首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated regulation of the type 1 isoform of the Na(+)/H(+) exchanger by phosphorylation. Four specific groups of serine and threonine residues in the regulatory carboxyl-terminal tail were mutated to alanine residues: group 1, S693A; group 2, T718A and S723A/S726A/S729A; group 3, S766A/S770A/S771A; and group 4, T779A and S785A. The proteins were expressed in Na(+)/H(+) exchanger-deficient cells, and the activity was characterized. All of the mutants had proper expression, localization, and normal basal activity relative to wild type NHE1. Sustained intracellular acidosis was used to activate NHE1 via an ERK-dependent pathway that could be blocked with the MEK inhibitor U0126. Immunoprecipitation of (32)P-labeled Na(+)/H(+) exchanger from intact cells showed that sustained intracellular acidosis increased Na(+)/H(+) exchanger phosphorylation in vivo. This was blocked by U0126. The Na(+)/H(+) exchanger activity of mutants 1 and 2 was stimulated similar to wild type Na(+)/H(+) exchanger. Mutant 4 showed a partially reduced level of activation. However, mutant 3 was not stimulated by sustained intracellular acidosis, and loss of stimulation of activity correlated to a loss of sustained acidosis-mediated phosphorylation in vivo. Mutation of the individual amino acids within mutant 3, Ser(766), Ser(770), and Ser(771), showed that Ser(770) and Ser(771) are responsible for mediating increases in NHE1 activity through sustained acidosis. Both intact Ser(770) and Ser(771) were required for sustained acidosis-mediated activation of NHE1. Our results suggest that amino acids Ser(770) and Ser(771) mediate ERK-dependent activation of the Na(+)/H(+) exchanger in vivo.  相似文献   

2.
The p53 tumor suppressor is activated in the cellular response to genotoxic stress. Transactivation of p53 target genes dictates cell cycle arrest and DNA repair or induction of apoptosis; however, a molecular mechanism responsible for these distinct functions remains unclear. Recent studies revealed that phosphorylation of p53 on Ser(46) was associated with induction of p53AIP1 expression, resulting in the commitment of the cell fate into apoptotic cell death. Moreover, upon exposure to genotoxic stress, p53DINP1 was expressed and recruited a kinase(s) to p53 that specifically phosphorylated Ser(46). Here, we show that the pro-apoptotic kinase, protein kinase C delta (PKCdelta), is involved in phosphorylation of p53 on Ser(46). PKCdelta-mediated phosphorylation is required for the interaction of PKCdelta with p53. The results also demonstrate that p53DINP1 associates with PKCdelta upon exposure to genotoxic agents. Consistent with these results, PKCdelta potentiates p53-dependent apoptosis by Ser(46) phosphorylation in response to genotoxic stress. These findings indicate that PKCdelta regulates p53 to induce apoptotic cell death in the cellular response to DNA damage.  相似文献   

3.
4.
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is a ubiquitously expressed pH-regulatory membrane protein that functions in the myocardium and other tissues. It is an important mediator of the myocardial damage that occurs after ischemia-reperfusion injury and is implicated in heart hypertrophy. Regulation of NHE1 has been proposed as a therapeutic target for cardioprotection. We therefore examined mechanisms of control of NHE1 in the myocardium. Several different amino acids have been implicated as a being critical to NHE1 regulation in a number of tissues including Ser703, Ser770, and Ser771. In the myocardium, NHE1 is activated in response to a variety of stimuli including activation by an ERK-dependent sustained intracellular acidosis. In this study, we determined whether Ser703 and p90rsk activity are critical in activation of NHE1 by sustained intracellular acidosis. In vitro phosphorylation of NHE1 C-terminal fusion proteins determined that ERK-dependent phosphorylation of the cytoplasmic region was not dependent on Ser703; however, phosphorylation by p90rsk required Ser703. A Ser703Ala mutation decreased basal NHE1 activity in CHO cells but not in cardiomyocytes. NHE1 with a Ser703Ala mutation was activated in response to sustained intracellular acidosis in CHO cells. In addition, sustained intracellular acidosis also activated the Ser703Ala mutant protein in isolated cardiomyocytes and phosphorylation levels were also increased by acidosis. The presence of a dominant-negative p90rsk kinase also did not prevent activation and phosphorylation of NHE1 by sustained intracellular acidosis in isolated cardiomyocytes. We conclude that Ser703 and p90rsk are not required for activation by sustained intracellular acidosis and that p90rsk phosphorylation of Ser703 is independent of this type of activation.  相似文献   

