首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The gastrointestinal hormone cholecystokinin (CCK) can induce acute pancreatitis in rodents through its action on acinar cells. Treatment with CCK, in combination with other agents, represents the most commonly used model to induce experimental chronic pancreatitis. Pancreatic stellate cells (PSC) are responsible for pancreatic fibrosis and therefore play a predominant role in the genesis of chronic pancreatitis. However, it is not known whether PSC express CCK receptors. Using real time PCR techniques, we demonstrate that CCK1 and CCK2 receptors are expressed on rat PSC. Interestingly both CCK and gastrin significantly induced type I collagen synthesis. Moreover, both inhibit proliferation. These effects are comparable with TGF-β-stimulated PSC. Furthermore, the natural agonists CCK and gastrin induce activation of pro-fibrogenic pathways Akt, ERK, and Src. Using specific CCK1 and CCK2 receptor (CCK2R) inhibitors, we found that Akt activation is mainly mediated by CCK2R. Akt activation by CCK and gastrin could be inhibited by the PI3K inhibitor wortmannin. Activation of ERK and the downstream target Elk-1 could be inhibited by the MEK inhibitor U0126. These data suggest that CCK and gastrin have direct activating effects on PSC, are able to induce collagen synthesis in these cells, and therefore appear to be important regulators of pancreatic fibrogenesis. Furthermore, similar to TGF-β, both CCK and gastrin inhibit proliferation in PSC.  相似文献   

3.
Although the molecular machinery and mechanism of cell secretion in acinar cells of the exocrine pancreas is well documented and clear, only recently has the pharmacophysiology of pancreatic exocrine secretion come to light. Therefore, we focus in this article on the current understanding of the pharmacophysiology of pancreatic exocrine secretion. The pancreatic secretory response to ingestion of a meal is mediated via a complex interplay of neural, humoral and paracrine mediators. A major role in the control of the intestinal phase of pancreatic secretion is attributed to vago-vagal enteropancreatic reflexes. In the scheme of this control mechanism, afferents originating in the duodenal mucosa, and efferents mediating central input on the pancreatic ganglia, activate intrapancreatic postganglionic neurons. Experiments utilizing specific receptor antagonists demonstrate the involvement of both muscarinic M1 and M3 receptors expressed in pancreatic acinar cells. Cholecystokinin (CCK), originally implicated in the humoral secretion of pancreatic enzymes, through a direct action on acinar CCK receptors, is also essential to the enteropancreatic reflex mechanism. CCK stimulation of the exocrine pancreatic secretion through excitation of sensory afferents of the enteropancreatic reflexes, is a paracrine mode of CCK action, and is probably the only one in humans and the predominant one in rats. In dogs, however, CCK acts on the pancreas via both the humoral and a paracrine route. More recent experiments suggest further possible sites of CCK action. Additionally, at the brain stem, vago-vagal enteropancreatic reflexes may be modulated by input from higher brain centres, particularly the hypothalamic-cholinergic system in the tonic stimulation of preganglionic neurons of the dorsal motor nucleus of the vagus projecting into the pancreas.  相似文献   

