首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《Cryobiology》2012,64(3):145-151
Amniotic membrane (AM) has been used as a scaffold for the ex vivo expansion of different types of cells and a cell delivery matrix in regenerative medicine. Since the preservation procedures can influence the AM properties for experimental and clinical purposes, this study was established to investigate the feasibility of using the AM after different preservation methods to serve as substrates for endothelial cell expansion ex vivo. The effects of cryopreservation and lyophilization were evaluated on mechanical and histological characteristics of the AM, and the results were compared with the fresh AM. The ECM components of the basement membrane were well conserved in all groups. Although lyophilization resulted in more histological changes and lower level of physical variables including thickness, Fmax, elongation at break and suture retention than the fresh and cryopreserved AM, endothelial cells grown on the lyophilized AM were better attached to the basement membrane. Cytotoxicity assay by MTT showed that the lyophilized AM is a compatible substrate for endothelial cells cultivation. The findings of this study suggest that the lyophilized AM is a suitable matrix for cultivation of endothelial cells due to this fact that lyophilization led to exposure of basement membrane of the AM.  相似文献   

2.
The existing of basement membrane improves the development of endothelium while constructing blood vessel equivalent. The amniotic membrane (AM) provides a natural basement membrane and has been used in ocular surface reconstruction. This study evaluated the molecular and cellular characteristics of porcine vascular endothelial cells (ECs) cultured on AM. ECs cultured on AM expressed the endothelial marker vWF and exhibited normal endothelial morphology. Here, we demonstrated that AM enhanced the expression of intercellular molecules, platelet-endothelial cell adhesion molecule-1 (PECAM-1), and adhesion molecule VE-cadherin at the intercellular junctions. The expression level of integrin was markedly higher in ECs cultured on AM than on plastic dish. Furthermore, the AM downregulated the expression of E-selectin and P-selectin in both LPS-activated and non-activated ECs. Consistently, adhesion of leukocytes to both activated and non-activated cells was decreased in ECs cultured on AM. Our results suggest that AM is an ideal matrix to develop a functional endothelium in blood vessel equivalent construction.  相似文献   

3.
The effects of variations in cultivation conditions on trehalose concentration and the viability of brewing yeasts following preservation by filter paper or lyophilization methods were evaluated. In case of filter paper preservation, the cultivation period had no affect on yeast viability, while agitation and aeration during cultivation had a positive effect regarding viability of the bottom-fermenting strains, Rh and Frank. For effective preservation, it was necessary to harvest yeast cells from the stationary phase during cultivation. For lyophilization preservation, the yeast strains tested showed a negative effect on viability, independent of strain or cultivation method. No significant correlation was found between trehalose concentration and yeast viability following either filter paper or lyophilization preservation. However, the filter paper preservation method was suitable for both bottom and top brewing yeast strains with regard to feasibility, viability, and maintenance of the yeast’s specific character.  相似文献   

4.
Previous studies have indicated the importance of basement membrane components both for cellular differentiation in general and for the barrier properties of cerebral microvascular endothelial cells in particular. Therefore, we have examined the expression of basement membrane proteins in primary capillary endothelial cell cultures from adult porcine brain. By indirect immunofluorescence, we could detect type IV collagen, fibronectin, and laminin both in vivo (basal lamina of cerebral capillaries) and in vitro (primary culture of cerebral capillary endothelial cells). In culture, these proteins were secreted at the subcellular matrix. Moreover, the interaction between basement membrane constituents and cerebral capillary endothelial cells was studied in adhesion assays. Type IV collagen, fibronectin, and laminin proved to be good adhesive substrata for these cells. Although the number of adherent cells did not differ significantly between the individual proteins, spreading on fibronectin was more pronounced than on type IV collagen or laminin. Our results suggest that type IV collagen, fibronectin, and laminin are not only major components of the cerebral microvascular basal lamina, but also assemble into a protein network, which resembles basement membrane, in cerebral capillary endothelial cell cultures.  相似文献   

5.
Viability, antibiotic properties and variation of 4 variants of Bac. brevis var. G.-B. were studied after lyophilization and storage for a year in the lyophilized state. It was shown that the spores and vegetative cells of S and P- variants not synthesizing gramicidin S were somewhat more stable than the spores and cells of R and P+ variants producing the antibiotic. The latter dissociated by 10 per cent towards the cells producing and not producing gramicidin. The developmental rate of the lyophilized vegetative cells was higher than that of the lyophilized spores. Under analogous cultivation conditions they produced higher amounts of the biomass and antibiotic. The lyophilization method described may be recommended for the maintenance of viability and stability of the spores and vegetative cells of Bacillus brevis var. G.-B. producing gramicidin S.  相似文献   