5.
Genotoxic stress exerts biological activity by activating downstream effectors, including the p53 tumor suppressor. p53 regulates cell-cycle checkpoint and induction of apoptosis in response to DNA damage; however, molecular mechanisms responsible for committing to these distinct functions remain to be elucidated. Recent studies demonstrated that phosphorylation of p53 at Ser46 is associated with induction of p53AIP1 expression, resulting in commitment to apoptotic cell death. In this regard, the role for Ser46 kinases in p53-dependent apoptosis has been established; however, the kinases responsible for Ser46 phosphorylation have yet to be identified. Here, we demonstrate that the dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2) directly phosphorylates p53 at Ser46. Upon exposure to genotoxic stress, DYRK2 translocates into the nucleus for Ser46 phosphorylation. Consistent with these results, DYRK2 induces p53AIP1 expression and apoptosis in a Ser46 phosphorylation-dependent manner. These findings indicate that DYRK2 regulates p53 to induce apoptosis in response to DNA damage.  相似文献   

6.
We have recently demonstrated that in quiescent fibroblasts protein kinase C (PKC) epsilon(95) is phosphorylated at Ser(729), Ser(703), and Thr(566) and that upon passage of quiescent cells phosphorylation at Ser(729) is lost, giving rise to PKCepsilon(87). Ser(729) may be rephosphorylated later, suggesting cycling between PKCepsilon(87) and PKCepsilon(95). Here we show that the dephosphorylation at Ser(729) is insensitive to okadaic acid, calyculin, ascomycin C, and cyclosporin A, suggesting that dephosphorylation at this site is not mediated through protein phosphatases 1, 2A or 2B. We demonstrate that this dephosphorylation at Ser(729) requires serum and cell readhesion and is sensitive to rapamycin, PD98059, chelerythrine, and Ro-31-8220. These results suggest that the phosphorylation status of Ser(729) in the hydrophobic domain at Ser(729) is regulated independently of the phosphorylation status of other sites in PKCepsilon, by a mTOR-sensitive phosphatase. The mitogen-activated protein kinase pathway and PKC are also implicated in regulating the dephosphorylation at Ser(729).  相似文献   

7.
Glucocorticoids stimulate the intestinal absorption of Na+ and water partly by regulation of the Na+/H+ exchanger 3 (NHE3). Previous studies have shown both genomic and nongenomic regulation of NHE3 by glucocorticoids. Serum and glucocorticoid-inducible kinase 1 (SGK1) has been shown to be part of this cascade, where phosphorylation of NHE3 by SGK1 initiates the translocation of NHE3 to the cell surface. In the present work, we examined a series of changes in SGK1 and NHE3 induced by glucocorticoids using human colonic Caco-2 and opossum kidney cells. We found that dexamethasone rapidly stimulated SGK1 mRNAs, but a significant change in protein abundance was not detected. Instead, there was an increase in SGK1 kinase activity as early as at 2 h. An increase in NHE3 protein abundance was not detected until 12 h of dexamethasone exposure, although the transport activity was significantly stimulated at 4 h. These data demonstrate that the changes of SGK1 precede those of NHE3. Chronic regulation (24 h) of NHE3 was blocked completely by prevention of protein synthesis with cycloheximide or actinomycin D and by the glucocorticoid receptor blocker RU486. The acute effect of dexamethasone was similarly abrogated by RU486, but was insensitive to cycloheximide and actinomycin D. Similarly, the stimulation of SGK1 activity by dexamethasone was blocked by RU486 but not by actinomycin D. Together, these data show that the acute effect of glucocorticoids on NHE3 is mediated by a glucocorticoid receptor dependent mechanism that activates SGK1 in a nongenomic manner. Na+/H+ exchanger 3; serum and glucocorticoid-inducible kinase 1  相似文献   

