首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many experiments are conducted in greenhouses or growth chambers in which plants are grown in pots. Considerable research has shown that pots can have a limiting effect on overall plant growth. This research was undertaken to examine the effects of pot size specifically on transpiration response of maize (Zea mays L.) and soybean (Glycine max L.) plants undergoing water-deficit stress. Maize and soybean experiments were conducted similarly, but as separate experiments. Maize plants were grown in 2.3, 4.1, 9.1, and 16.2 l pots sealed to prevent water loss except by transpiration. For each pot size, plants were divided into two watering regimes, a well-watered control and a water-deficit regime. Water deficits were imposed by simply not rewatering the pots. Soybean was examined in a similar manner, but only the three larger pot sizes were used in the experiment. For both maize and soybean, and in both watering regimes, there was a significant reduction of shoot dry weight and total transpiration with decreasing pot size. However, there were no significant differences among pot sizes in the fraction of transpirable soil water (FTSW) point at which transpiration began to decline (FTSW0.31 for maize and 0.35 for soybean) or in the overall relationship of transpiration rate to soil water content in response to water deficits. These results indicated that, regardless of pot size or plant size, the overriding factor determining transpirational response to drought stress was soil water content.  相似文献   

2.
Pots used for experiments conducted on plants grown in them create rooting environments that are affected by limited soil volume, which can affect various physiological processes, including transpiration, and plant growth. However, the applicability of results from pot experiments to the field has received limited attention. The objective of this study was to compare the growth and transpiration of maize (Zea mays L.) and winter wheat (Triticum aestivum L.) when grown in pots and field plots under various constant water deficits. The experiments were conducted under similar environmental conditions for both pots and plots. Transpirational responses at both transient (RTTr) and daily (RDTr) time scales to a decreasing fraction of available soil water (FASW) were analyzed. For a comparable FASW, there was a significant reduction in shoot dry weight and total transpiration for plants in pots compared to those in plots. A parabolic relationship between shoot dry weight and total transpiration existed and was not influenced by soil volume or crop type. The plot experiment data for both crops was consistent with pot data for the response of RDTr and RTTr to changes in FASW, which was represented by a linear-plateau function. However, the threshold values were significantly different for the two time scales. The threshold values and slopes of the linear-plateau function for maize and wheat were not significantly different in the response of RTTr to FASW, but were significantly different in the response of RDTr to FASW. Therefore, the transpirational responses of the selected maize and winter wheat hybrids to soil drought were different at the daily and transient time scales.  相似文献   

3.
Mekonnen  Kindu  Buresh  Roland J.  Jama  Bashir 《Plant and Soil》1997,188(2):319-327
One hypothesis for a benefit of integrating trees with crops is that trees with deep root systems can capture and pump up nutrients from below the rooting zone of annual crops. Few studies have compared both root and nutrient distribution for planted trees, crops and grassland vegetation. A field study was conducted on a Kandiudalfic Eutrudox in the highlands of western Kenya to measure rooting characteristics and distribution of inorganic N and water in three land-use systems (LUS): (i) Sesbania sesban (L.) Merr. fallow, (ii) uncultivated natural weed fallow and (iii) unfertilized maize (Zea mays L.) monoculture. The maximum rooting depth was 1.2 m in the maize LUS, 2.25 m in a 13-month-old natural fallow, and > 4 m in a 15-month-old sesbania fallow. Total root length was 1.26 km m-2 for the maize LUS, 5.98 km m-2 for the natural fallow, and 4.56 km m-2 to 4 m for the sesbania fallow. Root length to 1.2 m was greater (p < 0.01) for natural fallow than for maize and sesbania fallow. A considerable portion of the sesbania root length to 4 m was in the subsoil; 47% was at 1.2 to 4 m and 31% was at 2.25 to 4 m. Deep rooting of sesbania coincided with lower soil water below 2 m in the sesbania fallow than the natural fallow. Nitrate-N, but not ammonium-N, to 4 m was affected by LUS. Total nitrate to 4 m was 199 kg N ha-1 for the maize LUS, 42 kg N ha-1 for the natural fallow and 51 kg N ha-1 for the sesbania fallow. Soil nitrate in the maize LUS was highest at 0.3 to 1.5-m depth on this Oxisol with anion sorption capacity. No such accumulation of subsoil nitrate was present under sesbania and natural fallow.  相似文献   

