首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously described catecholamine-regulated proteins of molecular masses 47, 40 and 26 kDa (CRP47/40/26). In mammals, these proteins are detected only in brain and have been implicated as playing a role in dopaminergic neurotransmission. In this report, we have cloned the cDNA encoding CRP40 from bovine brain. Analysis of the predicted amino acid sequence revealed that the CRP40 product contains an hsp70 motif and shares homology with heat-shock protein hsp70. Immunolocalization studies using mAbs to dopamine show that it colocalizes with CRP40 in the vesicles of dopaminergic neuroblastoma SH-SY5Y cells. The constitutive expression of CRP40 was increased by exposure to heat shock similar to inducible heat-shock protein hsp70 in SH-SY5Y cells. Dopamine significantly modulated the levels of CRP40, whereas, the expression of hsp70 remained unchanged upon dopamine treatment of these cells. Moreover, CRP40 is able to prevent the thermal aggregation of luciferase in vitro, similar to hsp70, suggesting that CRP40 encodes a dopamine-inducible protein with properties similar to heat-shock proteins. The immunofluorescence analyses show that in SH-SY5Y cells, CRP40 translocates to the nucleus during dopamine-induced apoptosis. These results suggest that CRP40 could play a protective role against the harmful effects of catecholamine metabolites.  相似文献   

2.
Molecular cloning, characterization, and expression of a human 14-kDa lectin   总被引:12,自引:0,他引:12  
Full length cDNAs coding for a 14-kDa beta-galactoside binding lectin have been isolated from HL-60 cells and human placenta. Oligonucleotide probes based on a pentapeptide present in several partial sequences of homologous human lectins were used to screen a lambda GT10 HL-60 cDNA library. The HL-60 cDNA clones that were isolated were used to design a synthetic primer representing the 3'-untranslated region of the HL-60 lectin. This primer was then used to synthesize a lambda GT10 human placenta cDNA library, and restriction fragments of the HL-60 cDNA clones were used to screen the library. The cDNA clones for both HL-60 and placenta lectin had identical sequences with short 5'- and 3'-untranslated regions and coded for a 135-amino acid protein which lacks a hydrophobic signal peptide sequence. Biochemical data show that, despite the presence of a possible N-linked glycosylation site, the protein is not glycosylated. Northern and Southern blot analyses indicate that the 14-kDa lectin is encoded for by a single gene. The lectin cDNA was expressed in Escherichia coli and biologically active protein was purified from cell lysates by affinity chromatography.  相似文献   

3.
We have isolated a cDNA clone for an interferon-induced 15-kDa protein. The cDNA clone was prepared from mRNA isolated from interferon-beta-treated human Daudi cells. The clone of 635 base pairs contains an open reading frame coding for a protein of 145 amino acids, and suggests for the mRNA a 75-base pair 5' untranslated and a 125-base pair 3' untranslated region. Approximately 85% of the amino acid sequence of the 15-kDa protein has been independently obtained from 2 nmol of material using microsequencing technology on the N terminus of the intact protein and on tryptic and chymotryptic peptides. The amino acid sequence of the isolated protein is identical to the amino acid sequence deduced from the cDNA. Northern blot analysis confirmed that the mRNA for the 15-kDa protein is undetectable in untreated cells, but is greatly induced following interferon treatment.  相似文献   

4.
A human liver cDNA library enriched for full-length clones was screened for plasminogen cDNA using a synthetic 24-nucleotide probe derived from a reported partial cDNA sequence. 12 positive clones were identified and one of these was characterized in detail. The 2.7 kb insert contains the complete coding region. At 5 positions, it gives residues different from those reported in a previous amino acid sequence analysis of the protein. The present results show an extra Ile at position 65, Gln instead of Glu at positions 53 and 342, Asn at position 88 instead of Asp, and Asp at position 453 rather than Asn. In the 3'-non-coding region an extension of 29 bases is found which does not contain any structure compatible with a known polyadenylation signal. Instead, the consensus signal AATAAA is placed at a distance of 46 bases upstream of the poly(A)-tail.  相似文献   