8.
Trophic factor withdrawal induces cell death by mechanisms that are incompletely understood. Previously we reported that withdrawal of interleukin-7 (IL-7) or IL-3 produced a rapid intracellular alkalinization, disrupting mitochondrial metabolism and activating the death protein Bax. We now observe that this novel alkalinization pathway is mediated by the pH regulator NHE1, as shown by the requirement for sodium, blocking by pharmacological inhibitors or use of an NHE1-deficient cell line, and the altered phosphorylation of NHE1. Alkalinization also required the stress-activated p38 mitogen-activated protein kinase (MAPK). Inhibition of p38 MAPK activity with pharmacological inhibitors or expression of a dominant negative kinase prevented alkalinization. Activated p38 MAPK directly phosphorylated the C terminus of NHE1 within a 40-amino-acid region. Analysis by mass spectroscopy identified four phosphorylation sites on NHE1, Thr 717, Ser 722, Ser 725, and Ser 728. Thus, loss of trophic cytokine signaling induced the p38 MAPK pathway, which phosphorylated NHE1 at specific sites, inducing intracellular alkalinization.  相似文献   

9.
The p53 tumor suppressor protein preserves genome integrity by regulating growth arrest and apoptosis in response to DNA damage. In response to ionizing radiation (IR), ATM, the gene product mutated in ataxia telangiectasia, stabilizes and activates p53 through phosphorylation of Ser(15) and (indirectly) Ser(20). Here we show that phosphorylation of p53 on Ser(46), a residue important for p53 apoptotic activity, as well as on Ser(9), in response to IR also is dependent on the ATM protein kinase. IR-induced phosphorylation at Ser(46) was inhibited by wortmannin, a phosphatidylinositol 3-kinase inhibitor, but not PD169316, a p38 MAPK inhibitor. p53 C-terminal acetylation at Lys(320) and Lys(382), which may stabilize p53 and activate sequence-specific DNA binding, required Ser(15) phosphorylation by ATM and was enhanced by phosphorylation at nearby residues including Ser(6), Ser(9), and Thr(18). These observations, together with the proposed role of Ser(46) phosphorylation in mediating apoptosis, suggest that ATM is involved in the initiation of p53-dependent apoptosis after IR in human lymphoblastoid cells.  相似文献   

10.
Maeno E  Takahashi N  Okada Y 《FEBS letters》2006,580(27):6513-6517
Sustained cell shrinkage is a major hallmark of apoptotic cell death. In apoptotic cells, whole cell volume reduction, called apoptotic volume decrease (AVD), proceeds until fragmentation of cells. Under non-apoptotic conditions, human epithelial HeLa cells exhibited a slow regulatory volume increase (RVI) after osmotic shrinkage induced by exposure to hypertonic solution. When AVD was induced by treatment with a Fas ligand, TNF-alpha or staurosporine, however, it was found that HeLa cells failed to undergo RVI. When RVI was inhibited by combined application of Na+/H+ exchanger (NHE) and anion exchanger blockers, hypertonic stress induced prolonged shrinkage followed by caspase-3 activation in HeLa cells. Hypertonicity also induced apoptosis in NHE1-deficient PS120 fibroblasts, which lack the RVI response. When RVI was restored by transfection of these cells with NHE1, hypertonicity-induced apoptosis was completely prevented. Thus, it is concluded that RVI dysfunction is indispensable for the persistence of AVD and induction of apoptosis.  相似文献   

11.
Death-associated protein kinase is a calcium/calmodulin serine/threonine kinase, which positively mediates programmed cell death in a variety of systems. Here we addressed its mode of regulation and identified a mechanism that restrains its apoptotic function in growing cells and enables its activation during cell death. It involves autophosphorylation of Ser(308) within the calmodulin (CaM)-regulatory domain, which occurs at basal state, in the absence of Ca(2+)/CaM, and is inversely correlated with substrate phosphorylation. This type of phosphorylation takes place in growing cells and is strongly reduced upon their exposure to the apoptotic stimulus of C(6)-ceramide. The substitution of Ser(308) to alanine, which mimics the ceramide-induced dephosphorylation at this site, increases Ca(2+)/CaM-independent substrate phosphorylation as well as binding and overall sensitivity of the kinase to CaM. At the cellular level, it strongly enhances the death-promoting activity of the kinase. Conversely, mutation to aspartic acid reduces the binding of the protein to CaM and abrogates almost completely the death-promoting function of the protein. These results are consistent with a molecular model in which phosphorylation on Ser(308) stabilizes a locked conformation of the CaM-regulatory domain within the catalytic cleft and simultaneously also interferes with CaM binding. We propose that this unique mechanism of auto-inhibition evolved to impose a locking device, which keeps death-associated protein kinase silent in healthy cells and ensures its activation only in response to apoptotic signals.  相似文献   