4.
Nitrogen (N) transfer from N-fixing legumes via vesicular-arbuscular mycorrhizal (VAM) fungi to associated non-fixing plants has been demonstrated in greenhouse experiments. To date, this transfer has been shown only where mineral N is applied shortly before harvest, and hence is readily available. We have yet to demonstrate VAM-mediated N transfer where soil-N is limiting, a condition under which most traditional legume-nonlegume intercrops are grown.In this study, 15N-enriched soil (with 0.28%N) was used to distinguish between the uptake of soil- and atmospherically-derived N in maize grown with beans in the presence or absence of VAM fungi. VAM infection did not result in transfer of fixed N or soil N from bean to maize, despite a VAM-stimulated increase in N fixation in bean. In fact, beans were more competitive for soil N when mycorrhizal. N content in beans increased by 75% with a concomitant 22% decrease in mg N per maize plant. The competitive effect may have resulted from a VAM-mediated shift in carbon allocation in beans (but not maize) from shoots to roots.  相似文献   

5.
Reforestation projects in semiarid lands often yield poor results. Water scarcity, poor soil fertility, and structure strongly limit the survival and growth of planted seedlings in these areas. At two experimental semiarid sites, we evaluated a variety of low‐cost planting techniques in order to increase water availability to plants. Treatments included various combinations of traditional planting holes; water‐harvesting microcatchments; stone or plastic mulches; small waterproof sheets to increase water harvesting; dry wells; buried clay pots; and deep irrigation. Some of these treatments were also combined with addition of composted biosolids. Waterproof sheets significantly enhanced water harvesting (43%) and soil moisture in the planting hole (40%), especially for low‐intensity rainfall events. Treatment effects on the survival and growth of Olea europaea seedlings varied between experimental sites. At the most water‐limited site, clay pots, and dry wells improved seedling survival, while no treatment enhanced seedling growth. At the least water‐stressed site, the application of composted sludge significantly improved seedling growth. We conclude that nutrient‐mediated stress is subordinate to water stress in arid and semiarid environments, and we suggest modifications on the microsite scale to address these limiting conditions in Mediterranean drylands .  相似文献   

6.
The effects of soil management systems on root-knot nematode (Meloidogyne incognita) eggs and gall incidence on tomato (Lycopersicon esculentum) and cucumber (Cucumis sativus) following tomato were evaluated. Soil was collected from a replicated field experiment in which six management systems were being assessed for vegetable production. Soil management systems were conventional production, organic production, bahiagrass (Paspalum notatum) pasture, bahiagrass: Stylosanthes (Stylosanthes guianensis) pasture, bare ground fallow, and weed fallow. Soil was collected from field plots and used in greenhouse experiments. Identification of egg-parasitic fungi and the incidence of root-knot nematode galling were assessed both on tomato and cucumber planted in the same pots following the removal of tomato plants. Organic, bare ground fallow and conventional production treatments reduced galling both on tomato and on cucumber following tomato. Although no treatment consistently enhanced egg-parasitic fungi, management system did affect egg viability and the types of fungi isolated from parasitized eggs.  相似文献   

7.
The objective of the present research was to explore the effects of combined irrigation and fertilization (fertigation) frequency on growth, yield and uptake of water and nutritional elements by plants. Lettuce (Lactuca sativa L., cv. Iceberg) was used as the model plant. Two experiments were conducted in a screen-house: compound fertilizer at a constant N:P:K ratio at different concentrations was used in the first, while in the second the concentration of P varied solely while the concentration of the other nutritional elements was kept constant. The lettuce was planted in pots filled with perlite and irrigated daily with a constant volume of nutrient solution at different frequencies. The major finding in the two experiments was that high fertigation frequency induced a significant increase in yield, mainly at low nutrients concentration level. Yield improvement was primarily related to enhancement of nutrient uptake, especially P. It was suggested that the yield reduction obtained at low frequency resulted from nutrient deficiency, rather than water shortage, and that high irrigation frequency can compensate for nutrient deficiency. Frequent fertigation improved the uptake of nutrients through two main mechanisms: continuous replenishment of nutrients in the depletion zone at the vicinity of root interface and enhanced transport of dissolved nutrients by mass flow, due to the higher averaged water content in the medium. As such, an increase in fertigation frequency enables to reduce the concentrations of immobile elements such as P, K and trace metals in irrigation water, and to lessen the environment pollution by discharge.  相似文献   