4.
Activation of neurokinin (NK)-1 receptors but not of NK-3 stimulates amylase release from isolated pancreatic acini of the rat. Immunofluorescence studies show that NK-1 receptors are more strongly expressed than NK-3 receptors on pancreatic acinar cells under basal conditions. No studies have examined the expression of the two NK receptor populations in pancreatic acini during pancreatitis in rats. We therefore investigated the relationships between expression of these two tachykinin receptors and experimental acute pancreatitis induced by stimulating pancreatic amylase with caerulein (CK) in rats. Hyperstimulation of the pancreas by CK caused an increase in plasma amylase and pancreatic water content and resulted in morphological evidence of cytoplasmic vacuolization. Immunofluorescence analysis revealed a similar percentage of NK-1 receptor antibody immunoreactive acinar cells in rats with pancreatitis and in normal rat tissue but a larger percentage of NK-3 receptor immunoreactive cells in acute pancreatitis than in normal pancreas. Western blot analysis of NK-1 and NK-3 receptor protein levels after CK-induced pancreatitis showed no change in NK-1 receptors but a stronger increase in NK-3 receptor expression in pancreatic acini compared with normal rats thus confirming the immunofluorescence data. These new findings support previous evidence that substance P-mediated functions within the pancreas go beyond sensory signal transduction contributing to neurogenic inflammation, and they suggest that substance P plays a role in regulating pancreatic exocrine secretion via acinar NK-1 receptors. The significant increase in NK-3 receptors during pancreatic stimulation suggests that NK-3 receptors also intervene in the pathogenesis of mild acute pancreatitis in rats.  相似文献   

5.
The development of acute pancreatitis (AP) is triggered by acinar events, but the subsequent extra-acinar events, particularly a distinct immune response, appear to determine its severity. Cytokines modulate this immune response and are derived not only from immunocytes but also from pancreatic acinar cells. We studied whether pancreatic acinar cells were also capable of responding to cytokines. The JAK/STAT-pathway represents the main effector for many cytokines. Therefore, expression and regulation of JAK and STAT proteins were investigated in rat pancreatic acinar cells. Western blotting showed expression of JAK1, JAK2, Tyk2, and STAT1, STAT2, STAT3, STAT5, STAT6. In addition, STAT1 was reversibly tyrosine-phosphorylated upon the procedure of acinar cell isolation. In contrast, STAT3-phosphorylation occurred spontaneously after pancreas removal and was not reversible within 8 h. STAT1 phosphorylation was also observed upon treatment with IFN-gamma but not upon EGF, TNF-alpha or IL-6, and inhibited by the JAK2-inhibitor AG-490. Immunohistochemistry revealed cytoplasmic expression of unphosphorylated STAT1 in untreated acinar cells and nuclear translocation of phosphorylated STAT1 following IFN-gamma-treatment. Interestingly, although CCK leads to the activation of multiple stress pathways in pancreatic acinar cells, we found no influence of CCK on phosphorylation of STAT1, STAT3, or STAT5 in the pancreas. In conclusion, our data provide further evidence that pancreatic acinar cells are able to interact with immune cells. Besides stimulating immune cells via cytokine secretion, acinar cells are in turn capable of responding to IFN-gamma via JAK2 and STAT1 which may have an impact on the development of AP.  相似文献   

6.
Little is known about the changes in pancreatic enzyme storage in acute pancreatitis. We have performed flow cytometric studies of zymogen granules from rats with acute pancreatitis induced by hyperstimulation with caerulein. A comparison was made with rats treated with hydrocortisone (10 mg/kg/day) over 7 days before inducing pancreatitis in order to find out whether the amount of enzymes stored in the pancreas plays a key role in the development of pancreatitis. The potentially therapeutic effect of L-364,718 (0.1 mg/kg/day, for 7 days), a CCK receptor antagonist, was assayed in the rats with caerulein-induced pancreatitis which had previously received the hydrocortisone treatment. A significant increase in the intragranular enzyme content was observed 5 h after hyperstimulation with caerulein. The highest values were reached in the rats previously treated with hydrocortisone. The greatest pancreatic enzyme load was parallel to the highest values in plasma amylase, edema and haematocrit observed. Acute pancreatitis was reversed seven days later. At this stage smaller granules appeared in the pancreas whose enzyme content was similar to that of controls when no treatment was applied after pancreatitis. In contrast, L-364,718 administration prevented the favourable evolution of pancreatitis since the antagonism exerted on CCK receptors induced a blockade of secretion of the large amounts of enzymes stored in the pancreas. Moreover, the enzyme content in zymogen granules was below normal values since the stimulatory CCK action on enzyme synthesis can be inhibited by L-364,718. Our results suggest that the efficiency of CCK antagonists, as potential therapy, would also depend on the load of enzymes in the pancreas when acute pancreatitis is produced.  相似文献   

