首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The matricellular glycoprotein, secreted protein acidic and rich in cysteine (SPARC), has complex biological activities and is important for lens epithelial cell function and regulation of cataract formation. To understand how SPARC influences lens epithelial cell activity and homeostasis, we have studied the subcellular distribution of SPARC in murine lens epithelial cells in vitro. We demonstrate that endogenous SPARC is located in the cytoplasm of either quiescent or dividing lens epithelial cells in culture. However, cytoplasmic SPARC was translocated into the nuclei of immortalized lens epithelial cells upon a significant reduction of intracellular SPARC in these cells. Recombinant human (rh) SPARC added to the culture media was quickly and efficiently internalized into the cytosol of SPARC-null lens epithelial cells. Moreover, cytoplasmic rhSPARC was also translocated into the nucleus after exogenous rhSPARC was removed from the culture media. The translocation of SPARC into the nucleus was therefore triggered by the reduction of SPARC protein normally available to the cells. A mouse SPARC-EGFP chimeric fusion protein (70 kDa) was expressed in lens epithelial cells and 293-EBNA cells, and was observed both in the cytoplasm and culture medium, but not in the nucleus. SPARC does not appear to have a strong nuclear localization sequence. Alternatively, SPARC might pass through the nuclear pore complex by passive diffusion. SPARC therefore functions not only as an extracellular protein but also potentially as an intracellular protein to influence cellular activities and homeostasis.  相似文献   

2.
Secreted protein acidic and rich in cystein (SPARC) is a secreted glycoprotein involved in several biological processes such as tissue remodeling, embryonic development, cell/extracellular matrix interactions, and cell migration. In particular, SPARC affects bone remodeling through the regulation of both differentiation/survival of osteoblasts and bone extracellular matrix synthesis/turnover. Here, we investigated SPARC subcellular localization in the human osteoblastic HOBIT cell line by immunocytochemistry and western blot analysis. We show that, under normal exponential cell growth conditions, SPARC localized both to cell nucleus and to cytoplasm, with no co-localization on actin stress fibers. However, in colchicine-treated HOBIT cells and human primary osteoblasts undergoing blebs formation, SPARC showed a different cellular distribution, with an additional marked compartmentalization inside the blebs, where it co-localized with globular actin and actin-binding proteins such as alpha-actinin, cortactin, and vinculin. Moreover, we demonstrate by an in vitro assay that the addition of SPARC to actin and alpha-actinin inhibited the formation of cross-linked actin filaments and disrupted newly formed filaments, most likely due to a direct interaction between SPARC and alpha-actinin, as indicated by immunoprecipitation assay. The specific silencing of SPARC RNA expression markedly decreased the ability of colchicine-treated HOBIT cells to undergo blebbing, suggesting a direct role for SPARC in cell morphology dynamics during cytoskeletal reorganization.  相似文献   

3.
Highway to the inner nuclear membrane: rules for the road   总被引:1,自引:0,他引:1  
To enter the nucleus a protein must be chaperoned by a transport factor through the nuclear pore complex or it must be small enough to pass through by diffusion. Although these principles have long described the nuclear import of soluble proteins, recent evidence indicates that they also apply to the import of integral inner nuclear membrane proteins. Here we develop a set of rules that might govern the transport of proteins to the inner nuclear membrane.  相似文献   