8.
Land spreading of biosolids as a disposal option is expensive and can disperse pathogens and contaminants in the environment. This growth room study examined phytoremediation using switchgrass (Panicum virgatum L.) and cattail (Typha latifolia L.) as an alternative to land spreading of biosolids. Seedlings were transplanted into pots containing 3.9 kg of biosolids (dry wt.). Aboveground biomass (AGB) was harvested either once or twice during each 90-day growth period. Switchgrass AGB yield was greater with two harvests than with one harvest during the first 90-day growth period, whereas cattail yield was not affected by harvest frequency. In the second growth period, harvesting frequency did not affect the yield of either plant species. However, repeated harvesting significantly improved nitrogen (N) and phosphorus (P) uptake by both plants in the first period. Phytoextraction of P was significantly greater for switchgrass (3.9% of initial biosolids P content) than for cattail (2.8%), while plant species did not have a significant effect on N phytoextraction. The trace element accumulation in the AGB of both plant species was negligible. Phytoextraction rates attained in this study suggest that phytoremediation can effectively remove P from biosolids and offers a potentially viable alternative to the disposal of biosolids on agricultural land.  相似文献   

9.
This study examined the effectiveness of a wetland system for phytoremediation of biosolids from an end-of-life municipal lagoon. The microcosm experiment tested the effects of one vs. two harvests of cattail per growth cycle in biosolids without (PB) or with (PBS) the addition of soil on phytoremediation. Cattail (Typha latifolia) seedlings were transplanted into pots containing 4.5 kg (dry wt.) of biosolids, above which a 10-cm deep water column was maintained. Results showed that two harvests per growth cycle significantly increased N and P phytoextraction relative to a single harvest. Overall, the three cycles of cattail removed ~3.7% of N which was originally present in the biosolids and ~2% of the total P content. Phytoextraction rates are expected to be higher under field conditions where biomass yields are much higher than those obtained under growth room conditions in this study. These results indicate that wetland-based phytoremediation can effectively clean up nutrients from biosolids, and therefore presents a potential alternative to the spreading of biosolids on agricultural land, which may not be readily available in some communities. Phytoextraction rates of trace elements, however, were much lower (0.02–0.17%). Nonetheless, trace element concentrations were not high enough to be of significant concern.  相似文献   

10.
Cultivation of non‐host crops after uprooting Xanthomonas campestris pv. musacearum (Xcm)‐infected banana plants has been advocated for breaking Xanthomonas wilt disease (XW) cycle in fields. Knowledge on the interaction of these crops with Xcm is limited. Maize, beans and sweet potato were planted after uprooting Xcm‐infected banana plants in Rwanda and eastern Democratic Republic of Congo (DR Congo). A weed fallow (mixed species) served as the control. After one, two and/or four break‐crop or fallow seasons, healthy plantlets were replanted and monitored for XW for 12–24 months. XW status in adjacent fields was monitored, and diseased stems within 100–300 m radius of the two‐ and four‐season experiments were uprooted. In Rwanda, soil and plant parts from the one‐season experiments were sampled for Xcm isolation and Xcm‐like colonies confirmed with Xcm‐specific primers using PCR. Pathogenicity tests were performed to confirm the ability of the PCR‐positive isolates to infect healthy banana plantlets. XW was observed in all the one‐season experiments, with higher cumulative incidences in maize and bean plots. However, no similar trends were observed in the two‐season experiments, with a 6–8% incidence observed only in bean and potato plots in DR Congo. Lengthening time under break crops to two and four seasons, respectively, reduced the incidence to 3% and zero in Rwanda and 0–8% in the two‐season experiments in DR Congo. Incidence in the first‐season experiments highly correlated (R = 88) to that in the adjacent fields, suggesting possible re‐infections from these fields. Two season with break crop plus collective XW control are recommended in these agro‐ecosystems. PCR‐positive Xcm‐like colonies from break crops only induced localized cell death on banana, while PCR‐positive isolates from symptomatic banana plants caused full XW symptoms. Cross‐infection/inoculation studies under controlled conditions are still needed to conclusively elucidate Xcm interaction with these crops.  相似文献   

