimulation. Islets cultured in medium containing high glucose concentrations showed a high rate of basal insulin secretion when perifused with 5 mM glucose, and the insulin release was greatly augmented in a biphasic secretion profile when the glucose concentration was raised to 16 mM. Islet glucokinase and hexokinase activities were determined by a sensitive and specific fluorometric method. Glucokinase activity was reduced to approximately 50% in islets cultured in low glucose medium with or without insulin present compared to results with fresh islets. However, islets cultured in 30 mM glucose showed that glucokinase activity was elevated to 236% compared to results with fresh islets. It is concluded that (a) glucose is the physiological regulator of glucokinase in the islet of Langerhans and that (b) the activity of glucokinase plays a crucial role in glucose-induced insulin secretion.  相似文献   

15.
Viability tests of cryopreserved endocrine pancreatic cells   总被引:5,自引:0,他引:5  
A Andersson  S Sandler 《Cryobiology》1983,20(2):161-168
Collagenase-isolated islets, which had been cultured for 1 week, were frozen at two different cooling rates. Islets frozen at 5 degrees C/min behaved from a functional point of view very similarly to that of nonfrozen, cultured control islets, except for a reduced maximal insulin secretory capacity and a reduced insulin content. Slowly frozen islets (0.5 degrees C/min), however, displayed reduced rates of both proinsulin biosynthesis and glucose oxidation. It is concluded that isolated islets can be cryopreserved with great success and that the methods of choice for viability tests are those characterizing the dynamics of insulin secretory capacity of the cryopreserved islets.  相似文献   

16.
Rates of incorporation of [4,5-(3)H]leucine into insulin plus proinsulin, designated ;(pro)insulin', and total protein in rat pancreatic islets were measured. Glucose stimulates rates of total protein and (pro)insulin biosynthesis, but (pro)insulin biosynthesis is stimulated preferentially. Mannose and N-acetylglucosamine also stimulate (pro)insulin and total protein biosynthesis; inosine and dihydroxyacetone stimulate (pro)insulin biosynthesis specifically. Fructose does not stimulate (pro)insulin biosynthesis when tested alone, but does so in the presence of low concentrations of glucose, mannose or N-acetylglucosamine. Many glucose analogues do not stimulate (pro)insulin biosynthesis. Mannoheptulose inhibits synthesis of (pro)insulin and total protein stimulated by glucose or mannose but not by dihydroxyacetone, inosine or N-acetylglucosamine; phloretin (9mum) inhibits N-acetylglucosamine-stimulated (pro)insulin biosynthesis preferentially. The data are in agreement with the view that the same glucose-sensor mechanism may control both insulin release and biosynthesis, and ;substrate-site' model is suggested. The threshold for stimulation of biosynthesis of (pro)insulin and total protein is lower than that found for glucose-stimulated insulin release; moreover the biosynthetic response to an elevation of glucose concentration is slower than that found for insulin release. The physiological implication of these findings is discussed. Caffeine and isobutylmethylxanthine, at concentrations known to increase islet 3':5'-cyclic AMP and potentiate glucose-induced insulin release, were without effect on rates of glucose-stimulated (pro)insulin biosynthesis.  相似文献   

17.
The effect of porcine vasoactive intestinal polypeptide (VIP) on development of the biphasic insulin release response in cultured fetal rat islets was investigated. Fetal islets, 21.5 days gestational age, were cultured for 7 days in RPMI 1640 culture medium containing either 2.8 or 11.1 mM glucose adn subsequently challenged with 16.7 mM glucose in a perfusion system. Islets were exposed to VIP at a final concentration of 13.2 nM by adding the peptide to the perifusion buffer (acute exposure) or by adding it to the culture medium throughout the culture period (chronic exposure). Islet hormone and DNA contents were also quantitated at the end of the culture period. Acute exposure to VIP resulted in no alterations of the insulin release pattern after culture in the presence of either glucose concentration. However, chronic treatment of islets with 13.2 nM VIP in the presence of 2.8 mM glucose resulted in significant increases in the maximum rate of insulin release during the first phase and the total amount of insulin release during both phases. Similarly, islets cultured in the presence of 11.1 mM glucose and 13.2 nM VIP demonstrated enhanced biphasic insulin release patterns with increased maximum rate and total amount of release during both phases. The presence of VIP and 2.8 mM glucose increased islet glucagon and somatostatin contents, but islet DNA and insulin contents remained unchanged. These findings indicate that VIP plays a significant role in the in vitro development of the biphasic insulin release pattern and may be a factor controlling the maturation of the fetal islet in vivo.  相似文献   