6.
When cultured on a basement membrane substratum, endothelial cells undergo a rapid series of morphological and functional changes which result in the formation of histotypic tube-like structures, a process which mimics in vivo angiogenesis. Since this process is probably dependent on several cell adhesion and cell signaling phenomena, we examined the roles of integrins and protein kinase C in endothelial cell cord formation. Polyclonal antisera directed against the entire vitronectin (αvβ3) and fibronectin (α5β1) receptors inhibited cord formation. Subunit-specific monoclonal antibodies to αv, β3, and β1 integrin subunits inhibited cord formation, while monoclonal antibodies to α3 did not, which implicated the vitronectin receptor, and not the fibronectin receptor, in vascular formation. Protein kinase C inhibitors inhibited cord formation, while phorbol 12-myristate 13-acetate (PMA) caused endothelial cells to form longer cords. Since the vitronectin receptor has been shown to be phosphorylated in an in vitro system by protein kinase C, the possible functional link between the vitronectin receptor and protein kinase C during cellular morphogenesis was examined. The vitronectin receptor was more highly phosphorylated in cord-forming endothelial cells on basement membrane than in monolayer cells on vitronectin. Furthermore, this phosphorylation was inhibited by protein kinase C inhibitors, and PMA was required to induce vitronectin receptor phosphorylation in endothelial cells cultured on vitronectin. Colocalization studies were also performed using antisera to the vitronectin receptor and antibodies to protein kinase C. Although no strict colocalization was found, protein kinase C was localized in the cytoskeleton of endothelial cells initially plated on basement membrane or on vitronectin, and it translocated to the plasma membrane of C-shaped cord-forming cells on basement membrane. Thus, both the vitronectin receptor and protein kinase C play a role in in vitro cord formation. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Capillary endothelial cells of rat epididymal fat pad were isolated and cultured in media conditioned by bovine aortic endothelial cells and substrata consisting of interstitial or basement membrane collagens. When these cells were grown on interstitial collagens they underwent proliferation, formed a continuous cell layer and, if cultured for long periods of time, formed occasional tubelike structures. In contrast, when these cells were grown on basement membrane collagens, they did not proliferate but did aggregate and form tubelike structures at early culture times. In addition, cells grown on basement membrane substrata expressed more basement membrane constituents as compared with cells grown on interstitial matrices when assayed by immunoperoxidase methods and quantitated by enzyme-linked immunosorbent inhibition assays. Furthermore, when cells were grown on either side of washed, acellular amnionic membranes their phenotypes were markedly different. On the basement membrane surface they adhered, spread, and formed tubelike structures but did not migrate through the basement membrane. In contrast, when seeded on the stromal surface, these cells were observed to proliferate and migrate into the stromal aspect of the amnion and ultimately formed tubelike structures at high cell densities at longer culture periods (21 d). Thus, connective tissue components play important roles in regulating the phenotypic expression of capillary endothelial cells in vitro, and similar roles of the collagenous components of the extracellular matrix may exist in vivo following injury and during angiogenesis. Furthermore, the culture systems outlined here may be of use in the further study of differentiated, organized capillary endothelial cells in culture.  相似文献   

8.
This paper describes the preparation of lung acellular alveolar matrix fragments and culture of rat type II pneumocytes directly on the alveolar epithelial basement membrane, thereby permitting study of the effect of lung basement membrane on the morphology and function of type II cells. Collagen types I, III, IV and V, laminin and fibronectin were located by immunofluorescence in the lung matrix with the same patterns as those described for the normal human lung. Transmission electron microscopy (TEM) of the fragments revealed intact epithelial and endothelial basement membranes. The matrix maintained the normal three-dimensional alveolar architecture. Glycosaminoglycans were still present by Alcian Blue staining. Isolated adult rat type II pneumocytes cultured on 150 micron thick fragments of acellular human alveolar extracellular matrix undergo gradual cytoplasmic flattening, with loss of lamellar bodies, mitochondria, and surface microvilli. These changes are similar to the in vivo differentiation of type II pneumocytes into type I pneumocytes. The type II pneumocyte behaviour on the lung epithelial basement membrane contrasted sharply with that of the same cell type cultured on a human amnionic basement membrane. On the latter surface the cells retained their cuboidal shape, lamellar bodies and surface microvilli for up to 8 days. These observations suggest that the basement membranes from different organ systems exert differing influences on the morphology and function of type II pneumocytes and that the alveolar and amnionic basement membranes may have differing three-dimensional organizations. The technique of direct culture of type II cells on the lung basement membrane provides a useful tool for studying the modulating effect of the basement membrane on alveolar epithelial cells.  相似文献   