11.
Abstract

The mechanism of growth amelioration in salt-stressed maize (Zea mays L. cv., DK 647 F1) by exogenously applied mannitol (M) and thiourea (T) was investigated. Maize seedlings were planted in pots containing perlite and subjected to 0 or 100 mM NaCl in full strength Hoagland's nutrient solution. Two levels of M (15 and 30 mM) or T (3.5 and 7.0 mM) were sprayed to the leaves of maize seedlings 10 days after germination. Salinity stress caused considerable reduction in plant dry biomass, chlorophyll content, and relative water content in the maize plants. However, it increased the activities of catalase (CAT; EC 1.11.1.6), superoxide dismutase (SOD; EC 1.15.1.1), and polyphenol oxidase (PPO; EC 1.10.3.1), and levels of hydrogen peroxide (H2O2) and electrolyte leakage, but it did not change peroxidase (POD; EC 1.11.1.7) activity. Foliar application of M or T was found to be effective in checking salt-induced shoot growth inhibition. Exogenously applied M or T reduced the activities of CAT, SOD, POD, and PPO in the salt-treated maize plants compared to those in the plants not fed with these organic compounds. Salinity increased Na+ contents but decreased those of K+, Ca2 +, and P in the leaves and roots of the maize plants. Foliar-applied M or T increased the contents of K+, Ca2 +, and P, but decreased that of Na+ in the salt-stressed maize plants with respect to those of the salt-stressed plants not supplied with mannitol or thiourea. Mannitol was found to be more effective than thiourea in improving salinity tolerance of maize plants in terms of growth and physiological attributes measured in the present study.  相似文献   

12.
Hydraulic lift in drought-tolerant and -susceptible maize hybrids   总被引:9,自引:0,他引:9  
Wan  Changgui  Xu  Wenwei  Sosebee  Ronald E.  Machado  Stephen  Archer  Tom 《Plant and Soil》2000,219(1-2):117-126
Hydraulic lift was investigated in a greenhouse study involving two drought-tolerant maize (Zea mays L.) hybrids (TAES176 and P3223) and a drought-susceptible hybrid (P3225) during the flowering stage. Root systems were grown in two soil compartments – a drier upper soil and a wetter deep soil. The plants were shaded for 3 h during the daytime. Soil volumetric water content (Øv) in the upper pots was measured with time domain reflectometry (TDR) before and after shading. An increase in Øv in the upper pot was detected with TDR in the drought-tolerant hybrids following 3 h of shading, but not in the drought-susceptible hybrid. Furthermore, water exuded from roots in the top soil layers was greater in the more drought-tolerant TAES176 than in P3223 (489 vs. 288 g per pot in 3 h, P<0.005). The sizable amount of water from hydraulic lift allowed TAES176 to reach a peak transpiration rate 27–42% higher than the drought-susceptible hybrid P3225 on the days when the evaporative demand was high. To our knowledge, this is the first experiment that reveals a significant surge of transpiration due to hydraulic lift following midday shading. Hydraulic lift also prevented soil moisture depletion in the upper pots with TAES176, but not with P3223 or P3225. Root characteristics may be responsible for differences in hydraulic lift of the three maize hybrids. There were 2.3–3.3-fold more primary roots in the deep moist soil in P3223 and TAES176 than in P3225 that may enable these hybrids to absorb and transport water at faster rates. Therefore, more water can be exuded into the upper drier soil when transpiration is suppressed by shading. Larger primary roots (20–28% larger diameter) and a higher root volume in the upper soil in TAES176 and P3223 than in P3225 may contribute to higher root hydraulic conductance and greater water efflux from the roots. The negligible hydraulic lift in P3225 may also relate to higher night-time transpiration of the hybrid. This report has documented, for the first time, the existence of genetic variations in hydraulic lift among maize hybrids and links between hydraulic lift and drought tolerance within maize plants. It appears that one of drought tolerance mechanisms in maize may lie in the extent of hydraulic lift.  相似文献   