4.
An excellent correlation has been established between the quantity of protein associated with nuclei isolated from heat-shocked cells and the level of hyperthermic cell killing. However, controversy remains about whether increases in nuclear-associated protein result from a heat-induced migration of cytoplasmic proteins into the nucleus or because hyperthermia reduces the solubility of nuclear proteins in the detergent buffers commonly used to isolate nuclei. To address this controversy, the nuclear protein content was measured in whole and detergent-extracted cells before and following hyperthermia. It was found that hyperthermia caused no significant change in the nuclear protein content of whole, unextracted cells, and when fluorescently labeled proteins were microinjected into the cytoplasm no gross change in the selective permeability of the nuclear membrane to soluble proteins was observed during or following hyperthermia. Measurements in extracted cells showed that the detergent buffers removed protein from both the nucleus and cytoplasm of control, nonheated cells and that hyperthermia reduced the extractability of both nuclear and cytoplasmic proteins. The amount of protein found in nuclei isolated from heated cells approached that observed in nuclei within nonheated whole cells as the hyperthermic exposure was increased. Thus, the dose-dependent, two- to threefold increase in the protein content of nuclei isolated from heated cells represents a heat-induced reduction in the extractability of proteins normally present within cell nuclei and does not result from a mass migration of cytoplasmic proteins into the nucleus, although some specific proteins (e.g., the 70 KDa heat shock protein) do migrate to the nucleus following heat shock. Differential scanning calorimetry (DSC) measurements of whole cells, isolated nuclei, cytoplasts, and karyoplasts supported these conclusions and suggested that most of the detergent-insoluble proteins remaining in the nuclei and cytoplasm of heated cells are in their native state. Thus, a relatively small amount of denatured protein may be sufficient to initiate and sustain insoluble protein aggregates comprised of mostly native proteins. Analyses of the DSC data also implied that the previously identified critical target proteins, predicted to have a Tm of 46.0°C, are present in both the nucleus and cytoplasm. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Identification of the human c-myc protein nuclear translocation signal.   总被引:54,自引:23,他引:31       下载免费PDF全文
We identified and characterized two regions of the human c-myc protein that target proteins into the nucleus. Using mutant c-myc proteins and proteins that fuse portions of c-myc to chicken muscle pyruvate kinase, we found that residues 320 to 328 (PAAKRVKLD; peptide M1) induced complete nuclear localization, and their removal from c-myc resulted in mutant proteins that distributed in both the nucleus and cytoplasm but retained rat embryo cell cotransforming activity. Residues 364 to 374 (RQRRNELKRSP; peptide M2) induced only partial nuclear targeting, and their removal from c-myc resulted in mutant proteins that remained nuclear but were cotransformationally inactive. We conjugated synthetic peptides containing M1 or M2 to human serum albumin and microinjected the conjugate into the cytoplasm of Vero cells. The peptide containing M1 caused rapid and complete nuclear accumulation, whereas that containing M2 caused slower and only partial nuclear localization. Thus, M1 functions as the nuclear localization signal of c-myc, and M2 serves some other and essential function.  相似文献   

6.
Dinoflagellate is one of the primitive eukaryotes,whosenucleus may represent one of the transition stages fromprokaryotic nucleoid to typical eukaryotic nucleus.Usingselective extraction together with embeddment-free sectionand whole mount electron microscopy,a delicate nuclearmatrix filament network was shown,for the first time,indinoflagellate Crypthecodinium cohnii nucleus.Chromosomeresidues are connected with nuclear matrix filaments to forma complete network spreading over the nucleus.Moreover,we demonstrated that the dinoflagellate chromosome retainsa protein scaffold after the depletion of DNA and solubleproteins.This scaffold preserves the characteristic mor-phology of the chromosome.Two dimensional elec-trophoreses indicated that the nuclear matrix and chromo- some scaffold are mainly composed of acidic proteins.Ourresults demonstrated that a framework similar to the nuclearmatrix and chromosome scaffold in mammalian cells appearsin this primitive eukaryote,suggesting that these structuresmay have been originated from the early stages of eukaryoteevolution.  相似文献   

