首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The tarsi of the modified front legs (whips) of the whip spider Heterophrynus elaphus contain two afferent giant fibers, GN1 and GN2, with diameters at the tibia-tarsus joint of ca. 21 m and 14 m, respectively. The somata of these two neurons lie in the periphery, about 25 cm away from the CNS. These two neurons are interneurons which receive mechanoreceptive inputs from approximately 750 and 1500 bristles, respectively. The receptive fields of GN1 and GN2 overlap; they extend for 40 mm (GN1) and 90 mm (GN2) along the length of the tarsus. About 90% of the synapses onto the giant fibers are axo-axonic. Mechanical stimulation of a single bristle is sufficient to elicit action potentials in one or both interneurons. The response of the interneurons adapts quickly. Average conduction time from the soma to the CNS is 45 ms for GN1 and 55 ms for GN2. Mean conduction velocities are 5.5 and 4.2 m/s, respectively. Activity in the giant fibers does not elicit a motor response; hence the giant fibers do not mediate an escape response. Possible functions of these giant fibers are discussed and compared to those of giant fiber systems in other arthropods.Abbreviations GN giant neuron - S segment  相似文献   

2.
The electrical correlates of activity in the effector systems responsible for swimming, crumpling and postural changes have been recorded in the anthomedusan Polyorchis penicillatus. Motor spikes (pre-swim pulses), that initiate swimming contractions, appear without delay at distant sites on the inner nerve-ring in unstimulated preparations. Levels of Mg++ anaesthesia which block the neuromuscular junctions between PSP giant neurons and swimming muscle do not affect PSP activity. Swimming muscle potentials can be recorded from subumbrella and velar muscle sheets using extra- and intracellular electrodes. These action potentials have a distinct plateau and are propagated in a myoid fashion. Resting potentials average ?70 mV with spikes overshooting zero by some 62 mV. The effects of repetitive stimulation are described. Extracellular recordings indicate that neuronal pathways may play a major role in mediating crumpling, unlike many other species where epithelial pathways are more important. Endodermal spikes recorded intracellularly from the radial and ring canals have amplitudes of some 92 mV arising from resting potentials that average ?55 mV. Repetitive stimulation causes a decrease in amplitude and increase in duration of epithelial action potentials. Tentacle length is controlled by a pacemaker system located in both nerve rings. The frequency of spikes (PTPs) generated by this system determines the length and tonus of tentacles. The neuromuscular junctions between the motor neurons and tentacle muscle are Mg++ sensitive and show facilitating properties.  相似文献   

3.
Summary We have investigated the connectivity of four classes of mechanosensory afferents to giant interneurons in the earthwormLumbricus. Three of these classes of afferents change their specification for connection to medial giant (MGF) and lateral giant (LGF) fibers along the length of the animal. Near the caudal end, stimulation of touch, pressure and small tactile fibers generates excitatory post-synaptic potentials, epsp's, in the two LGF's but not in the MGF. Near the rostral end these afferents produce much smaller epsp's in the LGFs but produce large epsp's in the MGF. In the middle region of the animal an overlap region exists where both giant fibers receive approximately equal inputs from these afferents. The amplitude of these inputs are reduced compared to the maxima seen at either end. The fourth class of sensory afferents investigated, the stretch neurons, have no synaptic effect on the giant fibers anywhere in the nerve cord.These results explain at least part of the basis, in neuronal connectivity, for the differences in response to tactile stimulation of the head and tail segments previously characterized in terms of behavior and giant fiber impulse activity. In this system developmental mechanisms generating synaptic connectivity patterns have coded certain classes of homologous afferent neurons and interneurons to make different connections in different segments.Abbreviations MGF medial giant fiber - LGF lateral giant fiber - SN1 first segmental root - SN2 second segmental root - SN3 third segmental root - RIN giant interneuron  相似文献   

4.
The microanatomy of the dorsal giant fibers of Lumbricus terrestris is described systematically. Moreover, two afferent giant interneurons and 4 pairs of giant motor neurons are individually identified. The results are compared with the physiological data so far available.  相似文献   

