共查询到20条相似文献,搜索用时 15 毫秒
1.
Chou KJ Tseng LL Cheng JS Wang JL Fang HC Lee KC Su W Law YP Jan CR 《Life sciences》2001,69(13):1541-1548
The effect of CP55,940, a presumed CB1/CB2 cannabinoid receptor agonist, on intracellular free Ca2+ levels ([Ca2+]i) in Madin-Darby canine kidney cells was examined by using the fluorescent dye fura-2 as a Ca2+ indicator. CP55,940 (2-50 microM) increased [Ca2+]i concentration-dependently with an EC50 of 8 microM. The [Ca2+]i signal comprised an initial rise and a sustained phase. Extracellular Ca2+ removal decreased the maximum [Ca2+]i signals by 32+/-12%. CP55,940 (20 microM)-induced [Ca2+]i signal was not altered by 5 microM of two cannabinoid receptor antagonists, AM-251 and AM-281. CP55,940 (20 microM)-induced [Ca2+]i increase in Ca2+-free medium was inhibited by 86+/-3% by pretreatment with 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor. Conversely, pretreatment with 20 microM CP55,940 in Ca2+-free medium for 6 min abolished thapsigargin-induced [Ca2+]i increases. CP55,940 (20 microM)-induced intracellular Ca2+ release was not inhibited when inositol 1,4,5-trisphosphate formation was abolished by suppressing phospholipase C with 2 microM U73122. Collectively, this study shows that CP,55940 induced significant [Ca2+]i increases in canine renal tubular cells by releasing stored Ca2+ from the thapsigargin-sensitive pools in an inositol 1,4,5-trisphosphate-independent manner, and also by causing extracellular Ca2+ entry. The CP55,940's action appears to be dissociated from stimulation of cannabinoid receptors. 相似文献
2.
Selective inhibition of collagen synthesis by the Ca2+ ionophore A23187 in cultured human fibroblasts 总被引:3,自引:0,他引:3
The question of whether the Ca2+ ionophore A23187 affects collagen production relative to total protein synthesis or has possible effects on collagen degradation was investigated. Cultured normal human fibroblasts were incubated with radioactive proline, and the radioactivity of collagenase-sensitive and -resistant proteins was used to calculate the rates of protein production. The net production of collagen relative to total proteins was inhibited by A23187 in a dose-related manner, and 50% inhibition of basal collagen production was achieved with 0.6 microM A23187. There was a 70% decrease in the absolute rate of collagen production in the presence of 0.6 microM A23187 which represented a 4-fold greater inhibition of collagen production than of noncollagen protein production. The major mechanism for the decreased net production of collagen was decreased synthesis, rather than increased degradation. Ca2+ mobilization induced by cholecystokinin octapeptide was also associated with selective inhibition of collagen production in normal human fibroblasts. These studies establish that the Ca2+ ionophore A23187 induces a selective decrease in collagen polypeptide synthesis by normal human fibroblasts and suggest a modulatory role of Ca2+ on collagen metabolism. 相似文献
3.
S Otani I Matsui-Yuasa Y Mimura-Shimazu S Morisawa 《European journal of biochemistry》1988,171(3):509-513
The Ca2+ ionophore A23187 induced S-adenosylmethionine decarboxylase in guinea-pig lymphocytes, and cholera toxin stimulated the induction synergistically. The activator of protein kinase C, 1-oleoyl-2-acetylglycerol, did not induce S-adenosylmethionine decarboxylase activity but potentiated the enzyme activity induced by A23187 or by A23187 and cholera toxin. The addition of both A23187 and cholera toxin induced S-adenosylmethionine decarboxylase, but the further addition of 1-oleoyl-2-acetylglycerol or 12-O-tetradecanoylphorbol 13-acetate did not potentiate the enzyme induction in protein kinase-C-down-regulated cells that had been treated with 12-O-tetradecanoylphorbol 13-acetate for 18 h. These results suggest that a Ca2+-dependent pathway, other than that for protein kinase C, is essential for the induction of S-adenosylmethionine decarboxylase and that a cAMP-dependent pathway and also protein kinase C are involved in the potentiation of the induction. 相似文献
4.