7.
To identify components involved in nuclear protein import, we used a genetic selection to isolate mutants that mislocalized a nuclear-targeted protein. We identified temperature-sensitive mutants that accumulated several different nuclear proteins in the cytoplasm when shifted to the semipermissive temperature of 30 degrees C; these were termed npl (nuclear protein localization) mutants. We now present the properties of yeast strains bearing mutations in the NPL4 gene and report the cloning of the NPL4 gene and the characterization of the Np14 protein. The npl4-1 mutant was isolated by the previously described selection scheme. The second allele, npl4-2, was identified from an independently derived collection of temperature-sensitive mutants. The npl4-1 and npl4-2 strains accumulate nuclear-targeted proteins in the cytoplasm at the nonpermissive temperature consistent with a defect in nuclear protein import. Using an in vitro nuclear import assay, we show that nuclei prepared from temperature-shifted npl4 mutant cells are unable to import nuclear-targeted proteins, even in the presence of cytosol prepared from wild-type cells. In addition, npl4-2 cells accumulate poly(A)+ RNA in the nucleus at the nonpermissive temperature, consistent with a failure to export mRNA from the nucleus. The npl4-1 and npl4-2 cells also exhibit distinct, temperature-sensitive structural defects: npl4-1 cells project extra nuclear envelope into the cytoplasm, whereas npl4-2 cells from nuclear envelope herniations that appear to be filled with poly(A)+ RNA. The NPL4 gene encodes an essential M(r) 64,000 protein that is located at the nuclear periphery and localizes in a pattern similar to nuclear pore complex proteins. Taken together, these results indicate that this gene encodes a novel nuclear pore complex or nuclear pore complex-associated component required for nuclear membrane integrity and nuclear transport.  相似文献   

8.
The nuclear envelope is a double lipid bilayer that physically separates the functions of the nucleus and the cytoplasm of eukaryotic cells. Regulated transport of molecules between the nucleus and the cytoplasm is essential for normal cell metabolism and is mediated by large protein complexes, termed nuclear pore complexes (NPCs), which span the inner and outer membranes of the nuclear envelope. Significant progress has been made in the past 10 years in identifying the protein composition of NPCs and the basic molecular mechanisms by which these complexes facilitate the selective exchange of molecules between the nucleus and the cytoplasm. However, many fundamentally important questions about the functions of NPCs, the specific functions of individual NPC-associated proteins, and the assembly and disassembly of NPCs, remain unanswered. This review describes approaches for isolating and characterizing nuclear envelopes and NPC-associated proteins from mammalian cells. It is anticipated that these procedures can be used as a starting point for further molecular and biochemical analysis of the mammalian nuclear envelope, NPCs, and NPC-associated proteins.  相似文献   

9.
AlphaB-Crystallin has for a long time been considered a specific eye lens protein. Later on it appeared that this protein belongs to the family of the small heat shock proteins and that it occurs also extra-lenticularly in many different cell types. AlphaB-Crystallin is mainly present in the cytoplasm, but there are some indications that it might have a function in the nucleus too. However, till now its presence in the nucleus is uncertain. We therefore compared the localization of alphaB-crystallin in nine cell lines cultured under normal conditions using four different antisera. All four antisera gave a diffuse staining for alphaB-crystallin in the cytoplasm, but one of the antibodies consistently showed nuclear staining in eight of the cell types, in the form of distinct speckles. These speckles are equally pronounced in the different cell types, whether or not cytoplasmic alphaB-crystallin is present. Preabsorption of the antiserum with alphaB-crystallin abolished the staining. Furthermore we demonstrate that if only minor amounts of alphaB-crystallin are present, the protein seems to be located exclusively in the nucleus. However, in case of higher amounts of protein, alphaB-crystallin is distributed between cytoplasm and nucleus. The nuclear alphaB-crystallin exists, like the cytoplasmic alphaB-crystallin, in non-phosphorylated and phosphorylated forms, is Triton-insoluble but can be extracted by 2 M NaCl. These data suggest that alphaB-crystallin might be bound to the nuclear matrix per se or to nuclear matrix proteins via other proteins. In agreement with other nuclear matrix proteins, nuclear alphaB-crystallin staining turns diffuse upon mitosis and leaves the chromosomes unstained. Double staining experiments revealed colocalization of alphaB-crystallin with the splicing factor SC35 in nuclear speckles, suggesting a role for alphaB-crystallin in splicing or protection of the splicing machinery.  相似文献   

