首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellobiose phosphorylase (EC 2.4.1.20) of Cellvibrio gilvus, which is an endocellular enzyme, has been purified 196-fold with a recovery of 11% and a specific activity of 27.4 mumol of glucose 1-phosphate formed/min per mg of protein. The purification procedure includes fractionation with protamine sulphate, and hydroxyapatite and DEAE-Sephadex A-50 chromatography. The enzyme appears homogeneous on polyacrylamide-gel electrophoresis, and a molecular weight of 280 000 was determined by molecular-sieve chromatography. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed a single band and mol.wt. 72 000, indicating that cellobiose phosphorylase consists of four subunits. The enzyme had a specificity for cellobiose, requiring Pi and Mg2+ for phosphorylation, but not for cellodextrin, gentibiose, laminaribiose, lactose, maltose, kojibiose and sucrose. The enzyme showed low thermostability, an optimum pH of 7.6 and a high stability in the presence of 2-mercaptoethanol or dithiothreitol. The Km values for cellobiose and Pi were 1.25 mM and 0.77 mM respectively. Nojirimycin acted as a powerful pure competitive inhibitor (with respect to cellobiose) of the enzyme (Ki = 45 microM). Addition of thiol-blocking agents to the enzyme caused 56% inhibition at 500 microM-N-ethylmaleimide and 100% at 20 microM-p-chloromercuribenzoate.  相似文献   

2.
Toluene-treated cells of Streptococcus bovis JB1 phosphorylated cellobiose, glucose, maltose, and sucrose by the phosphoenolpyruvate-dependent phosphotransferase system. Glucose phosphorylation was constitutive, while all three disaccharide systems were inducible. Competition experiments indicated that separate phosphotransferase systems (enzymes II) existed for glucose, maltose, and sucrose. [14C]maltose transport was inhibited by excess (10 mM) glucose and to a lesser extent by sucrose (90 and 46%, respectively). [14C]glucose and [14C]sucrose transports were not inhibited by an excess of maltose. Since [14C]maltose phosphorylation in triethanolamine buffer was increased 160-fold as the concentration of Pi was increased from 0 to 100 mM, a maltose phosphorylase (Km for Pi, 9.5 mM) was present, and this activity was inducible. Maltose was also hydrolyzed by an inducible maltase. Glucose 1-phosphate arising from the maltose phosphorylase was metabolized by a constitutive phosphoglucomutase that was specific for alpha-glucose 1-phosphate (Km, 0.8 mM). Only sucrose-grown cells possessed sucrose hydrolase activity (Km, 3.1 mM), and this activity was much lower than the sucrose phosphotransferase system and sucrose-phosphate hydrolase activities.  相似文献   

3.
Toluene-treated cells of Streptococcus bovis JB1 phosphorylated cellobiose, glucose, maltose, and sucrose by the phosphoenolpyruvate-dependent phosphotransferase system. Glucose phosphorylation was constitutive, while all three disaccharide systems were inducible. Competition experiments indicated that separate phosphotransferase systems (enzymes II) existed for glucose, maltose, and sucrose. [14C]maltose transport was inhibited by excess (10 mM) glucose and to a lesser extent by sucrose (90 and 46%, respectively). [14C]glucose and [14C]sucrose transports were not inhibited by an excess of maltose. Since [14C]maltose phosphorylation in triethanolamine buffer was increased 160-fold as the concentration of Pi was increased from 0 to 100 mM, a maltose phosphorylase (Km for Pi, 9.5 mM) was present, and this activity was inducible. Maltose was also hydrolyzed by an inducible maltase. Glucose 1-phosphate arising from the maltose phosphorylase was metabolized by a constitutive phosphoglucomutase that was specific for alpha-glucose 1-phosphate (Km, 0.8 mM). Only sucrose-grown cells possessed sucrose hydrolase activity (Km, 3.1 mM), and this activity was much lower than the sucrose phosphotransferase system and sucrose-phosphate hydrolase activities.  相似文献   