5.
6.
The double-stranded (ds) RNA-activated protein kinase from human cells is a 68 kd protein (p68 kinase) induced by interferon. On activation by dsRNA in the presence of ATP, the kinase becomes autophosphorylated and can catalyze the phosphorylation of the alpha subunit of eIF2, which leads to an inhibition of the initiation of protein synthesis. Here we report the molecular cloning and characterization of several related cDNAs from which can be deduced the full-length p68 kinase sequence. All of the cDNAs identify a 2.5 kb RNA that is strongly induced by interferon. The deduced amino acid sequence of the p68 kinase predicts a protein of 550 amino acids containing all of the conserved domains specific for members of the protein kinase family, including the catalytic domain characteristic of serine/threonine kinases. In vitro translation of a reconstructed full-length p68 kinase cDNA yields a protein of 68 kd that binds dsRNA, is recognized by a monoclonal antibody raised against the native p68 kinase, and is autophosphorylated.  相似文献   

7.
Eucaryotes contain a class of enzymes called flavin-dependent monooxygenases (FMOs). Unlike mammals, yeast have only a single isoform-yFMO. Deletion mutants suggested that yFMO may play a role in folding proteins which contain disulfide bonds. Recently we detected two nucleotide errors in the GenBank sequences attributed to the yFMO gene. This previously led us to express and characterize a 373-residue catalytically active protein instead of the correct 432-residue enzyme. Here we report the sequencing, expression, and enzyme characterization of the full-length form of yFMO. Comparison of the two forms of yFMO showed similar pH profiles and K(m), K(cat), and V(max) values using glutathione as a substrate. These results indicate that the full-length yeast FMO has biochemical and catalytic properties similar to those of the truncated protein. Therefore, it is likely that the hypotheses concerning the enzyme's function proposed earlier are still valid.  相似文献   

8.
Reversible phosphorylation is recognized to be a major mechanism for the control of intracellular events in eukaryotic cells. From a human fetal brain cDNA library, we isolated a cDNA clone encoding a novel dual specificity protein phosphatase, which showed 88% identity with previously reported mouse LMW-DSP3 at the amino acid level. The deduced protein had a single dual-specificity phosphatase catalytic domain, and lacked a cdc25 homology domain. LMW-DSP3 was expressed in the heart, lung, liver, and pancreas, and the expression level in the pancreas was highest. The LMW-DSP3 gene was located in human chromosome 2q32, and consisted of five exons spanning 21kb of human genomic DNA. LMW-DSP3 fused to GST showed phosphatase activity towards p-nitrophenyl phosphate which was optimal at pH 7.0 and 40 degrees C, and the activity was enhanced by Ca(2+) and Mn(2+). The phosphatase activity of LMW-DSP3 was inhibited by orthovanate. LMW-DSP3 showed phosphatase activity toward oligopeptides containing pSer/Thr and pTyr, indicating that LMW-DSP3 is a protein phosphatase with dual substrate specificity.  相似文献   

9.
Four overlapping cDNA clones encoding contrapsin were isolated from a mouse liver cDNA library constructed in the expression vector, lambda gt11. M13 vector sequence analysis revealed that contrapsin cDNA contained an open reading frame of 1,254 bases encoding 418 amino acids. The N-terminal amino acid sequence of the isolated contrapsin matched residues 30 to 48 of the sequence deduced on nucleotide analysis. One clone, which had the longest 3' untranslated region, contained two sets of tandem polyadenylation signals, AATACA and AATAAA, which were located 497 bases apart, while the remaining three clones terminated at the first signal. The entire reading frame sequence of contrapsin cDNA showed 64% homology with that of human alpha-1-antichymotrypsin.  相似文献   

10.
The TRAIP interacting protein is known as a negative regulator of TNF-induced-nuclear factor, kappa-light-chain-enhancer of activated B cell (NF-κB) by direct interaction with the adaptor protein TRAF2, which inhibits the function of TRAF2 via the RINGCC domain protein. The TRAIP protein is composed of 469 amino acids with an N-terminal RING motif that is followed by a coiled coil (CC) and leucine zipper domain. TRAIP proteins are critical in programmed cell death, cell proliferation and differentiation, and embryonic development. The critical functions of TRAIP together with the molecular inhibitory mechanism effect of TRAIP have been reported by two different studies and have opened up new research into the field of TRAF biology. In this study, we designed different constructs of the Leucine zipper domain to find the over –expressed construct for further studies. We successfully cloned the C-terminal TRAIP containing the leucine zipper domain. In addition, we have over-expressed and purified the TRAIP LZ for their biochemical characterization.  相似文献   