10.
The nuclear matrix (NM) model posits the presence of a protein/RNA scaffold that spans the mammalian nucleus. The NM proteins are involved in basic nuclear function and are a promising source of protein biomarkers for cancer. Importantly, the NM proteome is operationally defined as the proteins from cells and tissue that are extracted following a specific biochemical protocol; in brief, the soluble proteins and lipids, cytoskeleton, and chromatin elements are removed in a sequential fashion, leaving behind the proteins that compose the NM. So far, the NM has not been sufficiently verified as a biological entity and only preliminary at the molecular level. Here, we argue for a combined effort of proteomics, immunodetection and microscopy to unravel the composition and structure of the NM.  相似文献   

11.
The behavior of nuclear proteins in Amoeba proteus was studied by tritiated amino acid labeling, nuclear transplantation, and cytoplasmic amputation. During prophase at least 77% (but probably over 95%) of the nuclear proteins is released to the cytoplasm. These same proteins return to the nucleus within the first 3 hr of interphase. When cytoplasm is amputated from an ameba in mitosis (shen the nuclear proteins are in the cytoplasm), the resultant daughter nuclei are depleted in the labeled nuclear proteins. The degree of depletion is less than proportional to the amount of cytoplasm removed because a portion of rapidly migrating protein (a nuclear protein that is normally shuttling between nucleus and cytoplasm and is thus also present in the cytoplasm) which would normally remain in the cytoplasm is taken up by the reconstituting daughter nuclei. Cytoplasmic fragments cut from mitotic cells are enriched in both major classes of nuclear proteins, i.e. rapidly migrating protein and slow turn-over protein. An interphase nucleus implanted into such an enucleated cell acquires from the cytoplasm essentially all of the excess nuclear proteins of both classes. The data indicate that there is a lack of binding sites in the cytoplasm for the rapidly migrating nuclear protein. The quantitative aspects of the distribution of rapidly migrating protein between the nucleus and the cytoplasm indicate that the distribution is governed primarily by factors within the nucleus.  相似文献   

12.
Kamata M  Aida Y 《Journal of virology》2000,74(15):7179-7186
To identify the domains of Vpr that are involved nuclear localization, we transfected HeLa cells with a panel of expression vectors that encode mutant Vpr protein with deletions or substitutions within putative domains. Immunofluorescence staining of transfected cells revealed that wild-type Vpr was localized predominantly in the nucleus and the nuclear envelope and certainly in the cytoplasm. Introduction of substitutions or deletions within alphaH1 or alphaH2 resulted, by contrast, in diffuse expression over the entire cell. In addition, double mutations within both of these alpha-helical domains led to the complete absence of Vpr from nuclei. Next, we prepared HeLa cells that express chimeric proteins which consist of the alphaH1 and alphaH2 domains fused individually with green fluorescent protein (GFP) and a Flag tag and extracted them with digitonin and Triton X-100 prior to fixation. Flag-alphaH1-GFP was detected in the nucleus but not in the cytoplasm, while Flag-alphaH2-GFP was retained predominantly in the nucleus and in a small amount in the cytoplasm. The immunostaining patterns were almost eliminated by substitutions in each chimeric protein. Thus, it appeared that the two alpha-helical domains might be involved in nuclear import by binding to certain cellular factors. Taken together, our data suggest that the two putative alpha-helical domains mediate the nuclear localization of Vpr by at least two mechanisms.  相似文献   

