首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three aerobic bacterial consortia GY2, GS3 and GM2 were enriched from polycyclic aromatic hydrocarbon-contaminated soils with water-silicone oil biphasic systems. An aerobic bacterial strain utilizing phenanthrene as the sole carbon and energy source was isolated from bacterial consortium GY2 and identified as Sphingomonas sp. strain GY2B. Within 48 h and at 30°C the strain metabolized 99.1% of phenanthrene (100 mg/l) added to batch culture in mineral salts medium and the cell number increased by about 40-fold. Three metabolites 1-hydroxy-2-naphthoic acid, 1-naphthol and salicylic acid, were identified by gas chromatographic mass spectrometry and UV–visible spectroscopy analysis. A degradation pathway was proposed based on the identified metabolites. In addition to phenanthrene, strain GY2B could use other aromatic compounds such as naphthalene, 2-naphthol, salicylic acid, catechol, phenol, benzene and toluene as a sole source of carbon and energy.  相似文献   

2.
Microbial oxidation of dimethylnaphthalene isomers.   总被引:4,自引:1,他引:3       下载免费PDF全文
Three bacterial strains, identified as Alcaligenes sp. strain D-59 and Pseudomonas sp. strains D-87 and D-186, capable of growing on 2,6-dimethylnaphthalene (2,6-DMN) as the sole source of carbon and energy were isolated from soil samples. 2,6-Naphthalene dicarboxylic acid was formed in the culture broths of these three strains grown on 2,6-DMN. In addition, 2-hydroxymethyl-6-methylnaphthalene and 6-methylnaphthalene-2-carboxylic acid were detected in the culture broth of strain D-87. Strain D-87 grew well on 1,2-, 1,3-, 1,4-, 1,5-, 2,3-, and 2,7-DMN as the sole source of carbon and energy and accumulated 2-methylnaphthalene-3-carboxylic acid and 2,3-naphthalene dicarboxylic acid from 2,3-DMN, 4-methylnaphthalene-1-carboxylic acid from 1,4-DMN, and 7-methylnaphthalene-2-carboxylic acid from 2,7-DMN.  相似文献   

3.
A bacterium that uses 2-chloroethanol as sole energy and carbon source coupled to denitrification was isolated from 1,2-dichloroethane-contaminated soil. Its 16 S rDNA sequence showed 98% similarity with the type strain of Pseudomonas stutzeri (DSM 5190) and the isolate was tentatively identified as Pseudomonas stutzeri strain JJ. Strain JJ oxidized 2-chloroethanol completely to CO(2) with NO(3)(- )or O(2) as electron acceptor, with a preference for O(2) if supplied in combination. Optimum growth on 2-chloroethanol with nitrate occurred at 30 degrees C with a mu(max) of 0.14 h(-1) and a yield of 4.4 g protein per mol 2-chloroethanol metabolized. Under aerobic conditions, the mu(max) was 0.31 h(-1). NO(2)(-) also served as electron acceptor, but reduction of Fe(OH)(3), MnO(2), SO(4)(2-), fumarate or ClO(3)(-) was not observed. Another chlorinated compound used as sole energy and carbon source under aerobic and denitrifying conditions was chloroacetate. Various different bacterial strains, including some closely related Pseudomonas stutzeri strains, were tested for their ability to grow on 2-chloroethanol as sole energy and carbon source under aerobic and denitrifying conditions, respectively. Only three strains, Pseudomonas stutzeri strain LMD 76.42, Pseudomonas putida US2 and Xanthobacter autotrophicus GJ10, grew aerobically on 2-chloroethanol. This is the first report of oxidation of 2-chloroethanol under denitrifying conditions by a pure bacterial culture.  相似文献   