The possibility of interactions between calcium and cyclic AMP (cAMP) in the mechanism of stimulation of H+ transport by A23187 was studied in the isolated gastric mucosa of the toad Bufo marinus. A23187 stimulated H+ secretion and histamine release. The amount of histamine released by A23187 did not explain the degree of stimulation. Metiamide partially inhibited the response to A23187. Ca++ ionophore produced an overstimulation of secretion after H+ transport had been induced by supramaximal effective concentrations of histamine (10-4 M). In the presence of metiamide, IMX potentiated the response to A23187. Also, in the same condition (metiamide treated) the effects of db-cAMP and A23187 were additive. The results are consistent with an interaction between Ca++ and ionophore-released histamine at the oxyntic cell in the stimulation by A23187. The stimulatory response may be the result of a potentiation between calcium and cAMP at the intracellular level. 相似文献
5.
6.
1. Amino acid incorporation in intact rabbit reticulocytes was unaffected by depletion of Ca2+ with EGTA. 2. The Ca2+ ionophore A23187 strongly inhibited incorporation in reticulocytes incubated in 1 mM Ca2+ but not in EGTA. Polysomal profiles and average ribosomal transit times of cells treated with Ca2+ ionophore at 1 mM Ca2+ were characteristic of translational elongation block. 3. The behavior of reticulocytes with respect to Ca2+ and A23187 contrasts with that of nucleated cells possessing endoplasmic reticulum in which protein synthesis is inhibited at translational initiation by either Ca2+ depletion or by exposure to Ca2+ ionophore. 相似文献
7.
Challenge of Madin-Darby canine kidney (MDCK) cells with the divalent cation ionophore A23187 caused a marked increase in the deacylation of [3H]arachidonic acid but not of [14C]palmitic acid. When the cells were treated with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and A23187, there was an additional increase in the deacylation of [3H]arachidonic acid compared to that observed with either agent alone. In contrast to deacylation, the stimulation of prostaglandin production by A23187 was small compared to the stimulation by TPA. Cycloheximide inhibited synthesis of prostaglandins in TPA-treated cells, but did not block the stimulated deacylation caused by either TPA or A23187. These data indicate that, while both TPA and A23187 stimulated the deacylation of [3H]arachidonic acid, TPA had an additional, cycloheximide-sensitive effect that was required for efficient conversion of the release fatty acids to prostaglandins. Thus, although required, deacylation appeared to be independent of and insufficient to stimulate maximum prostaglandin synthesis in these cells. 相似文献
8.
Calcium ionophore A23187 elevates angiotensin-converting enzyme in cultured bovine endothelial cells 总被引:1,自引:0,他引:1
Calcium ionophore A23187 (0.3-0.4 microM) elevated cellular angiotensin-converting enzyme activity (ACE) 2-7-fold after 48 h incubation with bovine pulmonary artery endothelial cells in culture. Cycloheximide (0.1 micrograms/ml) blocked the elevation in ACE produced by A23187. The increase in ACE was inhibited by 0.2 mM EGTA, 50 microM verapamil and 50 microM nifedipine, and was not associated with changes in cellular cAMP. Melittin, a phospholipase A2 activator, or addition of exogenous arachidonic acid failed to reproduce the elevation, and indomethacin only partially blocked the A23187 effect. The elevation of ACE was also inhibited by the calcium-calmodulin inhibitor, calmidazolium. Thus, we postulate that the ionophore A23187 elevates ACE in endothelial cells through a calcium-dependent mechanism other than phospholipase A2 activation. The elevation depends on new protein synthesis and involves calcium-calmodulin-dependent cellular mechanisms. 相似文献
9.