9.
Impairment of the corneal endothelium causes blindness that afflicts millions worldwide and constitutes the most often cited indication for corneal transplants. The scarcity of donor corneas has prompted the alternative use of tissue-engineered grafts which requires the ex vivo expansion and cryopreservation of corneal endothelial cells. The aims of this study are to culture and identify the conditions that will yield viable and functional corneal endothelial cells after cryopreservation. Previously, using human umbilical vein endothelial cells (HUVECs), we employed a systematic approach to optimize the post-thaw recovery of cells with high membrane integrity and functionality. Here, we investigated whether improved protocols for HUVECs translate to the cryopreservation of corneal endothelial cells, despite the differences in function and embryonic origin of these cell types. First, we isolated endothelial cells from pig corneas and then applied an interrupted slow cooling protocol in the presence of dimethyl sulfoxide (Me2SO), with or without hydroxyethyl starch (HES). Next, we isolated and expanded endothelial cells from human corneas and applied the best protocol verified using porcine cells. We found that slow cooling at 1 °C/min in the presence of 5% Me2SO and 6% HES, followed by rapid thawing after liquid nitrogen storage, yields membrane-intact cells that could form monolayers expressing the tight junction marker ZO-1 and cytoskeleton F-actin, and could form tubes in reconstituted basement membrane matrix. Thus, we show that a cryopreservation protocol optimized for HUVECs can be applied successfully to corneal endothelial cells, and this could provide a means to address the need for off-the-shelf cryopreserved cells for corneal tissue engineering and regenerative medicine.  相似文献   

10.
The expansion of human peripheral blood endothelial progenitor cells to obtain therapeutically relevant endothelial colony-forming cells (ECFCs) has been commonly performed on xeno-derived extracellular matrix proteins. For cellular therapy applications, xeno-free culture conditions are desirable to improve product safety and reduce process variability. We have previously described a novel fluorophore-tagged RGD peptide (RGD-TAMRA) that enhanced the adhesion of mature endothelial cells in vitro. To investigate whether this peptide can replace animal-derived extracellular matrix proteins in the isolation and expansion of ECFCs, peripheral blood mononuclear cells from 22 healthy adult donors were seeded on RGD-TAMRA-modified polystyrene culture surfaces. Endothelial colony formation was significantly enhanced on RGD-TAMRA-modified surfaces compared to the unmodified control. No phenotypic differences were detected between ECFCs obtained on RGD-TAMRA compared to ECFCs obtained on rat-tail collagen-coated surfaces. Compared with collagen-coated surfaces and unmodified surfaces, RGD-TAMRA surfaces promoted ECFC adhesion, cell spreading, and clonal expansion. This study presents a platform that allows for a comprehensive in vitro evaluation of peptide-based biofunctionalization as a promising avenue for ex vivo ECFC expansion.  相似文献   