5.
Discriminative touch relies on afferent information carried to the central nervous system by action potentials (spikes) in ensembles of primary afferents bundled in peripheral nerves. These sensory quanta are first processed by the cuneate nucleus before the afferent information is transmitted to brain networks serving specific perceptual and sensorimotor functions. Here we report data on the integration of primary afferent synaptic inputs obtained with in vivo whole cell patch clamp recordings from the neurons of this nucleus. We find that the synaptic integration in individual cuneate neurons is dominated by 4–8 primary afferent inputs with large synaptic weights. In a simulation we show that the arrangement with a low number of primary afferent inputs can maximize transfer over the cuneate nucleus of information encoded in the spatiotemporal patterns of spikes generated when a human fingertip contact objects. Hence, the observed distributions of synaptic weights support high fidelity transfer of signals from ensembles of tactile afferents. Various anatomical estimates suggest that a cuneate neuron may receive hundreds of primary afferents rather than 4–8. Therefore, we discuss the possibility that adaptation of synaptic weight distribution, possibly involving silent synapses, may function to maximize information transfer in somatosensory pathways.  相似文献   

6.
We present two Bayesian procedures to infer the interactions and external currents in an assembly of stochastic integrate-and-fire neurons from the recording of their spiking activity. The first procedure is based on the exact calculation of the most likely time courses of the neuron membrane potentials conditioned by the recorded spikes, and is exact for a vanishing noise variance and for an instantaneous synaptic integration. The second procedure takes into account the presence of fluctuations around the most likely time courses of the potentials, and can deal with moderate noise levels. The running time of both procedures is proportional to the number S of spikes multiplied by the squared number N of neurons. The algorithms are validated on synthetic data generated by networks with known couplings and currents. We also reanalyze previously published recordings of the activity of the salamander retina (including from 32 to 40 neurons, and from 65,000 to 170,000 spikes). We study the dependence of the inferred interactions on the membrane leaking time; the differences and similarities with the classical cross-correlation analysis are discussed.  相似文献   

7.
This series of three papers presents data on a system of neurons, the large supramedullary cells (SMC) of the puffer, Spheroides maculatus, in terms of the physiological properties of the individual cells, of their afferent and efferent connections, and of their interconnections. Some of these findings are verified by available anatomical data, but others suggest structures that must be sought for in the light of the demonstration that these cells are not sensory neurons. Analysis on so broad a scale was made possible by the accessibility of the cells in a compact cluster on the dorsal surface of the spinal cord. Simultaneous recordings were made intracellularly and extracellularly from individual cells or from several, frequently with registration of the afferent or efferent activity as well. The passive and active electrical properties of the SMC are essentially similar to those of other neurons, but various response characteristics have been observed which are related to different excitabilities of different parts of the neuron, and to specific anatomical features. The SMC produce spikes to direct stimuli by intracellular depolarization, or by indirect synaptic excitation from many afferent paths, including tactile stimulation of the skin. Responses that were evoked by intracellular stimulation of a single cell cause an efferent discharge bilaterally in many dorsal roots, but not in the ventral. Sometimes several distinct spikes occurred in the same root, and behaved independently. Thus, a number of axons are efferent from each neuron. They are large unmyelinated fibers which give rise to the elevation of slowest conduction in the compound action potential of the dorsal root. A similar component is absent in the ventral root action potential. Antidromic stimulation of the axons causes small potentials in the cell body, indicating that the antidromic spikes are blocked distantly to the soma, probably in the axon branches. The failure of antidromic invasion is correlated with differences in excitability of the axons and the neurite from which they arise. As recorded in the cell body, the postsynaptic potentials associated with stimulation of afferent fibers in the dorsal roots or cranial nerves are too small to discharge the soma spike. The indirect spike has two components, the first of which is due to the synaptically initiated activity of the neurite and which invades the cell body. The second component is then produced when the soma is fired. The neurite impulse arises at some distance from the cell body and propagates centrifugally as well as centripetally. An indirect stimulus frequently produces repetitive spikes which are observed to occur synchronously in all the cells examined at one time. Each discharge gives rise to a large efferent volley in each of the dorsal roots and cranial nerves examined. The synchronized responses of all the SMC to indirect stimulation occur with slightly different latencies. They are due to a combination of excitation by synaptic bombardment from the afferent pathways and by excitatory interconnections among the SMC. Direct stimulation of a cell may also excite all the others. This spread of activity is facilitated by repetitive direct excitation of the cell as well as by indirect stimulation.  相似文献   