7.
The author gives a brief survey on the concept of cytoprotection, the generation of prostaglandins and the mechanism of their action. The effect of exogenous prostaglandins and the mechanism of their action. The effect of exogenous prostaglandins on pancreatic vasculature, secretion, ductal permeability and their therapeutic effect on experimentally induced acute pancreatitis is discussed. Pancreatic "self-defence" mechanism is also discussed the mechanism of which may be rather different from that of cytoprotection. In such pancreatic "self-defense" mechanism decrease in pancreatic protein synthesis and secretion induced by pancreatic duct ligation or decrease in sensibility of pancreatic acinar cells or their receptors against specific stimulants may participate.  相似文献   

8.
9.
The field of cholecystokinin (CCK) stimulation of exocrine pancreatic secretion has experienced major changes in the recent past. This review attempts to summarize the present status of the field. CCK production in the intestinal I cells, the molecular forms of CCK produced and subsequently circulated in the blood, the presence or absence of CCK receptors on the isolated pancreatic acinar cells and the associated signaling for acinar cell secretion, and the actual circuits and sites of action for CCK regulation of exocrine pancreatic secretion in vivo are reviewed in different animal species with an emphasis on birds, rodents, and humans. Clear differences in the relative importance of neural and direct modes of CCK action on pancreatic acinar cells were identified. Rodents seem to be endowed with both modes of action, whereas in humans the neural mode may predominate. In birds, such as duck, the direct mode needs further assistance from pituitary adenylate cyclase-activating peptide/VIP receptors. However, much further work needs to be directed to the neural mode to map out all sites of CCK action and details of the full circuits, and we foresee a major revival for this field of research in the near future.  相似文献   

10.
Acute pancreatitis is a disease of variable severity in which some patients experience mild, self-limited attacks, whereas others manifest a severe, highly morbid, and frequently lethal attack. The events that regulate the severity of acute pancreatitis are, for the most part, unknown. It is generally believed that the earliest events in acute pancreatitis occur within acinar cells and result in acinar cell injury. Other processes, such as recruitment of inflammatory cells and generation of inflammatory mediators, are believed to occur subsequent to acinar cell injury, and these "downstream" events are believed to influence the severity of the disease. Several recently reported studies, however, have suggested that the acinar cell response to injury may, itself, be an important determinant of disease severity. In these studies, mild acute pancreatitis was found to be associated with extensive apoptotic acinar cell death, whereas severe acute pancreatitis was found to involve extensive acinar cell necrosis but very little acinar cell apoptosis. These observations led to the hypothesis that apoptosis could be a favorable response to acinar cells and that interventions that favor induction of apoptotic, as opposed to necrotic, acinar cell death might reduce the severity of an attack of acute pancreatitis. Indeed, in an experimental setting, the induction of pancreatic acinar cell apoptosis protects mice against acute pancreatitis. Little is known about the mechanism of apoptosis in the pancreatic acinar cell, although some early attempts have been made in that direction. Also, clinical relevance of these experimental studies remains to be investigated.  相似文献   