11.
The phosphoprotein plastin was originally identified as an abundant transformation-induced polypeptide of chemically transformed neoplastic human fibroblasts. This abundant protein is normally expressed only in leukocytes, suggesting that it may play a role in hemopoietic cell differentiation. Protein microsequencing of plastin purified from leukemic T lymphocytes by high-resolution two-dimensional gel electrophoresis produced eight internal oligopeptide sequences. An oligodeoxynucleotide probe corresponding to one of the oligopeptides was used to clone cDNAs from transformed human fibroblasts that encoded the seven other oligopeptides predicted for human plastin. Sequencing and characterization of two cloned cDNAs revealed the existence of two distinct, but closely related, isoforms of plastin--l-plastin, which is expressed in leukocytes and transformed fibroblasts, and t-plastin, which is expressed in normal cells of solid tissues and transformed fibroblasts. The leukocyte isoform l-plastin is expressed in a diverse variety of human tumor cell lines, suggesting that it may be involved in the neoplastic process of some solid human tumors.  相似文献   

12.
An alcohol-soluble storage protein, a 16.6-kDa prolamin found in rice seeds, was purified from both the total protein body and purified type I protein body fractions. The partial amino acid sequences of three tryptic peptides generated from the purified polypeptide were analyzed. A part of the 16.6-kDa prolamin cDNA was amplified from developing seed mRNA by the reverse transcribed polymerase chain reaction using an oligo (dT) primer and a primer which was synthesized based on the partial amino acid sequence. The amplified product was used to isolate the full-length cDNA clone (lambda RP16) from a developing seed cDNA library. The cDNA has an open reading frame encoding a hydrophobic polypeptide of 149 amino acids. The polypeptide was rich in glutamine (20.0%), cysteine (10.0%), and methionine (6.9%). The cysteine content was higher than those of most other rice storage proteins. Messenger RNA of the 16.6-kDa prolamin was detected in seeds, but not in other aerial tissues.  相似文献   

13.
In the present study, we identified, cloned and expressed a 40-kDa heat shock protein, DnaJ, from Bacillus halodurans. The open reading frame of the cloned gene contained 1116 bp and encoded 371 amino acid residues. The purified recombinant DnaJ contained a His-tag at the C-terminus and showed a single band at approximately 41-kDa on SDS-PAGE gel. The 3D structures of DnaJ obtained by I-TASSER showed that the overall structures of DnaJ from B. halodurans Guj1 and E. coli are very similar, with 45% sequence similarity. The present study revealed that the DnaJ protein from B. halodurans inhibits the heat-induced aggregation of insulin in a concentration-dependent manner as aggregation of the insulin B-chain was reduced by approximately 50% at 40 °C in the presence of 0.1 mg/ml of purified recombinant DnaJ. The overexpression of DnaJ improved thermotolerance properties in E. coli transformed with pET-28a + DnaJ. Salt resistance experiments indicated that the survival of E. coli transformed with DnaJ was enhanced 1.85-fold compared to that of the control cells in the presence of 0.5 M NaCl for 72 h. According to the results obtained, DnaJ from B. halodurans can potentially be used for improving the functional properties of enzymes and proteins in various applications.  相似文献   

14.
15.
16.
17.
Molecular cloning and characterization of a human mitochondrial ceramidase   总被引:8,自引:0,他引:8  
We have recently purified a rat brain membrane-bound nonlysosomal ceramidase (El Bawab, S., Bielawska, A., and Y. A. Hannun (1999) J. Biol. Chem. 274, 27948-27955). Using peptide sequences obtained from the purified rat brain enzyme, we report here the cloning of the human isoform. The deduced amino acid sequence of the protein did not show any similarity with proteins of known function but was homologous to three putative proteins from Arabidospis thaliana, Mycobacterium tuberculosis, and Dictyostelium discoideum. Several blocks of amino acids were highly conserved in all of these proteins. Analysis of the protein sequence revealed the presence at the N terminus of a signal peptide followed by a putative myristoylation site and a putative mitochondrial targeting sequence. The predicted molecular mass was 84 kDa, and the isoelectric point was 6.69, in agreement with rat brain purified enzyme. Northern blot analysis of multiple human tissues showed the presence of a major band corresponding to a size of 3.5 kilobase. Analysis of this major band on the blot indicated that the enzyme is ubiquitously expressed with higher levels in kidney, skeletal muscle, and heart. The enzyme was then overexpressed in HEK 293 and MCF7 cells using the pcDNA3. 1/His-ceramidase construct, and ceramidase activity (at pH 9.5) increased by 50- and 12-fold, respectively. Next, the enzyme was characterized using lysate of overexpressing cells. The results confirmed that the enzyme catalyzes the hydrolysis of ceramide in the neutral alkaline range and is independent of cations. Finally, a green fluorescent protein-ceramidase fusion protein was constructed to investigate the localization of this enzyme. The results showed that the green fluorescent protein-ceramidase fusion protein presented a mitochondrial localization pattern and colocalized with mitochondrial specific probes. These results demonstrate that this novel ceramidase is a mitochondrial enzyme, and they suggest the existence of a topologically restricted pathways of sphingolipid metabolism.  相似文献   