4.
Dichloromethane (DCM) is utilized by the strictly anaerobic, acetogenic mixed culture DM as a sole source of carbon and energy for growth. Growth with DCM was linear, and cell suspensions of the culture degraded DCM with a specific activity of 0.47 mkat/kg of protein. A mass balance of 2 mol of chloride and 0.42 mol of acetate per mol of DCM was observed. The dehalogenation reaction showed similar specific activities under both anaerobic and aerobic conditions. Radioactivity from [14C]DCM in cell suspensions was recovered largely as 14CO2 (58%), [14C]acetate (23%), and [14C]formate (11%), which subsequently disappeared. This suggested that formate is a major intermediate in the pathway from DCM to acetate. Efforts to isolate from culture DM a pure culture capable of anaerobic growth with DCM were unsuccessful, although overall acetogenesis and the partial reactions are thermodynamically favorable. We then isolated bacterial strains DMA, a strictly anaerobic, gram-positive, endospore-forming rod, and DMB, a strictly anaerobic, gram-negative, endospore-forming homoacetogen, from culture DM. Both strain DMB and Methanospirillum hungatei utilized formate as a source of carbon and energy. Coculture of strain DMA with either M. hungatei or strain DMB in solid medium with DCM as the sole added source of carbon and energy was observed. These data support a tentative scheme for the acetogenic fermentation of DCM involving interspecies formate transfer from strain DMA to the acetogenic bacterium DMB or to the methanogen M. hungatei.  相似文献   

5.
Isolation and identification of a morpholine-degrading bacterium.   总被引:4,自引:1,他引:3       下载免费PDF全文
A gram-positive, slowly growing rod effectively utilizing morpholine as the sole source of organic carbon, nitrogen, and energy was isolated from a mixed culture in a laboratory reactor. The strain was tentatively identified as Mycobacterium aurum. Its growth characteristics at 20 degrees C and pH 6.5 were as follows: maximum specific growth rate, 0.052 h-1; half-velocity constant, 1.3 mg/liter; and yield, 0.37 g/g. The optimum temperature and pH were 31 degrees C and 6.0, respectively.  相似文献   

6.
Isolation and identification of a morpholine-degrading bacterium   总被引:2,自引:0,他引:2  
A gram-positive, slowly growing rod effectively utilizing morpholine as the sole source of organic carbon, nitrogen, and energy was isolated from a mixed culture in a laboratory reactor. The strain was tentatively identified as Mycobacterium aurum. Its growth characteristics at 20 degrees C and pH 6.5 were as follows: maximum specific growth rate, 0.052 h-1; half-velocity constant, 1.3 mg/liter; and yield, 0.37 g/g. The optimum temperature and pH were 31 degrees C and 6.0, respectively.  相似文献   

7.
There are only a few examples of microbial conversion of picric acid (2,4,6-trinitrophenol). None of the organisms that have been described previously is able to use this compound as a sole source of carbon, nitrogen, and energy at high rates. In this study we isolated and characterized a strain, strain CB 22-2, that was able to use picric acid as a sole source of carbon and energy at concentrations up to 40 mM and at rates of 1.6 mmol. h(-1). g (dry weight) of cells(-1) in continuous cultures and 920 micromol. h(-1). g (dry weight) of cells(-1) in flasks. In addition, this strain was able to use picric acid as a sole source of nitrogen at comparable rates in a nitrogen-free medium. Biochemical characterization and 16S ribosomal DNA analysis revealed that strain CB 22-2 is a Nocardioides sp. strain. High-pressure liquid chromatography and UV-visible light data, the low residual chemical oxygen demand, and the stoichiometric release of 2.9 +/- 0.1 mol of nitrite per mol of picric acid provided strong evidence that complete mineralization of picric acid occurred. During transformation, the metabolites detected in the culture supernatant were the [H-]-Meisenheimer complexes of picric acid and 2,4-dinitrophenol (H--DNP), as well as 2,4-dinitrophenol. Experiments performed with crude extracts revealed that H--DNP formation indeed is a physiologically relevant step in picric acid metabolism.  相似文献   