8.
Summary Ultrastructural observations of the giant axon of Myxicola infundibulum reveal that the axoplasm contains neurofilaments, a few neurotubules and mitochondria. Finger-like projections issuing from the glial cells of the sheath encircle the giant axon at various angles. The space between the axolemma and sheath is 125 Å. Branches of the giant axon are also surrounded by a glial sheath as they course through the neuropil. Some branches of the giant axon seem to fuse with certain neurons, creating a syncytial arrangement between the giant axon and these neurons.Many small nerve fibers course longitudinally in the neuropil of the nerve cord. Most of these axons are separated from each other by a space of 200 Å without intervening glial processes. Synapses in the neuropil have both clear 600 Å vesicles and larger dense core vesicles suggesting chemical transmission. Some, but not all, of the synaptic areas show thickened membranes and dense material in the synaptic cleft.This study was supported in part by PHS NS-07740 to R.L.P., J.A.B. is a NDEA Predoctoral Fellow in the Department of Physiology.  相似文献   

9.
10.
Six neural elements, viz., retinular axons, a giant monopolar axon, straight descending processes (type I), lamina monopolar axons (type II), processes containing clusters of dense-core vesicles (type III), and processes coursing in various directions with varicosities (type IV), have been identified at the ultrastructural level in the lamina neuropil of the larval tiger beetle Cicindela chinensis. Retinular axons make presynaptic contact with all other types of processes. Type I and II processes possess many pre-and postsynaptic loci. Type II processes presumably constitute retinotopic afferent pathways. It remains uncertain whether type I processes are lamina monopolar axons or long retinular axons extending to the medullar neuropil. Type III processes may be efferent neurons or branches of afferent neurons contributing to local circuits. A giant monopolar axon extends many branches throughout the lamina neuropil; these branches are postsynaptic to retinular axons, and may be nonretinotopic and afferent. Type IV processes course obliquely in the neuropil, being postsynaptic to retinular axons, and presynaptic to type I processes.  相似文献   

11.
In slices of guinea-pig brains, 36 neurons located in the mediolateral part of the lateral septum were stained intracellularly with horseradish peroxidase (n=28) or biocytin (n=8) after electrophysiological characterization. These neurons belonged to class A neurons (n=23), which generated pronounced Ca++-dependent high-threshold spikes in control medium, or to class C neurons (n=9), which were recognized by the occurrence of small-amplitude sodic spikes followed by slower larger calcic spikes. The present results demonstrate that, despite the variety of individual cell types, the major morphological population (30/36 cells) was composed of a homogeneous class of large-sized neurons that displayed thick primary dendrites and abundant dendritic appendages. The remaining 6 cells were small-sized, poorly-spiny neurons. Somatic spines were observed on 5 out of the 30 large cells and on one out of the six smaller cells. Labeled axons were mainly oriented to the anterior commissure. The axons of nine cells richly collateralized near the perikaryon. Ultrastructural examination of 3 horseradish peroxidase-injected cells showed indented nuclei, classic organelles and somatic spines. Terminal boutons established symmetric synapses with the injected cells. These results describe the morphological features of electrophysiologically identified neurons and indicate that class A and class C neurons are distributed among morphological populations differing in perikaryal size. This suggests that the different electrical properties of class A and class C neurons reflect recordings from different parts of the neuron rather than from neurons of different types. Furthermore, the present findings demonstrate that, in the guinea-pig, electrical and morphological characteristics of somatospiny neurons are comparable with those of non-somatospiny neurons. Somatospiny neurons have a recognized integrative role in the hippocampo-septo-hypothalamic complex.  相似文献   

12.
The electrical correlates of activity in the effector systems responsible for swimming, crumpling and postural changes have been recorded in the anthomedusan Polyorchis penicillatus. Motor spikes (pre-swim pulses), that initiate swimming contractions, appear without delay at distant sites on the inner nerve-ring in unstimulated preparations. Levels of Mg++ anaesthesia which block the neuromuscular junctions between PSP giant neurons and swimming muscle do not affect PSP activity. Swimming muscle potentials can be recorded from subumbrella and velar muscle sheets using extra- and intracellular electrodes. These action potentials have a distinct plateau and are propagated in a myoid fashion. Resting potentials average -70 mV with spikes overshooting zero by some 62 mV. The effects of repetitive stimulation are described. Extracellular recordings indicate that neuronal pathways may play a major role in mediating crumpling, unlike many other species where epithelial pathways are more important. Endodermal spikes recorded intracellularly from the radial and ring canals have amplitudes of some 92 mV arising from resting potentials that average -55 mV. Repetitive stimulation causes a decrease in amplitude and increase in duration of epithelial action potentials. Tentacle length is controlled by a pacemaker system located in both nerve rings. The frequency of spikes (PTPs) generated by this system determines the length and tonus of tentacles. The neuromuscular junctions between the motor neurons and tentacle muscle are Mg++ sensitive and show facilitating properties.  相似文献   