The pathways for cytosolic Ca++ increase under A23187 stimulation of H+ secretion were studied in the isolated gastric mucosa of the toad . A23187 produced a more potent stimulation of secretion when added to the mucosal side which did not contain calcium. Measurements of ionophore incorporation by fluorometric methods indicated that A23187 incorporates into oxyntic cells intracellularly. The presence of divalent cations inhibited incorporation. This may be the reason for a more potent action when A23187 was added from the mucosal side. With-drawal of calcium from serosal solution largely inhibited the secretory response to A23187 added to the mucosal side. Reintroduction of calcium into the serosal side in the presence of ionophore elicited H+ secretion. The results are consistent with an uptake of A23187 from the mucosal side into cellular organelles and basolateral membranes. Calcium entry through the serosal side may be responsible for triggering secretion. Although A23187 likely releases calcium from intracellular stores, its rate of release may not be sufficient to bring about a full stimulation of secretion in serosal-Ca++-free conditions. 相似文献
10.
《Journal of receptor and signal transduction research》2013,33(6):342-348
The effect of the antidepressant sertraline on cytosolic-free Ca2+ concentrations ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells is unclear. This study explored whether sertraline changed basal [Ca2+]i levels in suspended MDCK cells by using fura-2 as a Ca2+-sensitive fluorescent dye. Sertraline at concentrations between 1and 100 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+ implicating Ca2+ entry and release both contributed to the [Ca2+]i rise. Sertraline induced Mn2+ influx, leading to quench of fura-2 fluorescence, suggesting Ca2+ influx. This Ca2+ influx was inhibited by suppression of phospholiapase A2 but not by store-operated Ca2+ channel blockers and protein kinase C/A modulators. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitors nearly abolished sertraline-induced Ca2+ release. Conversely, pretreatment with sertraline partly reduced inhibitor-induced [Ca2+]i rise, suggesting that sertraline released Ca2+ from endoplasmic reticulum. Inhibition of phospholipase C did not much alter sertraline-induced [Ca2+]i rise. Collectively, in MDCK cells, sertraline induced [Ca2+]i rises by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive Ca2+ channels. 相似文献
11.
L. Wojnowski W. T. Mason A. Schwab H. Oberleithner 《The Journal of membrane biology》1994,138(2):143-149
We investigated the relationship between intracellular Ca2+ and pH homeostasis in Madin-Darby canine kidney-focus (MDCK-F) cells, a cell line exhibiting spontaneous oscillations of intracellular Ca2+ concentration (Cai2+). Cai2+and intracellular pH (pHi) were measured with the fluorescent dyes Fura-2 and BCECF by means of video imaging techniques. Ca2+ influx from the extracellular space into the cell was determined with the Mn2+ quenching technique. Cells were superfused with HEPES-buffered solutions. Under control conditions (pH 7.2), spontaneous Cai2+oscillations were observed in virtually all cells investigated. Successive alkalinization and acidification of the cytoplasm induced by an ammonia ion prepulse had no apparent effect on Cai2+oscillations. On the contrary, changes of extracellular pH value strongly affected Cai2+oscillations. Extracellular alkalinization to pH 7.6 completely suppressed oscillations, whereas extracellular acidification to pH 6.8 decreased their frequency by 40%. Under the same conditions, the respective pHi changes were less than 0. 1 pH units. However, experiments with the Mn2+ quenching technique revealed that extracellular alkalinization significantly reduced Ca2+ entry from the extracellular space. Large increases of Cai2+triggered by the blocker of the cytoplasmic Ca2+-ATPase, thapsigargin, had no effect on pHi We conclude: intracellular Ca2+ homeostasis in MDCK-F cells is pH dependent. pH controls Ca2+ homeostasis mainly by effects on the level of Ca2+ entry across the plasma membrane. On the contrary, the intracellular pH value seems to be insensitive to rapid changes of Cai2+.The project was supported by the Deutsche Forschungsgemeinschaft, SFB-176 (A6) and by the Jubilämusstiftung of the University of Würzburg.The authors gratefully acknowledge the valuable discussions with Drs. M.J. Berridge, M. Carew, I. Davidson, G. Law and B. Somasundraman. We are grateful to Applied Imaging for financial and technical support and to the Medical Research Council for financial support. 相似文献
12.