8.
A bacterium capable of utilizing either acetonitrile as the sole source of carbon and nitrogen or biphenyl as the sole source of carbon was isolated from soil and identified as Pseudomonas aeruginosa. The bacterium also utilized other nitriles, amides, and polychlorinated biphenyls (PCBs) as growth substrates. Acetonitrile- or biphenyl-grown cells oxidized these substrates without a lag. In studies with [14C]acetonitrile, nearly 74% of the carbon was recovered as 14CO2 and 8% was associated with the biomass. In studies with [14C]biphenyl, nearly 68% of the carbon was recovered as 14CO2 and nearly 6% was associated with the biomass. Although higher concentrations of acetonitrile as the sole sources of nitrogen inhibited the rates of [14C]biphenyl mineralization, lower concentrations (0.05%, w/v) gave a 77% stimulation in 14CO2 recovery. Pseudomonas aeruginosa metabolized acetonitrile to ammonia and acetic acid and biphenyl to benzoic acid. The bacterium also simultaneously utilized biphenyl as the sole carbon source and acetonitrile as the sole nitrogen source. However, biphenyl utilization increased only after the depletion of acetonitrile. Metabolites of the mixed substrate were ammonia and benzoic acid, which completely disappeared in the later stages of incubation. Nitrile hydratase and amidase were responsible for the transformation of acetonitrile to acetic acid and ammonia.  相似文献   

9.
An aerobic mixed bacterial culture (CL-EMC-1) capable of utilizing methyl tert-butyl ether (MTBE) as the sole source of carbon and energy with a growth temperature range of 3 to 30°C and optimum of 18 to 22°C was enriched from activated sludge. Transient accumulation of tert-butanol (TBA) occurred during utilization of MTBE at temperatures from 3°C to 14°C, but TBA did not accumulate above 18°C. The culture utilized MTBE at a concentration of up to 1.5 g l−1 and TBA of up to 7 g l−1. The culture grew on MTBE at a pH range of 5 to 9, with an optimum pH of 6.5 to 7.1. The specific growth rate of the CL-EMC-1 culture on 0.1 g l−1 of MTBE at 22°C and pH 7.1 was 0.012 h−1, and the growth yield was 0.64 g (dry weight) g−1. A new MTBE-utilizing bacterium, Variovorax paradoxus strain CL-8, isolated from the mixed culture utilized MTBE, TBA, 2-hydroxy isobutyrate, lactate, methacrylate, and acetate as sole sources of carbon and energy but not 2-propanol, acetone, methanol, formaldehyde, or formate. Two other isolates, Hyphomicrobium facilis strain CL-2 and Methylobacterium extorquens strain CL-4, isolated from the mixed culture were able to grow on C1 compounds. The combined consortium could thus utilize all of the carbon of MTBE.  相似文献   

10.
Actinomycetes were isolated from activated sludge acclimated to thiophene-2-carboxylic acid (T2C) or 5-methyl-thiophene-2-carboxylic acid (T5M2C). These isolates were apparently identical and were identified as strains ofRhodococcus. The strains could grow on T2C, T5M2C, or thiophene-2-acetic acid as sole sources of carbon and energy, but could not use thiophene, methyl thiophenes, several other substituted thiophenes, dibenzothiophene, dimethyl sulfide, or pyrrole-2-carboxylic acid. T2C was degraded quantitatively to sulfate, and its carbon was converted almost entirely to cell biomass and carbon dioxide. Growth yields indicated about 25% conversion of T2C-carbon to cell-carbon. Growth was not supported by thiosulfate or methionine, nor were these compounds oxidized.Rhodococcus strain TTD-1 grown on T2C oxidized both T2C and T5M2C with an apparent Km of 1.3×10–5 M. Sulfide was also oxidized by T2C-grown organisms. This is the first demonstration of an actinomycete capable of the complete degradation of thiophene derivatives and of their use by it as sole substrates for growth.  相似文献   