18.
Kringle domain, a triple-disulfide-linked domain, is conserved in diverse proteins which play important roles in various biological processes. We cloned Kremen, a novel member of kringle-containing proteins, using a newly developed unique strategy, 'Kringle-SAGE (serial analysis of gene expression)', which enables comprehensive analysis of kringle-containing proteins. Kremen is likely to be a type-I transmembrane protein composed of 473 amino acid residues. Kremen has a kringle domain, a WSC domain, and CUB domains in the extracellular region, while the intracellular region has no conserved motif involved in signal transduction. In the mouse embryo, the Kremen mRNA level, which was increased during embryonic development, was localized in the apical ectodermal ridge of limb buds, myotome, and sensory organs (e.g. optic vesicle, otic vesicle, nasal pit). In the adult mouse, Kremen mRNA was expressed in a variety of tissues with a relatively strong expression in the lung, heart, and skeletal muscle. Kremen mRNA expression in C2C12 and NIE-115 cells increased during respective differentiation into muscular and neural cells. These results suggest a potential role for Kremen in the regulation of cellular responses upon extracellular stimulus or cell-cell interaction in neuronal and/or muscle cells. Kringle-SAGE is expected to facilitate further elucidation of structure and functions of kringle proteins.  相似文献   

19.
A nearly full-length cDNA clone for catalase (pCAS01) was obtained through immunological screening of cDNA expression library constructed from size-fractionated poly(A)-rich RNA of wounded sweet potato tuberous roots by Escherichia coli expression vector-primed cDNA synthesis. Two additional catalase cDNA clones (pCAS10 and pCAS13), which contained cDNA inserts slightly longer than that of pCAS01 at their 5'-termini, were identified by colony hybridization of another cDNA library. Those three catalase cDNAs contained primary structures not identical, but closely related, to one another based on their restriction enzyme and RNase cleavage mapping analyses, suggesting that microheterogeneity exists in catalase mRNAs. The cDNA insert of pCAS13 carried the entire catalase coding capacity, since the RNA transcribed in vitro from the cDNA under the SP6 phage promoter directed the synthesis of a catalase polypeptide in the wheat germ in vitro translation assay. The nucleotide sequencing of these catalase cDNAs indicated that 1900-base catalase mRNA contained a coding region of 1476 bases. The amino acid sequence of sweet potato catalase deduced from the nucleotide sequence was 35 amino acids shorter than rat liver catalase [Furuta, S., Hayashi, H., Hijikata, M., Miyazawa, S., Osumi, T. & Hashimoto, T. (1986) Proc. Natl Acad. Sci. USA 83, 313-317]. Although these two sequences showed only 38% homology, the sequences around the amino acid residues implicated in catalytic function, heme ligand or heme contact had been well conserved during evolution.  相似文献   

20.
U Buwitt  T Flohr    E C Bttger 《The EMBO journal》1992,11(2):489-496
Here we report the molecular cloning of several related human cDNAs from which a full-length sequence can be determined. The cDNAs encode a 2.8 kb mRNA that is strongly induced by interferon (IFN) gamma and the expression of which is not cell-restricted but observed in fibroblasts, macrophages and epithelial cells. The deduced amino acid sequence predicts a protein of 471 amino acids with high sequence similarity to a previously identified rabbit peptide chain release factor. Functional studies to demonstrate release factor activity showed that the protein encoded by this cDNA inhibited the readthrough activity of a yeast UGA suppressor tRNA in an in vitro translation system. The identification of this novel cDNA implies that translational control by IFN induced proteins may not be restricted to the initial steps of protein synthesis but may also act by regulation of peptide chain termination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号