4.
Rates of phosphorolytic cleavage of β-glucan substrates were determined for cell extracts from Clostridium thermocellum ATCC 27405 and were compared to rates of hydrolytic cleavage. Reactions with cellopentaose and cellobiose were evaluated for both cellulose (Avicel)- and cellobiose-grown cultures, with more limited data also obtained for cellotetraose. To measure the reaction rate in the chain-shortening direction at elevated temperatures, an assay protocol was developed featuring discrete sampling at 60°C followed by subsequent analysis of reaction products (glucose and glucose-1-phosphate) at 35°C. Calculated rates of phosphorolytic cleavage for cell extract from Avicel-grown cells exceeded rates of hydrolytic cleavage by ≥20-fold for both cellobiose and cellopentaose over a 10-fold range of β-glucan concentrations (0.5 to 5 mM) and for cellotetraose at a single concentration (2 mM). Rates of phosphorolytic cleavage of β-glucosidic bonds measured in cell extracts were similar to rates observed in growing cultures. Comparisons of Vmax values indicated that cellobiose- and cellodextrin-phosphorylating activities are synthesized during growth on both cellobiose and Avicel but are subject to some degree of metabolic control. The apparent Km for phosphorolytic cleavage was lower for cellopentaose (mean value for Avicel- and cellobiose-grown cells, 0.61 mM) than for cellobiose (mean value, 3.3 mM).  相似文献   

5.
Inverting cellobiose phosphorylase (CtCBP) and cellodextrin phosphorylase (CtCDP) from Clostridium thermocellum ATCC27405 of glycoside hydrolase family 94 catalysed reverse phosphorolysis to produce cellobiose and cellodextrins in 57% and 48% yield from α-d-glucose 1-phosphate as donor with glucose and cellobiose as acceptor, respectively. Use of α-d-glucosyl 1-fluoride as donor increased product yields to 98% for CtCBP and 68% for CtCDP. CtCBP showed broad acceptor specificity forming β-glucosyl disaccharides with β-(1→4)- regioselectivity from five monosaccharides as well as branched β-glucosyl trisaccharides with β-(1→4)-regioselectivity from three (1→6)-linked disaccharides. CtCDP showed strict β-(1→4)-regioselectivity and catalysed linear chain extension of the three β-linked glucosyl disaccharides, cellobiose, sophorose, and laminaribiose, whereas 12 tested monosaccharides were not acceptors. Structure analysis by NMR and ESI-MS confirmed two β-glucosyl oligosaccharide product series to represent novel compounds, i.e. β-d-glucopyranosyl-[(1→4)-β-d-glucopyranosyl]n-(1→2)-d-glucopyranose, and β-d-glucopyranosyl-[(1→4)-β-d-glucopyranosyl]n-(1→3)-d-glucopyranose (n = 1–7). Multiple sequence alignment together with a modelled CtCBP structure, obtained using the crystal structure of Cellvibrio gilvus CBP in complex with glucose as a template, indicated differences in the subsite +1 region that elicit the distinct acceptor specificities of CtCBP and CtCDP. Thus Glu636 of CtCBP recognized the C1 hydroxyl of β-glucose at subsite +1, while in CtCDP the presence of Ala800 conferred more space, which allowed accommodation of C1 substituted disaccharide acceptors at the corresponding subsites +1 and +2. Furthermore, CtCBP has a short Glu496-Thr500 loop that permitted the C6 hydroxyl of glucose at subsite +1 to be exposed to solvent, whereas the corresponding longer loop Thr637–Lys648 in CtCDP blocks binding of C6-linked disaccharides as acceptors at subsite +1. High yields in chemoenzymatic synthesis, a novel regioselectivity, and novel oligosaccharides including products of CtCDP catalysed oligosaccharide oligomerisation using α-d-glucosyl 1-fluoride, all together contribute to the formation of an excellent basis for rational engineering of CBP and CDP to produce desired oligosaccharides.  相似文献   