13.
The dorsal cord and dorsal root potentials were recorded in immobilized thalamic cats during fictitious scratching evoked by mechanical stimulation of the ear. Depolarization of primary afferents was shown to be simulated by the central scratching generator. Antidromic spike discharges appeared at the peak of the primary afferent depolarization waves in certain afferent fibers. Similar discharges arise in the resting state in response to stimulation of limb mechanoreceptors. It is suggested that during real scratching primary afferent depolarization and antidromic spikes evoked by it may effectively modulate the level of the afferent flow to spinal neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 173–176, March–April, 1978.  相似文献   

14.
The organization of exteroceptive inputs to identified ascending interneurones of the crayfish, Procambarus clarkii (Girard), has been analyzed by stimulation of hairs on the uropod and simultaneous intracellular recordings from ascending interneurones. The spikes of single afferent neurones which innervated hairs on the distal ventral surface of the exopodite were consistently followed by a depolarizing synaptic potential in many identified ascending interneurones with a constant and short central delay of 0.7–1.5 ms. The amplitude of the potentials depended on the membrane potential of the ascending interneurones. Each afferent neurone made divergent outputs onto several ascending interneurones and each ascending interneurone received convergent inputs from several afferent neurones. Certain ascending interneurones made inhibitory or excitatory connections with other ascending interneurones. These central interactions were always one-way, and the spikes from one ascending interneurone consistently evoked excitatory or inhibitory post-synaptic potentials in other interneurones which followed with a constant and short latency of 0.7–1.0 ms. The inhibitory postsynaptic potential was reversed by injection of steady hyperpolarizing current.Abbreviations EPSP excitatory post-synaptic potential - IPSP inhibitory post-synaptic potential  相似文献   

15.
Cockroaches (Periplaneta americana) respond to air displacement produced by an approaching predator by turning and running away. A set of 4 bilateral pairs of ventral giant interneurons is important in determining turn direction. Wind from a given side is known to produce more spikes, an earlier onset of the spike trains, and different fine temporal patterning, in the ipsilateral vs the contralateral set of these interneurons. Here we investigate which of these spike train parameters the cockroach actually uses to determine the direction it will turn.We delivered controlled wind puffs from the right front, together with intracellular injection of spike trains in a left ventral giant interneuron, under conditions where the animal could make normally directed turning movements of the legs and body. In trials where our stimuli caused the left side to give both the first spike and more total spikes than the right, but where our injected spike train included none of the normal fine temporal patterning, 92% of the evoked turns were to the rightopposite of normal (Figs. 4–6). In trials where the left side gave the first spike, but the right side gave more spikes, 100% of the turns were to the left-the normal direction (Figs. 8, 9). Comparable results were obtained when each of the left giant interneurons 1, 2 or 3 were electrically stimulated, and when either weak or stronger wind puffs were used. Stimulating a left giant interneuron electrically in the absence of a wind puff evoked an escape-like turn on 9% of the trials, and these were all to the right (Fig. 9).These results indicate that fine temporal patterning in the spike trains is not necessary, and information about which side gives the first spike is not sufficient, to determine turn direction. Rather, the key parameter appears to be relative numbers of action potentials in the left vs the right group of cells. These conclusions were supported by similar experiments in which extracellular stimulation of several left giant interneurons was paired with right wind (Figs. 11, 12).Abbreviations GI giant interneuron - vGI ventral giant interneuron - dGI dorsal giant interneuron - LY Lucifer yellow - CF carboxyfluorescein  相似文献   

16.
The procerebrum (PC) of the terrestrial mollusk Limax is a highly developed second‐order olfactory center consisting of two electrophysiologically distinct populations of neurons: nonbursting (NB) and bursting (B). NB neurons are by far the more numerous of the two cell types. They receive direct synaptic inputs from afferent fibers from the tentacle ganglion, the primary olfactory center, and also receive periodic inhibitory postsynaptic potentials (IPSPs) from B neurons. Odor‐evoked activity in the NB neurons was examined using perforated patch recordings. Stimulation of the superior tentacle with odorants resulted in inhibitory responses in 45% of NB neurons, while 11% of NB neurons showed an excitatory response. The specific response was reproducible in each neuron to the same odorant, suggesting the possibility that activity of NB neurons may encode odor identity. Analysis of the cycle‐averaged membrane potential of NB neurons revealed a correlation between the firing rate and the membrane potential at the plateau phase between IPSPs. Also, the firing rate of NB neurons was affected by the frequency of the IPSPs. These results indicate the existence of two distinct mechanisms for the regulation of NB neuron activity. © 2003 Wiley Periodicals, Inc. J Neurobiol 58: 369–378, 2004  相似文献   