11.
Amniotic membrane (AM) due to its anti-inflammatory, anti-scarring and anti-angiogenic properties is used as corneal and wound grafts. When developing AM tissue banks, cell viability, membrane morphology and genomic stability should be preserved following cryopreservation. To analyze the changes rendered to the AM during the process of cryopreservation by comparing different combinations of standard cryopreservation media; fetal bovine serum (FBS), dimethyl sulfoxide (DMSO), Dulbecco’s modified eagle’s medium (DMEM) and glycerol at ?80 °C and at ?196 °C for a period of 6 weeks and at 4 °C in 70 % alcohol for 6 weeks. Following informed consent, placentae of healthy term pregnancies delivered by elective Cesarean section were collected and AM separated into 5 × 5 cm size sections and under sterile conditions stored in 9:1 DMSO:FBS and 1:1 DMEM:Glycerol at ?196 and ?80 °C for 6 weeks. Similar sections were also stored at 4 °C in 70 % alcohol for 6 weeks. After storage periods following were assessed; AM epithelial cell viability by trypan blue vital stain, epithelial cell proliferation capacity by cell doubling time, membrane morphology by haematoxylin and eosin (H&E) stain and genomic stability by conventional G-banded karyotyping. Human amniotic epithelial cells were cultured in DMEM and 10 % FBS in humidified atmosphere of 5 % carbon dioxide at 37 °C and were characterized using RT-PCR for Octamer-binding protein 4 (Oct-4) and glucose-6-phosphate dehydrogenase (G6PD) genes. All the above parameters were also assessed in fresh AM. AM obtained from 4 term placentae. Mean cell count and mean cell doubling times in days respectively; for fresh AM 3.8 × 106; 1.59, after 6 weeks in DMSO:FBS at ?196 °C 3.0 × 106; 2.38 and at ?80 °C 2.1 × 106; 1.60, in DMEM:Glycerol at ?196 °C 3.6 × 106; 2.33 at ?80 °C 23 × 106; 1.66 and at 4 °C 3.3 × 106; 2.14. Histology analysis of the fresh AM showed an intact epithelial monolayer, thick basement membrane (BM) and avascular stromal matrix. Amniotic membranes stored at ?196 °C showed morphology similar to fresh AM in both preservation media and AM stored at ?80 °C showed disruption of the stromal matrix. At 4 °C the epithelial monolayer showed flattening. Fresh AM karyotype was 46XX. Analyzable spreads for karyotype were not obtained from stored AMs. Human amniotic epithelial cells were positive for both Oct-4 and G6PD genes. AM is best preserved at ?196 °C either in 1:9 DMSO:FBS or 1:1 DMEM:Glycerol. In both conditions cell viability and membrane integrity were shown to be preserved up to 6 weeks. Since analyzable chromosome spreads from cell cultures were not obtained, genomic stability could not be assessed.  相似文献   

12.
An anticoagulant sulfated galactan isolated from the marine green alga, Codium cylindricum, was shown to have antiangiogeinic activity. This galactan suppressed microvessel formation in an ex vivo serum-free matrix culture model using rat aortic ring. It also inhibited human umbilical vein endothelial cells (HUVEC) tube formation on reconstituted basement membrane gel. These results show the value of algal sulfated galactans in the design of antiangiogenic agents.  相似文献   

13.
Instrumental methods of investigation were used for the demonstration of changes in the fatty acid composition of F. tularensis, strain 15 Ga?ski?, during cultivation in solid culture medium, storage after lyophilization, as well as changes in the functioning of the system of membrane-dependent enzymes of the respiratory chain and in the permeability of cell wall membranes by water molecules and NADH after lyophilization. A relationship between the survival rate of F. tularensis cells after lyophilization and stimulation of their endogenic respiration with NADH and succinate was revealed. An increase in residual moisture from 6 to 10-12% was found to intensify the process of lipid peroxidation during the storage of lyophilized F. tularensis cells of strain 15 Ga?ski?.  相似文献   

14.
Endothelial progenitor cells (EPCs), which were first identified in adult peripheral blood mononuclear cells (MNCs), play an important role in postnatal neovascularization. Tissue ischemia augments mobilization of EPCs from bone marrow into the circulation and enhances incorporation of EPCs at sites of neovascularization. Two methods to obtain EPCs from bone marrow, peripheral blood or cord blood MNCs have been evaluated for therapeutic neovascularization: (1) fresh isolation using anti-CD34, anti-KDR or anti-AC133 antibody, and (2) ex vivo expansion of total MNCs. In an immunodeficient mouse model of hindlimb ischemia, systemic transplantation of human ex vivo expanded EPCs improves limb survival through the enhancement of blood flow in the ischemic tissue. A similar strategy also leads to histological and functional preservation of ischemic myocardium of nude rats. Recently, a preclinical study of catheter-based, intramyocardial transplantation ofautologous EPCs in a swine model of chronic myocardial ischemia demonstrated the therapeutic potential of cell-based therapy, with attenuation of myocardial ischemia and improvement in left ventricular function. These favorable outcomes strongly suggest a therapeutic impact of EPC transplantation in clinical settings. Further basic research, with improved understanding of the mechanisms governing homing and incorporation of EPCs, will be still necessary to optimize the methodology of the cell therapy.  相似文献   