A phospholipase D-like mechanism in pancreatic islet cells: stimulation by calcium ionophore, phorbol ester and sodium fluoride 总被引:2,自引:0,他引:2
In neonatal rat islet cells prelabelled with [14C-methyl] choline, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate rapidly activated a phospholipase D-like mechanism as suggested by the accumulation in cells and medium of choline (but not of phosphorylcholine or glycerophosphorylcholine, markers for phospholipase C and phospholipase A2 action on phosphatidylcholine). This finding was confirmed by a rise in phosphatidic acid (but not diglyceride or arachidonic acid) in fatty acid-labelled cells. Phospholipase D was also activated by ionomycin or sodium fluoride; however, this was accompanied by parallel increases in diglyceride, monoacylglycerol and arachidonic acid in the absence of phosphorylcholine generation, suggesting that these agents also activated a phospholipase C-diglyceride lipase pathway acting on non-choline-containing phosphoglycerides (presumably phosphoinositides). In conjunction with our recent demonstration of insulinotropic effects of phosphatidic acid (M. Dunlop and R. Larkins, Diabetes, in press), our findings suggest for the first time a possible role for phospholipase D activation in the stimulation of insulin release and may imply a novel site of action for phorbol esters in the regulation of exocytosis. 相似文献
13.
Phospholipase activation in the IgE-mediated and Ca2+ ionophore A23187-induced release of histamine from rat basophilic leukemia cells 总被引:3,自引:0,他引:3
A McGivney Y Morita F T Crews F Hirata J Axelrod R P Siraganian 《Archives of biochemistry and biophysics》1981,212(2):572-580
The importance of phospholipase(s) activation in the IgE-mediated and ionophoreinduced histamine release from the rat basophilic leukemia cell line has been examined. The activation of phospholipase(s) as measured by [14C]arachidonic acid release and the release of histamine both required Ca2+ and were temporally parallel. Inhibition of phospholipase(s) activity by the inhibitors mepacrine and α-parabromoacetophenone also correlated with the inhibition of histamine release. [14C]Arachidonic acid released by the phospholipase(s) was mainly metabolized to prostaglandin D2. The inhibition of the cyclooxygenase pathway by indomethacin did not affect histamine release. 5,8,11,14-Eicosatetraynoic acid inhibited both histamine and [14C]arachidonic acid release suggesting an effect not only on the cyclooxygenase and lipoxygenase pathways but also on the phospholipase(s). These results suggest that activation of phospholipase appears to be necessary for histamine release in the rat bosophilic leukemia cells. 相似文献
14.
Cultures of granulosa cells from small (less than 3 mm), medium (3-6 mm), or large (8-10 mm) pig follicles were treated as follows: (1) basal controls, (2) cyclic adenosine 3',5'-monophosphate (cAMP) pathway agonists (pig FSH: 100 ng/ml; forskolin: 10 microM; dibutyryl cAMP; 1 mM), (3) calcium ionophore A23187 (0.005-1 micrograms), or (4) phorbol 12-myristate 13-acetate (TPA; 0.05-4 ng/ml). The combination of A23187 or TPA together with cAMP agonists was also examined in cultures of granulosa cells from follicles of different sizes. All substances were added at the time of culture, and oestradiol and progesterone were measured in the culture media after 48 h. All cAMP agonists were most potent in their stimulation of steroidogenesis (as a % of control) in cells from small follicles (P less than 0.05) with the exception of forskolin, which increased oestradiol in cells from large follicles to a greater extent than in cells of small follicles (P less than 0.05) (cells from medium follicles demonstrated less stimulation than those from small follicles except in progesterone production, for which FSH was equipotent). With the exception of forskolin, however, granulosa from large follicles showed little (oestradiol) or no stimulation (progesterone) with cAMP agonists. Under basal conditions, A23187 inhibited progesterone in all groups (P less than 0.05), and oestradiol production was reduced in granulosa cells from small follicles (P less than 0.05), unchanged in cells from medium follicles, and significantly stimulated in cells from large follicles. A23187 inhibited the enhanced production of both hormones after administration of cAMP agonists from cells of small and medium follicles (P less than 0.05), with inhibition significantly greater in cells of small follicles compared with medium. In cells from large follicles challenged with cAMP agonists, A23187 inhibited progesterone but stimulated oestradiol production; substitution of TPA (a protein kinase C stimulator) for A23187 gave identical results under basal or FSH-treated cultures of granulosa cells from small-, medium- or large-sized follicles. Our results suggest that TPA, A23187 and cAMP agonists modulate steroidogenesis differently in pig granulosa cells, depending on the stage of maturation of the follicle. Oestradiol production in granulosa cells from large preovulatory follicles may come under the stimulatory control of regulators of protein kinase C as in follicles near ovulation. 相似文献
15.