17.
Summary The anatomical organization of the two dorsal giant fiber systems of the earthworm Lumbricus terrestris is demonstrated in whole mounts and serial-section reconstructions based on backfillings of the ventral nerve cord with cobalt chloride. Both the medial and lateral fiber systems can be labeled selectively over more than ten body segments. They show a characteristic segmental pattern of collaterals with some modification in tail segments and of dorsal plasma protrusions in the unpaired medial giant fiber presumably representing openings in the myelin sheath. We found no multisegmental cobalt transport in other large neurons of the nerve cord. Cobalt passes through the segmentai septa between consecutive axonal elements of the metameric giant fibers and presumably also through commissural contacts between specific collaterals of the lateral giant fibers. Since these sites of contact are known to represent electrical synapses, cobalt coupling may, in L. terrestris, correlate with functional electrotonic coupling.Abbreviations CL collateral of lateral giant fiber - CM collateral of medial giant fiber - GIN giant interneuron - LGF lateral giant fiber - MGF medial giant fiber - SN segmental nerve  相似文献   

18.
Giant interneurones mediate a characteristic `tail flip' escape response of the crayfish, Procambarus clarkii, which move it rapidly away from the source of stimulation. We have analysed the synaptic connections of proprioceptive sensory neurones with one type of giant interneurone, the lateral giant. Spikes in sensory neurones innervating an exopodite-endopodite chordotonal organ in the tailfan, which monitors the position and movements of the exopodite, are followed at a short and constant latency by excitatory postsynaptic potentials in a lateral giant interneurone (LG) recorded in the terminal abdominal ganglion. These potentials are unaffected by manipulation of the membrane potential of LG, by bath application of saline with a low calcium concentration, or by one containing the nicotinic antagonist, curare. The potentials evoked in LG by chordotonal organ stimulation are thus thought to be monosynaptic and electrically mediated. This is the first demonstration that LG receives input from sensory receptors other than exteroceptors in the terminal abdominal ganglion. Accepted: 7 April 1997  相似文献   

19.
Morphology and recordings of electrical activity of Kuruma shrimp (Penaeus japonicus) giant medullated nerve fibers were carried out. A pair of giant fibers with external diameter of about 120 μ and 10 μ in myelin thickness were found in the ventral nerve cord. The diameter of the axon is about 10 μ. Thus there is a wide gap between the axon and the external myelin sheath. Each axon is doubly coated directly by Schwann cells and indirectly by the myelin sheath layer which is produced by those Schwann cells. Impulse conduction velocities of these giant fibers showed a range between 90–210 m/sec at about 22°C. Large action potentials (up to 113 mV, rise time of 0.16–0.3 msec, maximum rate of rise of 650–1250 V/sec, half decay time of 0.2–0.3 msec, maximum rate of fall of 250–450 V/sec and total duration of less than 1.5 msec) could be obtained by inserting microelectrodes or by longitudinal insertion of 25 μ diameter capillary electrodes into the gap but no DC-potential difference was observed across the myelin sheath. Transmyelin electrical parameters were very favorable for fast impulse conduction: myelin resistance of 3 × 104 Ω cm2; time constant of 0.38 msec; myelin capacitance of 1.35 × 10?8 F/cm2; gap fluid resistivity of 23 Ω cm. The existence of nodes of Ranvier could not be demonstrated morphologically, but electrophysiological evidence suggests that a type of saltatory conduction occurs in these giant fibers.  相似文献   

20.
Summary The hydrozoan medusaAglantha digitale (Müller 1776) has eight syncytical giant motor axons, up to 40 m in diameter, running from the margin, up the inside of the bell towards the apex. Giant motor axons injected with Lucifer Yellow CH are connected with lateral neurons running circumferentially across the subumbrellar muscle. These processes fill with the dye. Bundles of 20 to 50 small dye-coupled neurons extend circumferentially along the margin for up to 0.85mm. Giant motor axons injected with horseradish peroxidase divide into a few short branches on entering the inner nerve ring. Here the giant motor axon forms both chemical synapses and gap junctions with neurons that also send their axons into the inner nerve ring. In this region the inner and outer nerve ringe are connected by axons passing through openings in the intervening mesoglea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号