15.
Microbubble facilitated ultrasound (US) application can enhance intracellular delivery of drugs and genes in endothelial cells cultured in static condition by transiently disrupting the cell membrane, or sonoporation. However, endothelial cells in vivo that are constantly exposed to blood flow may exhibit different sonoporation characteristics. This study investigates the effects of shear stress cultivation on sonoporation of endothelial cells in terms of membrane disruption and changes in the intracellular calcium concentration ([Ca2+]i). Sonoporation experiments were conducted using murine brain microvascular endothelial (bEnd.3) cells and human umbilical vein endothelial cells (HUVECs) cultured under static or shear stress (5 dyne/cm2 for 5 days) condition in a microchannel environment. The cells were exposed to a short US tone burst (1.25 MHz, 8 μs duration, 0.24 MPa) in the presence of DefinityTM microbubbles to facilitate sonoporation. Membrane disruption was assessed by propidium iodide (PI) and changes in [Ca2+]i measured by fura-2AM. Results from this study show that shear stress cultivation significantly reduced the impact of ultrasound-driven microbubbles activities on endothelial cells. Cells cultured under shear stress condition exhibited much lower percentage with membrane disruption and changes in [Ca2+]i compared to statically cultured cells. The maximum increases of PI uptake and [Ca2+]i were also significantly lower in the shear stress cultured cells. In addition, the extent of [Ca2+]i waves in shear cultured HUVECs was reduced compared to the statically cultured cells.  相似文献   

16.
R H Kramer  G M Fuh  M A Karasek 《Biochemistry》1985,24(25):7423-7430
Cultured microvascular endothelial cells isolated from human dermis were examined for the synthesis of basement membrane specific (type IV) collagen and its deposition in subendothelial matrix. Biosynthetically radiolabeled proteins secreted into the culture medium were analyzed by sodium dodecyl sulfate gel electrophoresis after reduction, revealing a single collagenous component with an approximate Mr of 180 000 that could be resolved into two closely migrating polypeptide chains. Prior to reduction, the 180 000 bands migrated as a high molecular weight complex, indicating the presence of intermolecular disulfide bonding. The 180 000 material was identified as type IV procollagen on the basis of its selective degradation by purified bacterial collagenase, moderate sensitivity to pepsin digestion, immunoprecipitation with antibodies to human type IV collagen, and comigration with type IV procollagen purified from human and murine sources. In the basement membrane like matrix elaborated by the microvascular endothelial cells at their basal surface, type IV procollagen was the predominant constituent. This matrix-associated type IV procollagen was present as a highly cross-linked and insoluble complex that was solubilized only after denaturation and reduction of disulfide bonds. In addition, there was evidence of nonreducible dimers and higher molecular weight aggregates of type IV procollagen. These findings support the suggestion that the presence of intermolecular disulfide bonds and other covalent interactions stabilizes the incorporation of the type IV procollagen into the basement membrane matrix. Cultured microvascular endothelial cells therefore appear to deposit a basal lamina-like structure that is biochemically similar to that formed in vivo, providing a unique model system that should be useful for understanding microvascular basement membrane metabolism, especially as it relates to wound healing, tissue remodeling, and disease processes.  相似文献   

17.
Amniotic membrane (AM), the innermost layer of the fetal membranes, has been widely employed in the surgical reconstruction and tissue engineering. Expression of the antimicrobial peptides such as defensins, elafin and SLPI which are essential elements of the innate immune system results in antibacterial properties of the AM. Preservation is necessary to reach a ready-to-use source of the AM. However, these methods might change the properties of the AM. The aim of this study was to evaluate antibacterial properties of the AM after preservation. Antibacterial property of the fresh AM was compared with cryopreserved and freeze-dried AM by modified disk diffusion method. Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and two clinical isolated strains of E. coli were cultured in Mueller Hinton agar and a piece of the AM was placed on agar surface. After 24 h incubation, the inhibition zone was measured. In addition, one of the most important antibacterial peptides, elafin, was measured by ELISA assay before and after preservations procedures. Antibacterial properties of the AM were maintained after cryopreservation and freeze-drying. However, the inhibition zone was depending on the bacterial strains. The cryopreservation and freeze-drying procedures significantly decreased elafin which shows that antibacterial property is not limited to the effects of amniotic cells and the other components such as extracellular matrix may contribute in antibacterial effects. The promising results of this study show that the preserved AM is a proper substitute of the fresh AM to be employed in clinical situations.  相似文献   