13.
Summary To test the prediction that P. rapae egg densities increase with N fertilizer in large-scale systems as they do in model systems with potted plants, we used field experiments with Brassica oleracea var. acephala L. (collards and kale) planted in pots or large field plots, and treated with different levels of nitrogen fertilizer. In small-scale field experiments with potted kale and collards, egg densities were significantly higher on plants with high N than those with low N. But in larger scale experiments with field-grown collards, average seasonal P. rapae egg densities were not significantly correlated with leaf N content. These differences among experiments did not depend on the magnitude of the difference in foliage N levels.  相似文献   

14.
Using a split-root technique, roots of soybean plants were divided between two pots. In one of the two pots, two maize plants were grown and half of those pots were inoculated with the vesicular arbuscular mycorrhizal (VAM) fungus, Glomus fasciculatus. Fifty-two days after planting, 15N-labeled ammonium sulfate was applied to the pots which contained only soybean roots. Forty-eight hours after application, significantly higher values for atom per cent 15N excess were found in roots and leaves of VAM-infected maize plants as compared with the non-VAM-infected maize plants. Results indicated that VAM fungi did enhance N transfer from one plant to another.  相似文献   

15.
Summary Soil properties under continuous cropping were compared with those under planted fallows and natural bush regrowth for three years after forest clearing. The cropping treatments consisted of continuous maize with and without stover returned as surface mulch, continuous soybean, and maize and cassava intercropped. The fallow treatments included pigeon pea, leucaena, Guinea grass and natural bush regrowth.In the continuous soybean and unmulched maize plots, soil organic matter and pH declined rapidly; whereas the mulched maize plots maintained a soil organic matter level comparable to the fallow treatments. To maintain soil organic matter in the surface soil at a level comparable to soil under secondary forest, two to three applications of a total amount of 16 MT/ha/annum of dry plant materials (maize stover or grass) are required when the material is applied as surface mulch.In the cropped plots, favorable physical characteristics in the surface soil were also maintained when sufficient plant residue was returned; whereas the deterioration of subsoil structure of the forest soil occurred in all cropping treatments.Guinea grass fallow has a distinct advantage in recycling mineral nutrients and maintaining soil physical properties and organic matter. It is suggested that soils may be planted with a combination of Guinea grass and pigeon pea fallow for one or two years after three or four years of arable cultivation.IITA Journal Paper No. 65 IITA Journal Paper No. 65  相似文献   

16.
The 8 days old seedlings of pea (cv. Ilowiecki) and maize (cv. Alma F1) were subjected to differentiated aeration conditions (control — with pore water tension about 15 kPa and flooded treatment) for 12 days at three soil temperatures (7, 15 and 25 °C). The shoots were grown at 25 °C while the soil temperature was differentiated by keeping the cylinders with the soil in thermostated water bath of the appropriate temperature. Lowering the root temperature with respect to the shoot temperature caused under control (oxic) conditions a decrease of the root penetration depth, their mass and porosity as well as a decrease of shoot height, their mass and chlorophyll content; the changes being more pronounced in maize as compared to the pea plants. Flooding the soil diminished the effect of temperature on the investigated parameters; the temperature effect remaining significant only in the case of shoot biomass and root porosity of pea plants. Root porosity of pea plants ranged from 2 to 4 % and that of maize plants — from 4 to 6 % of the root volume. Flooding the soil caused an increase in the root porosity of the pea plants in the entire temperature range and in maize roots at lower temperatures by about 1 % of the root volume. Flooding the soil caused a decrease of root mass and penetration depth as well as a decrease of plant height, biomass and leaf chlorophyll content.  相似文献   