11.
A bacterial strain capable of aerobic degradation of 4-fluorocinnamic acid (4-FCA) as the sole source of carbon and energy was isolated from a biofilm reactor operating for the treatment of 2-fluorophenol. The organism, designated as strain S2, was identified by 16S rRNA gene analysis as a member of the genus Rhodococcus. Strain S2 was able to mineralize 4-FCA as sole carbon and energy source. In the presence of a conventional carbon source (sodium acetate [SA]), growth rate of strain S2 was enhanced from 0.04 to 0.14 h?1 when the culture medium was fed with 0.5 mM of 4-FCA, and the time for complete removal of 4-FCA decreased from 216 to 50 h. When grown in SA-supplemented medium, 4-FCA concentrations up to 1 mM did not affect the length of the lag phase, and for 4-FCA concentrations up to 3 mM, strain S2 was able to completely remove the target fluorinated compound. 4-Fluorobenzoate (4-FBA) was transiently formed in the culture medium, reaching concentrations up to 1.7 mM when the cultures were supplemented with 3.5 mM of 4-FCA. Trans,trans-muconate was also transiently formed as a metabolic intermediate. Compounds with molecular mass compatible with 3-carboxymuconate and 3-oxoadipate were also detected in the culture medium. Strain S2 was able to mineralize a range of other haloorganic compounds, including 2-fluorophenol, to which the biofilm reactor had been exposed. To our knowledge, this is the first time that mineralization of 4-FCA as the sole carbon source by a single bacterial culture is reported.  相似文献   

12.
Methyl-triethanol-ammonium originates from the hydrolysis of the parent esterquat surfactant, which is used as softener in fabric care. The initial steps of the catabolism were investigated in cell-free extracts of the bacterial strain MM 1 able to grow with methyl-triethanol-ammonium as sole source of carbon, energy and nitrogen. The initial degradation of methyl-triethanol-ammonium is an enzymatically catalyzed reaction, located in the particulate fraction of strain MM 1. The oxygen dependent reaction occurred also in presence of phenazine methosulfate as an alternative electron acceptor. As soon as one ethanol group of methyl-triethanol-ammonium was oxidized to the aldehyde, cyclic hemiacetals were formed by intramolecular cyclization. The third ethanol group of methyl-triethanol-ammonium was oxidized to the aldehyde and the carboxylic acid sequentially. The structurally related compounds dimethyl-diethanol-ammonium and choline were oxidized as well, whereas (±)-2,3-dihydroxypropyl-trimethyl-ammonium was not converted at all. The structures of the metabolites were established by 1D and 2D 1H, 13C and 14N NMR spectroscopy and by capillary electrophoresis mass spectrometry.  相似文献   

13.
共代谢条件下光合细菌对2-氯苯酚的生物降解   总被引:1,自引:0,他引:1  
Dong YH  Hu XM  He YD  Li L 《应用生态学报》2011,22(5):1280-1286
光合细菌PSB-1D不能利用2-氯苯酚(2-CP)作为唯一的碳源和能源.选用苹果酸、丙酸钠、乙酸钠、柠檬酸钠、苯酚、葡萄糖和可溶性淀粉等7种不同碳源作为光合细菌PSB-1D降解2-CP的共代谢基质,考察了在黑暗好氧培养条件下,不同共代谢基质对PSB-1D生长及降解2-CP效果的影响.结果表明:葡萄糖能够很好地促进PSB-1D的大量繁殖,提高降解效果,缩短降解周期,为最佳共代谢基质.对葡萄糖的投加浓度进行了优化,当葡萄糖的投加浓度为3 g·L-1时,菌株PSB-1D培养168 h后的菌体生长浓度△D560为1.749,2-CP的半衰期为3.9 d,降解速率常数为0.00864 h-1.采用SDS-PAGE对微生物全细胞蛋白质进行分析发现,在共代谢过程中当菌株PSB-1D利用葡萄糖作为底物提供能源和碳源时,可诱导产生2-CP特异性降解酶.  相似文献   