Morphological changes in cultured mammalian cells: prevention by the calcium ionophore A23187. 总被引:6,自引:0,他引:6
The morphological changes induced by butyrate in HeLa cells and by monobutyryl or dibutyryl cAMP in CHO cells are prevented by micromolar concentrations of the divalent cation ionophore A23187. The ionophore is unable to prevent such changes in medium from which calcium is omitted. At slightly higher (but nontoxic) concentrations, the ionophore inhibits the butyrate-mediated induction of the ganglioside biosynthetic enzyme, sialyltransferase, in HeLa. In CHO, sialyltransferase activity is normally high and not altered by any of the compounds tested. 相似文献
16.
Ducoudret O Barbier O Tauc M Fuchs M Poujeol P 《Biochimica et biophysica acta》2003,1611(1-2):171-179
The aim of this study was to characterize the mechanism implicated in Zn(2+) transport in MDCK cells. Trace elements such as Zn(2+), Cd(2+) or Cu(2+) induced MDCK cell depolarization at the micromolar level as demonstrated by bis-oxonol fluorescence and whole-cell patch experiments. This depolarization was inhibited by La(3+) and Gd(3+) and was not related to the activation of Na(+) or Cl(-) channels. Uptake of 65Zn was assessed under initial rate conditions. The kinetic parameters obtained at 37 degrees C were a K(m) of 18.9 microM and a V(max) of 0.48 nmol min(-1) (mg protein(-1)). Intracellular pH measurements using BCECF probe demonstrated that Zn(2+) transport induced a cytoplasmic acidification. The cytoplasmic acidification resulting from Zn(2+) uptake activated Na(+)/H(+) antiporter, which allowed for the recycling of protons. These data suggest that Zn(2+) enters MDCK cells through a proton-coupled metal-ion transporter, the characteristics of which are slightly different from those described for the metal transporter DCT1. This mechanism could be in part responsible of the metal transport evidenced in the distal parts of the renal tubule. 相似文献
17.
The effect of the calcium ionophore A23128 on calcium fluxes from Y-1 adrenal cortical cells was investigated. Conditions were chosen which are known to result in an inhibition of steroidogenesis (6 . 10(-6) M ionophore and 3 . 10(-4) M extracellular calcium). Calcium efflux from Y-1 cells exhibited two distinct phases. A fast phase which was insensitive to the mitochondrial poison sodium azide and a slow, azide-sensitive phase. The ionophore brought about a rapid increase in the rate of calcium efflux and an 84% reduction in the size of the calcium pool which was associated with the slow efflux phase as well as a reduction in its rate constant. A decrease in the size of the rapidly exchanging calcium pool was also detected. Ethanol, the solvent which was used for the ionophore, slightly increased the rate constant of the rapidly exchanging pool. Conditions which resulted in diminished steroidogenic capacity also brought about a reduction in the size of an energy dependent, intracellular pool. The data is interpreted as being consistent with a hypothesis that the ionophore-induced inhibition of steroidogenesis may be causatively related to the loss of intracellular calcium or to the mechanism which brings about the loss. 相似文献
18.