12.
Ebselen, a selenium-containing heterocyclic compound, prevents ischemia-induced cell death. However, the molecular mechanism through which ebselen exerts its cytoprotective effect remains to be elucidated. Using sodium nitroprusside (SNP) as a nitric oxide (NO) donor, we show here that ebselen potently inhibits NO-induced apoptosis of differentiated PC12 cells. This was associated with inhibition of NO-induced phosphatidyl Serine exposure, cytochrome c release, and caspase-3 activation by ebselen. Analysis of key apoptotic regulators during NO-induced apoptosis of differentiated PC12 cells showed that ebselen blocks the activation of the apoptosis signaling-regulating kinase 1 (ASK1), and inhibits phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal protein kinase (JNK). Moreover, ebselen inhibits NO-induced p53 phosphorylation at Ser15 and c-Jun phosphorylation at Ser63 and Ser73. It appears that inhibition of p38 MAPK and p53 phosphorylation by ebselen occurs via a thiol-redox-dependent mechanism. Interestingly, ebselen also activates p44/42 MAPK, and inhibits the downregulation of the antiapoptotic protein Bcl-2 in SNP-treated PC12 cells. Together, these findings suggest that ebselen protects neuronal cells from NO cytotoxicity by reciprocally regulating the apoptotic and antiapoptotic signaling cascades.  相似文献   

13.
Na(+)/H(+) exchanger isoform-1 (NHE1), the ubiquitous form of the Na(+)/H(+) exchanger, has increased activity in hypertensive patients and in animal models of hypertension. Furthermore, NHE1 is activated in cells stimulated with growth factors. We showed previously that activation of the exchanger is dependent on phosphorylation of serine 703 (Ser(P)(703)) by p90 ribosomal S6 kinase (RSK). Because the NHE1 sequence at Ser(P)(703) (RIGSDP) is similar to a consensus sequence (RSXSXP) specific for 14-3-3 ligands, we evaluated whether serum stimulated 14-3-3 binding to NHE1. Five different GST-NHE1 fusion proteins spanning amino acids 515-815 were phosphorylated by RSK and used as ligands in a far Western analysis; only those containing Ser(P)(703) exhibited high affinity 14-3-3 binding. In PS127A cells (NHE1-overexpressing Chinese hamster fibroblasts) stimulated with 20% serum, NHE1 co-precipitation with GST-14-3-3 fusion protein increased at 5 min (5.2 +/- 0.4-fold versus control; p < 0.01) and persisted at 40 min (3.9 +/- 0.3-fold; p < 0.01). We confirmed that binding occurs at the RIGSDP motif using PS120 (NHE1 null) cells transfected with S703A-NHE1 or P705A-NHE1 (based on data indicating that 14-3-3 binding requires phosphoserine and +2 proline). Serum failed to stimulate association of 14-3-3 with these mutants. A GST-NHE1 fusion protein was phosphorylated by RSK and used as a ligand to assess the effect of 14-3-3 on protein phosphatase 1-mediated dephosphorylation of Ser(P)(703). GST-14-3-3 limited dephosphorylation (66% of initial state at 60 min) compared with GST alone (27% of initial state; p < 0.01). The protective effect of GST-14-3-3 was lost in the GST-NHE1 P705A mutant. Finally, the base-line rate of pH recovery in acid-loaded cells was equal in unstimulated cells expressing wild-type or P705A-NHE1. However, activation of NHE1 by serum was dramatically inhibited in cells expressing P705A-NHE1 compared with wild-type (0.13 +/- 0.02 versus 0.48 +/- 0.06 mmol of H(+)/min/liter, p < 0.01). These data suggest that 14-3-3 binding to NHE1 participates in serum-stimulated exchanger activation, a new function for 14-3-3.  相似文献   