17.
Inputs of surface waters high in chloride and sulphateincreased the availability of nutrients in fenpeatlands. This `internal eutrophication' wasdemonstrated with test plants (`phytometers') andthrough water and soil analysis. Three experiments arepresented in which the level of chloride and/orsulphate was increased to 3 mmolc l–1. Inexperiment 1 chloride levels were increased from 0.5to 3 mmolc l–1 as CaCl2 or NaCl. Inexperiment 2 and 3 similar increased levels forchloride and sulphate (3 mmolc l–1; as NaCland Na2SO4) were used. The following resultswere found:(i) No differences in soil total-N and total-P werefound before and after the treatments in any of thethree experiments.(ii) Experiment 1 showed a significant increase inBio-Available P (BAP) in pots planted with Anthoxanthum odoratum as well as in bare pots for theNaCl and CaCl2 treatments. The plants in thesetreatments had taken up much more P.(iii) Experiment 2 showed an increase in soil BAPafter treatment with chloride and sulphate in potsplanted with Anthoxanthum odoratum. The chloridetreatment had no effect on plant biomass, whereas thesulphate treatment resulted in a reduction in rootbiomass and root N and P content. The shoots showedan increase in P content in the sulphate and chloridetreatments, while N content remained the same.(iv) In experiment 3, treatments with chloride andsulphate led to significantly increased biomass and Puptake of Anthoxanthum odoratum. Again, noeffects on N uptake were found.These experiments provide evidence for distinctlyincreased availability of phosphate in peat soils whenthese come into contact with water with evenmoderately increased sulphate or chloride levels.Surface water originating from the Rhine river, whichis enriched in chloride and sulphate, is oftensupplied to fen reserves in The Netherlands, tocompensate for water losses due to agriculturaldrainage in the region. The results of this study showthat phosphate availability to the vegetation may risedrastically, with detrimental effects on the speciesdensity and the occurrence of rare species in thevegetation. Hence, supply of this water should beavoided.  相似文献   

18.
A long-term field experiment was established on a kaolinitic Alfisol in Ibadan, Nigeria, in 1972. The land was cleared manually from secondary forest and used for (i) continuous no-till cropping with maize (Zea mays L.) and maize/cassava (Manihot esculenta Crantz) intercropping, (ii) planted fallow of guinea grass (Panicum maximum Jacq.), leucaena (Leucaena leucocephala de Wit), and pigeon pea (Cajanus cajan Millsp.), and (iii) natural bush regrowth in a randomized complete block design with three replications. At the end of 15 years, the fallow plots were cleared manually and cropped with maize for three years. The chemical and physical soil properties and crop performance of the newly-cleared plots were compared with those under 15 years of continuous cultivation. A total of 26 woody species were identified on the bush regrowth plots. Above-ground biomass accumulation of the bush plots was 157 Mg ha-1 containing 1316 kg N ha-1. Guinea grass, leucaena and natural bush regrowth plots had comparable organic C concentrations (approximately 20 g kg-1) in the surface soil (0 to 10 cm) after 15 years. The organic C concentration in the surface soil under pigeon pea was the lowest (9.5 g kg-1) among the four fallow treatments. Soil under 15 years of continuous no-till maize with and without residue mulch, respectively, contained approximately half (10 g kg-1) and a quarter (5.7 g kg-1) of the organic C under natural bush or guinea grass fallow. The levels of exchangeable Ca, K, Mg and effective cation exchange capacity (ECEC) were lower in the soils under continuous cultivation than in those under natural bush and planted fallow. Soil acidification occurred in soils under continuous cropping as depicted by the lower pH values and greater exchangeable Al and Mn concentrations compared to the fallow plots. Grain yield of maize (3 to 5 Mg ha-1) without fertilizer application in the plots newly cleared from natural bush, guinea grass and leucaena fallow was comparable with that of continuous no-till maize with residue mulch and chemical fertilizer (N, P, K, Mg, Zn) applications. Among the four fallow treatments, maize grain and stover yields were the lowest in plots cleared from pigeon pea fallow.  相似文献   

19.
斜纹夜蛾发生规律和预测预报新方法   总被引:18,自引:0,他引:18  
斜纹夜蛾是浙江省慈溪市蔬菜、大豆的重要害虫。 90年代以来已有 5年大发生 ,其原因为主害作物大豆、蔬菜面积大幅度增加 ,气候条件适宜 ,繁殖量大 ;其危害夏秋蔬菜损失达 65.6% ,危害秋大豆造成减产 2 2 .5%~ 77.5% ;应用斜纹夜蛾性诱剂进行预测预报 ,较黑光灯、糖醋液、树枝把诱蛾灵敏、清晰、专一。  相似文献   

20.
The aeration status of a silt loam placed in microcolumns was measured in the maize root zone using an oxygen microelectrode. At soil moisture saturation, the O2 concentration was found to be zero. Maize evapotranspiration led to a fast increase in O2 concentration against time (2% O2 after 2 days, atmospheric concentration after 7 days). Surprisingly, for specified soil moisture levels, no significant O2 concentration differences were observed between planted and fallow soils. These results are discussed to explain observations on the denitrification process in the root zone of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号