14.
Aerobic vinyl chloride metabolism in Mycobacterium aurum L1.   总被引:3,自引:1,他引:2       下载免费PDF全文
Mycobacterium aurum L1, capable of growth on vinyl chloride as a sole carbon and energy source, was previously isolated from soil contaminated with vinyl chloride (S. Hartmans et al., Biotechnol. Lett. 7:383-388, 1985). The initial step in vinyl chloride metabolism in strain L1 is catalyzed by alkene monooxygenase, transforming vinyl chloride into the reactive epoxide chlorooxirane. The enzyme responsible for chlorooxirane degradation appeared to be very unstable and thus hampered the characterization of the second step in vinyl chloride metabolism. Dichloroethenes are also oxidized by vinyl chloride-grown cells of strain L1, but they are not utilized as growth substrates. Three additional bacterial strains which utilize vinyl chloride as a sole carbon and energy source were isolated from environments with no known vinyl chloride contamination. The three new isolates were similar to strain L1 and were also identified as Mycobacterium aurum.  相似文献   

15.
Mycobacterium aurum L1, capable of growth on vinyl chloride as a sole carbon and energy source, was previously isolated from soil contaminated with vinyl chloride (S. Hartmans et al., Biotechnol. Lett. 7:383-388, 1985). The initial step in vinyl chloride metabolism in strain L1 is catalyzed by alkene monooxygenase, transforming vinyl chloride into the reactive epoxide chlorooxirane. The enzyme responsible for chlorooxirane degradation appeared to be very unstable and thus hampered the characterization of the second step in vinyl chloride metabolism. Dichloroethenes are also oxidized by vinyl chloride-grown cells of strain L1, but they are not utilized as growth substrates. Three additional bacterial strains which utilize vinyl chloride as a sole carbon and energy source were isolated from environments with no known vinyl chloride contamination. The three new isolates were similar to strain L1 and were also identified as Mycobacterium aurum.  相似文献   

16.
The mutualistic interactions in a 4-aminobenzenesulfonate (sulfanilate) degrading mixed bacterial culture were studied. This coculture consisted of Hydrogenophaga palleronii strain S1 and Agrobacterium radiobacter strain S2. In this coculture only strain S1 desaminated sulfanilate to catechol-4-sulfonate, which did not accumulate in the medium but served as growth substrate for strain S2. During growth in batch culture with sulfanilate as sole source of carbon, energy, nitrogen and sulfur, the relative cell numbers (colony forming units) of both strains were almost constant. None of the strains reached a cell number which was more than threefold higher than the cell number of the second strain. A mineral medium with sulfanilate was inoculated with different relative cell numbers of both strains (relative number of colony forming units S1:S2 2200:1 to 1:500). In all cases, growth was found and the proportion of both strains moved towards an about equal value of about 3:1 (strain S1:strain S2). In contrast to the coculture, strain S1 did not grow in a mineral medium in axenic culture with 4-aminobenzenesulfonate or any other simple organic compound tested. A sterile culture supernatant from strain S2 enabled strain S1 to grow with 4-aminobenzenesulfonate. The same growth promoting effect was found after the addition of a combination of 4-aminobenzoate, biotin and vitamin B12. Strain S1 grew with 4-aminobenzenesulfonate plus the three vitamins with about the same growth rate as the mixed culture in a mineral medium. When (resting) cells of strain S1 were incubated in a pure mineral medium with sulfanilate, up to 30% of the oxidized sulfanilate accumulated as catechol-4-sulfonate in the culture medium. In contrast, only minor amounts of catechol-4-sulfonate accumulated when strain S1 was grown with 4ABS in the presence of the vitamins.  相似文献   

17.
环氧丙烷是聚氨酯、不饱和聚酯和优质洗涤剂的主要原料,还可用于油漆、化妆品等,是一种非常重要的精细化工原料。目前环氧丙烷主要用氯醇法和烷基过氧化氢法生产。1963年,Vender Lindent发现庚烷菌P.Seruginosa的休止细胞可使辛烯-1氧化成环氧辛烷,首次提出了烯烃经生物催化环氧化生成相应环氧化物的过程。1977年,Colby等报导了从Methylococcus capsu-latus(Bath)菌中提取了非专一性菌甲烷单加氧酶。1979年,C.T.Hou等分离出二十多种甲烷氧化细菌都能使C_2—C_4烯烃氧化成  相似文献   