18.
For people with type 1 diabetes and severe hypoglycemic unawareness, islet transplants offer hope for improving the quality of life. However, islet cell death occurs quickly during or after transplantation, requiring large quantities of islets per transplant. The purpose of this study was to determine whether poor function demonstrated in large islets was a result of diffusion barriers and if removing those barriers could improve function and transplantation outcomes. Islets were isolated from male DA rats and measured for cell viability, islet survival, glucose diffusion and insulin secretion. Modeling of diffusion barriers was completed using dynamic partial differential equations for a sphere. Core cell death occurred in 100% of the large islets (diameter >150 μm), resulting in poor survival within 7 days after isolation. In contrast, small islets (diameter <100 μm) exhibited good survival rates in culture (91%). Glucose diffusion into islets was tracked with 2-NBDG; 4.2 μm/min in small islets and 2.8 μm/min in large islets. 2-NBDG never permeated to the core cells of islets larger than 150 μm diameter. Reducing the diffusion barrier in large islets improved their immediate and long-term viability in culture. However, reduction of the diffusion barrier in large islets failed to improve their inferior in vitro insulin secretion compared to small islets, and did not return glucose control to diabetic animals following transplantation. Thus, diffusion barriers lead to low viability and poor survival for large islets, but are not solely responsible for the inferior insulin secretion or poor transplantation outcomes of large versus small islets.  相似文献   

19.
《Organogenesis》2013,9(2):115-124
For people with type 1 diabetes and severe hypoglycemic unawareness, islet transplants offer hope for improving the quality of life. However, islet cell death occurs quickly during or after transplantation, requiring large quantities of islets per transplant. The purpose of this study was to determine whether poor function demonstrated in large islets was a result of diffusion barriers and if removing those barriers could improve function and transplantation outcomes. Islets were isolated from male DA rats and measured for cell viability, islet survival, glucose diffusion and insulin secretion. Modeling of diffusion barriers was completed using dynamic partial differential equations for a sphere. Core cell death occurred in 100% of the large islets (diameter > 150 μm), resulting in poor survival within 7 days after isolation. In contrast, small islets (diameter &lt; 100 μm) exhibited good survival rates in culture (91%). Glucose diffusion into islets was tracked with 2-NBDG; 4.2 μm/min in small islets and 2.8 μm/min in large islets. 2-NBDG never permeated to the core cells of islets larger than 150μm diameter. Reducing the diffusion barrier in large islets improved their immediate and long-term viability in culture. However, reduction of the diffusion barrier in large islets failed to improve their inferior in vitro insulin secretion compared to small islets, and did not return glucose control to diabetic animals following transplantation. Thus, diffusion barriers lead to low viability and poor survival for large islets, but are not solely responsible for the inferior insulin secretion or poor transplantation outcomes of large versus small islets.  相似文献   

20.
Cattle blastocysts were collected from 29 donors 7-8 days after estrus and frozen and stored in liquid nitrogen up to several months. Two procedures were used for freezing and thawing: After thawing, the embryos were cultured from 8 to 12 hours before transfer; 36% of the embryos continued normal development during culture; both procedures resulted in a high pregnancy rate (procedure A: 10 15 ; procedure B: 11 15 ) after single cervical transfer of the frozen thawed embryos which developed normaly in vitro . However the overall survival rate was low (25%) and varied between donors, indicating that progress must be made before the technique of freezing can be extended to applied conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号