11.
Apoptosis and necrosis are critical parameters of pancreatitis, the mechanisms of which remain unknown. Many characteristics of pancreatitis can be studied in vitro in pancreatic acini treated with high doses of cholecystokinin (CCK). We show here that CCK stimulates apoptosis and death signaling pathways in rat pancreatic acinar cells, including caspase activation, cytochrome c release, and mitochondrial depolarization. The mitochondrial dysfunction is mediated by upstream caspases (possibly caspase-8) and, in turn, leads to activation of caspase-3. CCK causes mitochondrial alterations through both permeability transition pore-dependent (cytochrome c release) and permeability transition pore-independent (mitochondrial depolarization) mechanisms. Caspase activation and mitochondrial alterations also occur in untreated pancreatic acinar cells; however, the underlying mechanisms are different. In particular, caspases protect untreated acinar cells from mitochondrial damage. We found that caspases not only mediate apoptosis but also regulate other parameters of CCK-induced acinar cell injury that are characteristic of pancreatitis; in particular, caspases negatively regulate necrosis and trypsin activation in acinar cells. The results suggest that the observed signaling pathways regulate parenchymal cell injury and death in CCK-induced pancreatitis. Protection against necrosis and trypsin activation by caspases can explain why the severity of pancreatitis in experimental models correlates inversely with the extent of apoptosis.  相似文献   

12.
The influence of venom (TSV) from the Brazilian scorpion, Tityus serrulatus, on exocrine pancreatic secretion was studied in relation to known cholinergic and peptidergic secretagogue activity. Pulse-labeling followed by chase incubation in the presence of secretagogues and various pharmacological agents revealed unique physiological characteristics of TSV in guinea pig pancreatic lobules. Exocytotic discharge of newly synthesized 3H-labeled proteins during a 3-h chase incubation showed a marked increase over basal discharge levels using logarithmic TSV doses of 0.10 to 100 micrograms/ml. This stimulation was comparable to maximal values elicited by carbachol, cholecystokinin-octapeptide (CCK-8) or caerulein and discharge kinetics were similar. TSV-mediated secretion was ATP and calcium dependent and partially inhibited by atropine. Only tetrodotoxin completely blocked TSV stimulation of newly synthesized protein discharge. Both botulinum toxin and curare had no effect on venom stimulation, indicating that TSV interaction with exocrine pancreatic cells occurs postsynaptically. Verapamil, a calcium channel antagonist, produced a moderate inhibition of TSV stimulation. When antagonists to the cholecystokinin (CCK) receptor were incubated with TSV, no change in secretory activity occurred. Therefore, TSV does not bind to CCK receptors and probably operates through its own receptor which may be an ion channel. Additionally, morphological studies in vitro revealed a high level of pancreatic secretory activity as evidenced by dense secretory acinar luminal content, reduction in zymogen granule (ZG) population, and development of exocytotic images.  相似文献   

13.
14.
This study determines the effect of 7-day pretreatment with L364,718 (a potent cholecystokinin (CCK) receptor antagonist) on pancreatic cell turnover during the course of acute pancreatitis (AP) induced in the rat by bile-pancreatic duct obstruction (BPDO). Cell cycle distribution and apoptosis were analyzed by flow cytometry using propidium iodide (PI) and Annexin V staining. Besides altering the pancreatic redox status, long-term CCK blockade inhibited the normal proliferation of acinar cells as indicated by the significant increase in G(0)/G(1)-phase cells and the decrease in G(2)/M-cells found in control rats treated with L364,718 for 7 days. A progressive depletion in pancreatic GSH was found from 3 to 24h after BPDO with similar values in L364,718-pretreated and non-treated rats, which led to a maximum peak in malondialdehyde (MDA) levels 6h after BPDO. However, plasma amylase activity and ascites volume indicated higher severity of AP in L364,718-pretreated rats. CCK blockade enhanced the alterations that appear in cell cycle distribution of acinar cells during AP demonstrated by the significantly higher increase in G(0)/G(1)-cells and decrease in S-cells found in L364,718-treated rats 48h after BPDO. Our results indicate that the renewal of acinar cells deleted by apoptosis 48h after BPDO worsens if CCK is blocked before inducing AP.  相似文献   