18.
Pseudomonas sp. strain DCA1, which is capable of utilizing 1,2-dichloroethane (DCA) as sole carbon and energy source, was used to oxidize chlorinated methanes, ethanes, propanes, and ethenes. Chloroacetic acid, an intermediate in the DCA degradation pathway of strain DCA1, was used as a co-substrate since it was readily oxidized by DCA-grown cells of strain DCAI and did not compete for the monooxygenase. All of the tested compounds except tetrachloroethylene (PER) were oxidized by cells expressing DCA monooxygenase. Strain DCAI could not utilize any of these compounds as a growth substrate. Co-metabolic oxidation during growth on DCA was studied with 1,2-dichloropropane. Although growth on this mixture occurred, 1,2-dichloropropane strongly inhibited growth of strain DCAI. This inhibition was not caused by competition for the monooxygenase. It was shown that the oxidation of 1,2dichloropropane resulted in the accumulation of 2,3-dichloro-1-propanol and 2-chloroethanol.  相似文献   

19.
A Pseudomonas sp. strain, HH69, and a mixed culture, designated HH27, were isolated by selective enrichment from soil samples. The pure strain and the mixed culture grew aerobically on dibenzofuran as the sole source of carbon and energy. Degradation proceeded via salicylic acid which was branched into the gentisic acid and the catechol pathway. Both salicylic acid and gentisic acid accumulated in the culture medium of strain HH69. The acids were slowly metabolized after growth ceased. The enzymes responsible for their metabolism showed relatively low activities. Besides the above-mentioned acids, 2-hydroxyacetophenone, benzopyran-4-one (chromone), several 2-substituted chroman-4-ones, and traces of the four isomeric monohydroxydiben-zofurans were identified in the culture medium. 2,2′,3-Trihydroxybiphenyl was isolated from the medium of a dibenzofuran-converting mutant derived from parent strain HH69, which can no longer grow on dibenzofuran. This gives evidence for a novel type of dioxygenases responsible for the attack on the biarylether structure of the dibenzofuran molecule. A meta-fission mechanism for cleavage of the dihydroxylated aromatic nucleus of 2,2′,3-trihydroxybiphenyl is suggested as the next enzymatic step in the degradative pathway.  相似文献   

20.
J.E. TURNER AND N. ALLISON. 1995. A newly-isolated strain of Pseudomonas putida (HVA-1) utilized homovanillic acid as sole carbon and energy source. Homovanillate-grown bacteria oxidized homovanillate and homoprotocatechuate but monohydroxylated and other methoxylated phenylacetic acids were oxidized poorly; methoxy-substituted benzoates were not oxidized. Extracts of homovanillate-grown cells contained homoprotocatechuate 2,3-dioxygenase but the primary homovanillate-degrading enzyme could not be detected. No other methoxylated phenylacetic acid supported growth of the organism but vanillate was utilized as a carbon and energy source. When homovanillate-grown cells were used to inoculate media containing vanillate a 26 h lag period occurred before growth commenced. Vanillate-grown bacteria oxidized vanillate and protocatechuate but no significant oxygen uptake was obtained with homovanillate and other phenylacetic acid derivatives. Analysis of pathway intermediates revealed that homovanillate-grown bacteria produced homoprotocatechuate, formaldehyde and the ring-cleavage product 5-carboxymethyl 2-hydroxymuconic semialdehyde (CHMS) when incubated with homovanillate but monohydroxylated or monomethoxylated phenylacetic acids were not detected. These results suggest that homovanillate is degraded directly to the ring-cleavage substrate homoprotocatechuate by an unstable but highly specific demethylase and then undergoes extradiol cleavage to CHMS. It would also appear that the uptake/degradatory pathways for homovanillate and vanillate in this organism are entirely separate and independently controlled. If stabilization of the homovanillate demethylase can be achieved, there is potential for exploiting the substrate specificity of this enzyme in both medical diagnosis and in the paper industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号