Alpha 1-Adrenergic receptors and bradykinin receptors are two distinct membrane receptors that stimulate phospholipid breakdown and arachidonic acid and arachidonic acid metabolite release. In the current studies, we have examined several mechanisms to assess their possible contribution to arachidonic acid release in the Madin-Darby canine kidney cell line by agonist stimulation of these receptors: 1) activation of phospholipase A2 (PLA2); 2) sequential activation of phospholipase C, diacylglycerol lipase, and monoacylglycerol lipase; and 3) inhibition of the sequential action of fatty acyl-CoA synthetase and lysophosphatide acyltransferase. Experiments were conducted to measure the stimulation of lysophospholipid production by epinephrine and bradykinin, the rate of incorporation of [3H]arachidonic acid into stimulated and unstimulated cells, and the effect on [3H]arachidonic acid release of treating cells with exogenous phospholipase C. The data indicate that stimulation of PLA2 activity is regulated by alpha 1-adrenergic and bradykinin receptors and that this stimulation is mediated, at least in part, by the activation of protein kinase C. We find that the role of diacylglycerol in arachidonic acid release is as an activator of protein kinase C and not as a substrate for a lipase. Moreover, the hormonal agonists do not appear to inhibit fatty acid reacylation. Experiments using the Ca2(+)-sensitive dye fura-2 and the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid suggest that bradykinin activates PLA2 by a transient elevation of intracellular Ca2+. This action appears to be less important for activation of PLA2 by epinephrine. Taken together, these data are consistent with the following conclusions. 1) Hormone-stimulated arachidonic acid release in Madin-Darby canine kidney-D1 cells occurs as a consequence of PLA2 activation. 2) The ability of an agonist both to mobilize Ca2+ and to activate protein kinase C contributes to its efficacy as a stimulator of PLA2-mediated arachidonic acid release. 相似文献
19.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP... 相似文献
20.
Juliana Minardi Nascimento Gilberto Carlos Franchi Alexandre Eduardo Nowill Carla Beatriz Collares-Buzato Stephen Hyslop 《Biochimie et biologie cellulaire》2007,85(5):591-605
Bothrops snake venoms cause renal damage, with renal failure being the main cause of death in humans bitten by these snakes. In this work, we investigated the cytoskeletal rearrangement and cytotoxicity caused by Bothrops alternatus venom in cultured Madin-Darby canine kidney (MDCK) cells. Incubation with venom (10 and 100 microg/mL) significantly (p <0.05) decreased the cellular uptake of neutral red dye after 1 and 3 h. Venom (100 microg/mL) also markedly decreased the transepithelial electrical resistance (RT) across MDCK monolayers. Staining with rhodamine-conjugated phalloidin revealed disarray of the cytoskeleton that involved the stress fibers at the basal cell surface and focal adhesion-associated F-actin in the cell-matrix contact region. Feulgen staining showed a significant decrease in the number of cells undergoing mitosis and an increase in the frequency of altered nuclei. Scanning electron microscopy revealed a decrease in the number of microvilli and the presence of cells with a fusiform format. Flow cytometry with annexin V and propidium iodide showed that cell death occurred by necrosis, with little apoptosis, a conclusion supported by the lack of DNA fragmentation characteristic of apoptosis. Pretreating the cells with catalase significantly attenuated the venom-induced loss of viability, indicating a possible involvement of H2O2 in the cellular damage; less protection was observed with superoxide dismutase or N omega-nitro-L-arginine methyl ester. These results indicate that Bothrops alternatus venom is cytotoxic to cultured MDCK cells, possibly via the action of reactive oxygen species. This cytotoxicity could contribute to nephrotoxicity after envenoming by this species. 相似文献