18.
Ex vivo expansion of stem cells might be a feasible method of resolving the problem of limited cell supply in cell-based therapy. The implantation of expanded CD34(+) endothelial progenitor cells has the capacity to induce angiogenesis. In this study, we tried to induce angiogenesis by implanting expanded CD117(+) stem cells derived from mouse bone marrow. After 2 wk of culture with the addition of several growth factors, the CD117(+) stem cells expanded approximately 20-fold and had an endothelial phenotype with high expression of CD34 and vascular endothelial-cadherin. However, >70% of these ex vivo expanded cells had a senescent phenotype by beta-galactosidase staining, and their survival and incorporation were poor after implantation into the ischemic limbs of mice. Compared with the PBS injection only, the microvessel density and the percentage of limb blood flow were significantly higher after the implantation of 2 x 10(5) freshly collected CD117(+) cells (P < 0.01) but not after the implantation of 2 x 10(5) expanded CD117(+) cells (P > 0.05). These data indicate that ex vivo expansion of CD117(+) stem cells has low potency for inducing therapeutic angiogenesis, which might be related to the cellular senescence during ex vivo expansion.  相似文献   

19.
Wu Y  Wu M  Zhang Y  Li W  Gao Y  Li Z  Wang Z  Lubec G  Zhang C 《Amino acids》2012,43(3):1383-1388
Lyophilization has been widely used for preservation, such as in food industry, pharmacy, biotechnology and tissues engineering, etc. However, there is no report on whether it could affect stability of RNA and protein levels in biological tissue samples. Herein we show that lyophilization can be used for storage of biological tissue samples without loss of bioactivities even stored at room temperature for 7-14?days. To address this issue, C57BL mouse tissues were prepared and dried by lyophilization and a baking method, respectively, followed by examination of morphological structure and total proteins by SDS-PAGE as well as gelatin zymography. Subsequently, the stability of RNAs and proteins, which were lyophilized and stored at room temperature (23°C) for 14?days was further examined by RT-PCR, SDS-PAGE and western blot. Results demonstrated that lyophilization did not alter total protein activities of various tissues, including enzyme activities, immunoreactivities and phosphorylation, and did not affect several RNAs in lyophilized tissues. Taken together, lyophilization may represent a valuable approach for preservation and long-distance shipment of biological samples, particularly for the international exchange of biological samples without altering their bioactivities.  相似文献   

20.
To avoid the risk of infectious disease transmission from donor to recipient, allografts should be terminally sterilized. In the previous paper (Kaminski et al. in Cell Tissue Bank 10:215–219, 2009) we presented the effect of various methods of preservation (deep fresh freezing, glycerolization, lyophilization), followed by irradiation with different doses of electron beam (EB), on material (intrinsic) mechanical properties of human patellar tendons cut out as for anterior cruciate ligament reconstruction, obtained in failure tensile test. As structural mechanical properties are equally important to predict the behaviour of the graft as a whole functional unit, the purpose of the present paper was to show the results for failure load and elongation, obtained in the same experiment. Paired Bone-Tendon-Bone grafts (BTB) were prepared from cadaveric human patella tendons with both patellar and tibial attachments. They were preserved by deep freezing, glycerolization or lyophilization and subsequently EB-irradiated with the doses of 25, 35, 50 or 100 kGy (fresh-frozen grafts) or a single dose of 35 kGy (glycerolized and lyophilized grafts). Each experimental (irradiated) group was provided with control (non-irradiated), donor-matched group. The specimens from all groups were subjected to mechanical failure tensile test with the use of Instron system in order to measure their structural properties (failure load and elongation). All lyophilized grafts were rehydrated before mechanical testing. In our study we did not observe significant deterioration of structural mechanical properties of BTB grafts processed by fresh-freezing and then terminal sterilized with growing doses of EB up to 100 kGy. In contrast, BTB grafts processed by glycerolization or lyophilization and irradiated with 35 kGy showed significant decrease of failure load. Obtained results suggest that deep-frozen irradiated grafts retain their initial mechanical properties to an extent which does not exclude their clinical application. However, biomechanical investigations constitute only the first step to evaluate the potential clinical usefulness of such allografts and further extensive in vivo studies are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号