13.
RGS proteins comprise a family of proteins named for their ability to negatively regulate heterotrimeric G protein signaling. Biochemical studies suggest that members of this protein family act as GTPase-activating proteins for certain Galpha subunits, thereby accelerating the turn-off mechanism of Galpha and terminating signaling by both Galpha and Gbetagamma subunits. In the present study, we used confocal microscopy to examine the intracellular distribution of several RGS proteins in COS-7 cells expressing RGS-green fluorescent protein (GFP) fusion proteins and in cells expressing RGS proteins endogenously. RGS2 and RGS10 accumulated in the nucleus of COS-7 cells transfected with GFP constructs of these proteins. In contrast, RGS4 and RGS16 accumulated in the cytoplasm of COS-7 transfectants. As observed in COS-7 cells, RGS4 exhibited cytoplasmic localization in mouse neuroblastoma cells, and RGS10 exhibited nuclear localization in human glioma cells. Deletion or alanine substitution of an N-terminal leucine repeat motif present in both RGS4 and RGS16, a domain identified as a nuclear export sequence in HIV Rev and other proteins, promoted nuclear localization of these proteins in COS-7 cells. In agreement with this observation, treatment of mouse neuroblastoma cells with leptomycin B to inhibit nuclear protein export by exportin1 resulted in accumulation of RGS4 in the nucleus of these cells. GFP fusions of RGS domains of RGS proteins localized in the nucleus, suggesting that nuclear localization of RGS proteins results from nuclear targeting via RGS domain sequences. RGSZ, which shares with RGS-GAIP a cysteine-rich string in its N-terminal region, localized to the Golgi complex in COS-7 cells. Deletion of the N-terminal domain of RGSZ that includes the cysteine motif promoted nuclear localization of RGSZ. None of the RGS proteins examined were localized at the plasma membrane. These results demonstrate that RGS proteins localize in the nucleus, the cytoplasm, or shuttle between the nucleus and cytoplasm as nucleo-cytoplasmic shuttle proteins. RGS proteins localize differentially within cells as a result of structural differences among these proteins that do not appear to be important determinants for their G protein-regulating activities. These findings suggest involvement of RGS proteins in more complex cellular functions than currently envisioned.  相似文献   

14.
Exposure of mammalian cells to hyperthermia is known to cause protein aggregation in the nucleus. The presence of such aggregates has been detected as the relative increase in the protein mass that is associated with nuclei isolated from heated cells. We have characterized these excess nuclear proteins from the nuclei of heated HeLa cells by two-dimensional gel electrophoresis. The abundance of cytoskeletal elements which co-purify with the nuclei did not increase with exposure to hyperthermia, indicating that these proteins are not part of the excess nuclear proteins. In contrast, several specific polypeptides become newly bound or increase in abundance in nuclei isolated from heated cells. Members of the hsp 70 family were identified as a major component of the excess nuclear proteins. Among the other excess nuclear proteins we identified ten that had apparent molecular weights of 130, 95, 75, 58, 53, 48, 46, 37, 28, and 26 kilodaltons. Since hsp 70 is mainly cytoplasmic in non-heated cells, its association with nuclei in heated cells indicates that one mechanism accounting for the heat-induced excess nuclear proteins is the movement of cytoplasmic proteins to the nucleus. We also obtained evidence that increased binding of nuclear proteins is another mechanism for this effect. No overall increase or decrease in the phosphorylation of nuclear proteins was found to be associated with such altered binding or movement from the cytoplasm to the nucleus.  相似文献   

15.
Chicken histone H5 is an H1-like linker histone that is expressed only in nucleated erythrocytes. The histone H5 promoter has binding sites for Sp1 (a high affinity site) and UPE-binding protein, while the 3′ erythroid-specific enhancer has binding sites for Sp1 (one moderate and three weak affinity), GATA-1, and NF1. In this study we investigated whether trans-acting factors that bind to the chicken histone H5 promoter or enhancer are associated with adult chicken immature and mature erythrocyte nuclear matrices. We show that NF1, but not Sp1, GATA-1, or UPE-binding protein, is associated with the internal nuclear matrices of these erythroid cells. Further, we found that a subset of the NF1 family of proteins is bound to the mature erythrocyte nuclear matrix. These results suggest that in chicken erythrocytes NF1 may mediate an interaction between the histone H5 enhancer and the erythroid internal nuclear matrix. NF1 was also present in the internal nuclear matrices of chicken liver and trout liver. The observations of this study provide evidence that NF1 may have a role in a variety of cell types in targeting specific DNA sequences to the nuclear matrix. © 1994 Wiley-Liss, Inc.  相似文献   