14.
The plasma membrane Na+/H+ exchanger NHE1 has an established function in intracellular pH and cell volume homeostasis by catalyzing electroneutral influx of extracellular Na+ and efflux of intracellular H+. A second function of NHE1 as a structural anchor for actin filaments through its direct binding of the ezrin, radixin, and moesin (ERM) family of actin-binding proteins was recently identified. ERM protein binding and actin anchoring by NHE1 are necessary to retain the localization of NHE1 in specialized plasma membrane domains and to promote cytoskeleton-dependent processes, including actin filament bundling and cell-substrate adhesions. This review explores a third function of NHE1, as a plasma membrane scaffold in the assembly of signaling complexes. Through its coordinate functions in H+ efflux, actin anchoring, and scaffolding, we propose that NHE1 promotes protein interactions and activities, assembles signaling complexes in specialized plasma membrane domains, and coordinates divergent signaling pathways. hydrogen ion efflux; intracellular pH; molecular scaffold  相似文献   

15.
Protein kinase Balpha (PKBalpha/Akt-1) is a key mediator of multiple signaling pathways involved in angiogenesis, cell proliferation and apoptosis among others. The unphosphorylated form of Akt-1 is virtually inactive and its full activation requires two phosphatidylinositol-3,4,5-triphosphate-dependent phosphorylation events, Thr308 by 3-phosphoinositide-dependent kinase-1 (PDK1) and Ser473 by an undefined kinase that has been termed PDK2. Recent studies have suggested that the Ser473 kinase is a plasma membrane raft-associated kinase. In this study we show that protein kinase Calpha (PKCalpha) translocates to the membrane rafts in response to insulin growth factor-1 (IGF-1) stimulation. Overexpression of PKCalpha increases Ser473 phosphorylation and Akt-1 activity, while inhibition of its activity or expression decreases IGF-1-dependent activation of Akt-1. Furthermore, in vitro, in the presence of phospholipids and calcium, PKCalpha directly phosphorylates Akt-1 at the Ser473 site. We conclude, therefore, that PKCalpha regulates Akt-1 activity via Ser473 phosphorylation and may function as PDK2 in endothelial cells.  相似文献   

16.
Since thediscovery of the first intracellular Na+/H+exchanger in yeast, Nhx1, multiple homologs have been cloned andcharacterized in plants. Together, studies in these organismsdemonstrate that Nhx1 is located in the prevacuolar/vacuolarcompartment of cells where it sequesters Na+ into thevacuole, regulates intravesicular pH, and contributes to vacuolarbiogenesis. In contrast, the human homolog of Nhx1, Na+/H+ exchanger isoform 6 (NHE6), has beenreported to localize to mitochondria when transiently expressed as afusion with green fluorescent protein. This result warrantsreevaluation because it conflicts with predictions from phylogeneticanalyses. Here we demonstrate that when epitope-tagged NHE6 istransiently expressed in cultured mammalian cells, it does notcolocalize with mitochondrial markers. It also does not colocalize withmarkers of the lysosome, late endosome, trans-Golgi network,or Golgi cisternae. Rather, NHE6 is distributed in recyclingcompartments and transiently appears on the plasma membrane. Theseresults suggest that, like its homologs in yeast and plants, NHE6 is anendosomal Na+/H+ exchanger that may regulateintravesicular pH and volume and contribute to lysosomal biogenesis.

  相似文献   

17.
Cytoplasmic pH (pHi) was evaluated duringNa+-glucose cotransport in Caco-2 intestinal epithelialcell monolayers. The pHi increased by 0.069 ± 0.002 within 150 s after initiation of Na+-glucosecotransport. This increase occurred in parallel with glucose uptake andrequired expression of the intestinal Na+-glucosecotransporter SGLT1. S-3226, a preferential inhibitor ofNa+/H+ exchanger (NHE) isoform 3 (NHE3),prevented cytoplasmic alkalinization after initiation ofNa+-glucose cotransport with an ED50 of 0.35 µM, consistent with inhibition of NHE3, but not NHE1 or NHE2. Incontrast, HOE-694, a poor NHE3 inhibitor, failed to significantlyinhibit pHi increases at <500 µM.Na+-glucose cotransport was also associated with activationof p38 mitogen-activated protein (MAP) kinase, and the p38 MAP kinase inhibitors PD-169316 and SB-202190 prevented pHi increasesby 100 ± 0.1 and 86 ± 0.1%, respectively. Conversely,activation of p38 MAP kinase with anisomycin induced NHE3-dependentcytoplasmic alkalinization in the absence of Na+-glucosecotransport. These data show that NHE3-dependent cytoplasmic alkalinization occurs after initiation of SGLT1-mediatedNa+-glucose cotransport and that the mechanism of this NHE3activation requires p38 MAP kinase activity. This coordinatedregulation of glucose (SGLT1) and Na+ (NHE3) absorptiveprocesses may represent a functional activation of absorptiveenterocytes by luminal nutrients.