15.
Pancreatic acinar cells depend on the integrity of the cytoskeleton for regulated secretion. Stimulation of isolated rat pancreatic acini with the secretagogue CCK serves as a model for human acute edematous pancreatitis. It induces the breakdown of the actin filament system (F-actin) with the consecutive inhibition of secretion and premature activation of digestive enzymes. However, the mechanisms that regulate F-actin breakdown are largely unknown. Plectin is a versatile cytolinker protein regulating F-actin dynamics in fibroblasts. It was recently demonstrated that plectin is a substrate of caspase 8. In pancreatic acinar cells, plectin strongly colocalizes with apical and basolateral F-actin. Supramaximal secretory stimulation of acini with CCK leads to a rapid redistribution and activation of caspase 8, followed by degradation of plectin that in turn precedes the F-actin breakdown. Inhibition of caspase 8 before CCK hyperstimulation prevents plectin cleavage, stabilizes F-actin morphology, and reverses the inhibition of secretion. Thus we propose that the caspase 8-mediated degradation of plectin represents a critical biochemical event during CCK-induced secretory blockade and cell injury.  相似文献   

16.
The response of pancreatic exocrine secretion to cholecystokinin (CCK), has been studied in experimental acute pancreatitis induced in rats by supramaximal doses of caerulein. Several doses of caerulein were used (4, 20 and 40 micrograms/Kg) and each one was administered by four subcutaneous injections over 3 h at hourly intervals. Pancreatic juice was collected 9 h after the first injection. The caerulein-treated animals showed a statistically significant increase in serum amylase levels. Secretory activity of ductular cells remained unchanged in all the caerulein-treated animals, but total protein and amylase secretion decreased significantly at all the caerulein doses used, both in resting conditions and under stimulation with CCK (1.25 micrograms/Kg/h). Despite this the acinar cells of rats treated with the lowest dose of caerulein retained a certain degree of secretory function since amylase activity in pancreatic juice was greater than in other groups of rats treated with higher doses of caerulein. Moreover, the percentage of increase observed in total protein and amylase in response to CCK respect to basal secretion is similar to that of the untreated animals. At higher doses (20 and 40 micrograms/Kg) the secretory capacity in response to CCK was inhibited. Therefore CCK administration in slight acute pancreatitis could be used as a therapy since it favours the secretion of pancreatic enzymes at percentual levels similar to those of the controls.  相似文献   

17.
In preceding papers we demonstrated an inhibitory effect of wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA) on the cholecystokinin (CCK) binding to the CCK receptor of rat pancreatic cells and also on the CCK induced Ca2+ release and alpha-amylase secretion in vitro as well as on pancreatic secretion of intact rats in vivo. In the present study we show the same inhibitory effect of both lectins on the cerulein pancreatitis of rats. This acute pancreatitis was induced by supramaximal injections (5 microg/kg/h i.v. or 10 microg/kg/h i.p.) of the CCK analogue cerulein in rats every hour. To monitor the degree of pancreatitis, we measured the number and diameter of injury vacuoles in the pancreatic acinar cells as one of the most important signs of this type of pancreatitis by light microscopic morphometry with two different systems on paraffin sections. Furthermore, the serum alpha-amylase activity was measured biochemically. We found a correlation between the diameter of vacuoles inside the acinar cells and the serum enzyme activity up to 24 h. The simultaneous i.p. administration of cerulein and WGA or UEA in a dosage of 125 microg/kg/h for 8 h led to a reduction of vacuolar diameter from 13.1+/-2.0 microm (cerulein) to 7.5+/-1.1 microm (cerulein + WGA) or 7.2+/-1.3 microm (cerulein + UEA). The serum amylase activity was reduced from 63.7+/-15.8 mmol/l x min (cerulein) to 37.7+/-11.8 (cerulein + WGA) or 39.4; +52.9; -31.1 (cerulein + UEA-I). Both parameters allow the grading this special type of pancreatitis to demonstrate the protective effect of the lectins.  相似文献   