16.
U Stochaj  R Rassadi  J Chiu 《FASEB journal》2000,14(14):2130-2132
Stress modifies all aspects of cellular physiology, including the targeting of macromolecules to the nucleus. To determine how distinct types of stress affect classical nuclear protein import, we followed the distribution of NLS-GFP, a reporter protein containing a classical nuclear localization sequence (NLS) fused to green fluorescent protein GFP. Nuclear accumulation of NLS-GFP requires import to be constitutively active; inhibition of import redistributes NLS-GFP throughout the nucleus and cytoplasm. In the yeast Saccharomyces cerevisiae, starvation, heat shock, ethanol and hydrogen peroxide rapidly inhibited classical nuclear import, whereas osmotic stress had no effect. To define the mechanisms underlying the inhibition of classical nuclear import, we located soluble components of the nuclear transport apparatus. Failure to accumulate NLS-GFP in the nucleus always correlated with a redistribution of the small GTPase Gsp1p. Whereas predominantly nuclear under normal conditions, Gsp1p equilibrated between nucleus and cytoplasm in cells exposed to starvation, heat, ethanol or hydrogen peroxide. Furthermore, analysis of yeast strains carrying mutations in different nuclear transport factors demonstrated a role for NTF2, PRP20 and MOG1 in establishing a Gsp1p gradient, as conditional lethal alleles of NTF2 and PRP20 or a deletion of MOG1 prevented Gsp1p nuclear accumulation. On the basis of these results, we now propose that certain types of stress release Gsp1p from its nuclear anchors, thereby promoting a collapse of the nucleocytoplasmic Gsp1p gradient and inhibiting classical nuclear protein import.  相似文献   

17.
The double membrane of the nuclear envelope is a formidable barrier separating the nucleus and cytoplasm of eukaryotic cells. However, movement of specific macromolecules across the nuclear envelope is critical for embryonic development, cell growth and differentiation. Transfer of molecules between the nucleus and cytoplasm occurs through the aqueous channel formed by the nuclear pore complex (NPC)
  • 1 Abbreviations: NPC, nuclear pore complex; GlcNac, N-acetylglucosamine; WGA, wheat germ agglutinin
  • . Although small molecules may simply diffuse across the NPC, transport of large proteins and RNA requires specific transport signals and is energy dependent. A family of pore glycoproteins modified by O-linked N-acetylglucosamine moieties are essential for transport through the NPC. Recent evidence suggests that the regulation of nuclear transport may also involve the inteaction of RNA and nuclear proteins with specific binding proteins that recognize these transport signals. Are these nuclear pore glycoproteins and signal binding proteins the ‘gatekeepers’ that control access to the genetic material? Recent evidence obtained from a combination of biochemical and genetic approaches suggests – perhaps.  相似文献   

    18.
    The exposure of exponentially growing BHK cells to supranormal temperatures (41–44 °C, for 15 min to 1 h) induces the synthesis of a new set of proteins, the heat shock proteins, while the synthesis of proteins made before heat shock is repressed at 43 °C. Among the two major heat shock proteins induced, of molecular weight 70 K and 68 K, only the 70 kD protein is found bound to the nuclear matrix. This protein is resolved differently from the normal matrix proteins by isoelectric focusing and, when blotted, does not react with antibodies directed against nuclear matrices. These results show that the 70 kD heat shock protein is a new protein transferred from the cytoplasm to the nucleus, where it binds to the nuclear matrix, suggesting a structural role for this protein.  相似文献   

    19.
    20.
    Myopodin is an actin bundling protein that shuttles between nucleus and cytoplasm in response to cell stress or during differentiation. Here, we show that the myopodin sequence 58KKRRRRARK66, when tagged to either enhanced green fluorescent protein (EGFP) or to enhanced cyan fluorescent protein-CapG (ECFPCapG), is able to target these proteins to the nucleolus in HeLa or HEK293T cells. By contrast, 58KKRR61-ECFP-CapG accumulates in the nucleus. Mutation of 58KKRRRRARK66 into alanine residues blocks myopodin nuclear import and promotes formation of cytoplasmic actin filaments. A second putative nuclear localization sequence, 612KTSKKKGKK620, displays much weaker activity in a heterologous context, and appears not to be functional in the full length protein. Thus myopodin nuclear translocation is dependent on a monopartite nuclear localization sequence.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号