  相似文献   

18.
p160ROCK mediates RhoA activation of Na-H exchange.   总被引:4,自引:0,他引:4       下载免费PDF全文
The ubiquitously expressed Na-H exchanger, NHE1, acts downstream of RhoA in a pathway regulating focal adhesion and actin stress fiber formation. p160ROCK, a serine/threonine protein kinase, is a direct RhoA target mediating RhoA-induced assembly of focal adhesions and stress fibers. Here, stress fiber formation induced by p160ROCK was inhibited by the addition of a specific NHE1 inhibitor, ethylisopropylamiloride, in CCL39 fibroblasts, and was absent in PS120 mutant fibroblasts lacking NHE1. In CCL39 cells, NHE1 activity was stimulated by expression of mutationally active p160ROCK, but not by mutationally active protein kinase N, another RhoA target kinase. Expression of a dominant interfering p160ROCK inhibited RhoA-, but not Cdc42- or Rac-activation of NEH1. In addition, the p160ROCK-specific inhibitor Y-27632 inhibited increases in NHE1 activity in response to RhoA, and to lysophosphatidic acid (LPA), which stimulates RhoA, and it also inhibited LPA-increased phosphorylation of NHE1. A C-terminal truncation of NHE1 abolished both LPA-induced phosphorylation and activation of the exchanger. Furthermore, mutationally active p160ROCK phosphorylated an NHE1 C-terminal fusion protein in vitro, and this was inhibited in the presence of Y-27632. Phosphopeptide maps indicated that identical residues in NHE1 were phosphorylated by p160ROCK in vivo and in vitro. These findings identify p160ROCK as an upstream, possibly direct, activator of NHE1, and suggest that NHE1 activity and phosphorylation are necessary for actin stress fiber assembly induced by p160ROCK.  相似文献   

19.
Tumor suppressor p53 is required for the neuronal apoptosis in response to DNA double-stranded break (DSB) damage. Posttranslational modifications such as phosphorylation play important roles in activating p53-dependent apoptosis after DNA damage. In support of this notion, our recent studies indicate that Ser18 and Ser23 phosphorylation together plays critical roles in activating p53 apoptotic activities in vivo. Thymocytes derived from p53S18/23A mice are essentially resistant to p53-dependent apoptosis after DNA DSB damage. In addition, identical to p53-deficiency, p53S18/23A knock-in mutation completely rescues the embryonic lethality of XRCC4-/- mice, which die of the massive p53-dependent apoptosis of embryonic neurons likely as a result of accumulated endogenous DNA damage. To dissect the contribution of Ser18 and Ser23 phosphorylation to p53-dependent neuronal apoptosis, we report here that neither p53S18A nor p53S23A mutation alone can rescue the embryonic lethality of XRCC4-/- mice. Therefore, Ser18 and Ser23 phosphorylation plays synergistic and critical roles in activating p53-dependent neuronal apoptosis.  相似文献   

20.
The Bcl-2 family protein BAD promotes apoptosis by binding through its BH3 domain to Bcl-x(L) and related cell death suppressors. When BAD is phosphorylated on either Ser(112) or Ser(136), it forms a complex with 14-3-3 in the cytosol and no longer interacts with Bcl-x(L) at the mitochondria. Here we show that phosphorylation of a distinct site Ser(155), which is at the center of the BAD BH3 domain, directly suppressed the pro-apoptotic function of BAD by eliminating its affinity for Bcl-x(L). Protein kinase A functioned as a BAD Ser(155) kinase both in vitro and in cells. BAD Ser(155) was found to be a major site of phosphorylation induced following stimulation by growth factors and prevented by protein kinase A inhibitors but not by inhibitors of the phosphatidylinositol 3-kinase/Akt pathway. Growth factors inhibited BAD-induced apoptosis in both a Ser(112)/Ser(136)- and a Ser(155)-dependent fashion. Thus, growth factors engage an anti-apoptotic signaling pathway that inactivates BAD by direct modification of its BH3 cell death effector domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号