18.
Lee KK  Uhm DY  Park MK 《FEBS letters》2003,538(1-3):134-138
We have investigated whether low affinity cholecystokinin (CCK) receptors suppress agonist-induced rises of cytosolic free Ca(2+) concentration ([Ca(2+)]c) in pancreatic acinar cells by using properties of caffeine. A high concentration of caffeine (20 mM) completely blocked inositol 1,4,5-trisphosphate (InsP(3))-induced [Ca(2+)]c rises but spared the InsP(3)-independent long-lasting [Ca(2+)]c oscillations. In the presence of 20 mM caffeine, only high concentrations of CCK, but not bombesin or JMV-180, suppressed the caffeine-resistant CCK or bombesin-induced [Ca(2+)]c oscillations, indicating that low affinity CCK receptors inhibit agonist-induced [Ca(2+)]c oscillations. It could be one of the underlying mechanisms by which low affinity CCK receptors suppress secretion in pancreatic acinar cells.  相似文献   

19.

Background

While cannabinoids have been shown to ameliorate liver fibrosis, their effects in chronic pancreatitis and on pancreatic stellate cells (PSC) are unknown.

Methodology/Principal Findings

The activity of the endocannabinoid system was evaluated in human chronic pancreatitis (CP) tissues. In vitro, effects of blockade and activation of cannabinoid receptors on pancreatic stellate cells were characterized. In CP, cannabinoid receptors were detected predominantly in areas with inflammatory changes, stellate cells and nerves. Levels of endocannabinoids were decreased compared with normal pancreas. Cannabinoid-receptor-1 antagonism effectuated a small PSC phenotype and a trend toward increased invasiveness. Activation of cannabinoid receptors, however, induced de-activation of PSC and dose-dependently inhibited growth and decreased IL-6 and MCP-1 secretion as well as fibronectin, collagen1 and alphaSMA levels. De-activation of PSC was partially reversible using a combination of cannabinoid-receptor-1 and -2 antagonists. Concomitantly, cannabinoid receptor activation specifically decreased invasiveness of PSC, MMP-2 secretion and led to changes in PSC phenotype accompanied by a reduction of intracellular stress fibres.

Conclusions/Significance

Augmentation of the endocannabinoid system via exogenously administered cannabinoid receptor agonists specifically induces a functionally and metabolically quiescent pancreatic stellate cell phenotype and may thus constitute an option to treat inflammation and fibrosis in chronic pancreatitis.  相似文献   

20.
An early feature of acute pancreatitis is activation of zymogens, such as trypsinogen, within the pancreatic acinar cell. Supraphysiologic concentrations of the hormone cholecystokinin (CCK; 100 nM), or its orthologue cerulein (CER), induce zymogen activation and elevate levels of cAMP in pancreatic acinar cells. The two classes of adenylyl cyclase, trans-membrane (tmAC) and soluble (sAC), are activated by distinct mechanisms, localize to specific subcellular domains, and can produce locally high concentrations of cAMP. We hypothesized that sAC activity might selectively modulate acinar cell zymogen activation. sAC was identified in acinar cells by PCR and immunoblot. It localized to the apical region of the cell under resting conditions and redistributed intracellularly after treatment with supraphysiologic concentrations of cerulein. In cerulein-treated cells, pre-incubation with a trans-membrane adenylyl cyclase inhibitor did not affect zymogen activation or amylase secretion. However, treatment with a sAC inhibitor (KH7), or inhibition of a downstream target of cAMP, protein kinase A (PKA), significantly enhanced secretagogue-stimulated zymogen activation and amylase secretion. Activation of sAC with bicarbonate significantly inhibited secretagogue-stimulated zymogen activation; this response was decreased by inhibition of sAC or PKA. Bicarbonate also enhanced secretagogue-stimulated cAMP accumulation; this effect was inhibited by KH7. Bicarbonate treatment reduced secretagogue-stimulated acinar cell vacuolization, an early marker of pancreatitis. These data suggest that activation of sAC in the pancreatic acinar cell has a protective effect and reduces the pathologic activation of proteases during pancreatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号