6.
Two thermostable endocellulases, CelA and CelB, were purified from Thermotoga neapolitana. CelA (molecular mass, 29 kDa; pI 4.6) is optimally active at pH 6.0 at 95°C, while CelB (molecular mass, 30 kDa; pI 4.1) has a broader optimal pH range (pH 6.0 to 6.6) at 106°C. Both enzymes are characterized by a high level of activity (high Vmax value and low apparent Km value) with carboxymethyl cellulose; the specific activities of CelA and CelB are 1,219 and 1,536 U/mg, respectively. With p-nitrophenyl cellobioside the Vmax values of CelA and CelB are 69.2 and 18.4 U/mg, respectively, while the Km values are 0.97 and 0.3 mM, respectively. The major end products of cellulose hydrolysis, glucose and cellobiose, competitively inhibit CelA, and CelB. The Ki values for CelA are 0.44 M for glucose and 2.5 mM for cellobiose; the Ki values for CelB are 0.2 M for glucose and 1.16 mM for cellobiose. CelB preferentially cleaves larger cellooligomers, producing cellobiose as the end product; it also exhibits significant transglycosylation activity. This enzyme is highly thermostable and has half-lives of 130 min at 106°C and 26 min at 110°C. A single clone encoding the celA and celB genes was identified by screening a T. neapolitana genomic library in Escherichia coli. The celA gene encodes a 257-amino-acid protein, while celB encodes a 274-amino-acid protein. Both proteins belong to family 12 of the glycosyl hydrolases, and the two proteins are 60% similar to each other. Northern blots of T. neapolitana mRNA revealed that celA and celB are monocistronic messages, and both genes are inducible by cellobiose and are repressed by glucose.  相似文献   

7.
Preferential Utilization of Cellobiose by Thermomonospora curvata   总被引:3,自引:1,他引:2       下载免费PDF全文
Thermomonospora curvata was cultivated on mineral salts medium containing glucose and cellobiose under conditions that increasingly favored the uptake of glucose. In each case cellobiose was utilized in preference to glucose and induced β-glucosidase and endoglucanase activity. [14C]glucose metabolism studies indicated that cellobiose was not cleaved by extracellular β-glucosidase and transported as glucose. No evidence of cellobiose phosphorylase or a cellobiose-specific phosphoenolpyruvate-phosphotransferase system was observed.  相似文献   

8.
A unique gene cluster responsible for kojibiose utilization was identified in the genome of Pyrococcus sp. strain ST04. The proteins it encodes hydrolyze kojibiose, a disaccharide product of glucose caramelization, and form glucose-6-phosphate (G6P) in two steps. Heterologous expression of the kojibiose-related enzymes in Escherichia coli revealed that two genes, Py04_1502 and Py04_1503, encode kojibiose phosphorylase (designated PsKP, for Pyrococcus sp. strain ST04 kojibiose phosphorylase) and β-phosphoglucomutase (PsPGM), respectively. Enzymatic assays show that PsKP hydrolyzes kojibiose to glucose and β-glucose-1-phosphate (β-G1P). The Km values for kojibiose and phosphate were determined to be 2.53 ± 0.21 mM and 1.34 ± 0.04 mM, respectively. PsPGM then converts β-G1P into G6P in the presence of 6 mM MgCl2. Conversion activity from β-G1P to G6P was 46.81 ± 3.66 U/mg, and reverse conversion activity from G6P to β-G1P was 3.51 ± 0.13 U/mg. The proteins are highly thermostable, with optimal temperatures of 90°C for PsKP and 95°C for PsPGM. These results indicate that Pyrococcus sp. strain ST04 converts kojibiose into G6P, a substrate of the glycolytic pathway. This is the first report of a disaccharide utilization pathway via phosphorolysis in hyperthermophilic archaea.  相似文献   

9.
Characterization of Clostridium thermocellum JW20   总被引:9,自引:3,他引:6       下载免费PDF全文
Clostridium thermocellum JW20 (ATCC 31549), which was isolated from a Louisiana cotton bale, grew on cellulose, cellobiose, and xylooligomers and, after adaptation, on glucose, fructose, and xylose in the pH range of 7.5 to 6.1 with Topt of 60°C, Tmax of 69°C, and Tmin of above 28°C. Doubling times during growth on cellulose and cellobiose were 6.5 and 2.5 h, respectively. The G+C content of the DNA was 40 mol% (chemical analysis). Growth on cellulose as substrate was totally inhibited in the presence of more than 125 mM sodium sulfate, 300 mM sodium chloride, 250 mM potassium chloride, 200 mM calcium chloride, 125 mM magnesium chloride, 40 mM lactate, or 250 mM acetate. The ratio of the fermentation products ethanol to acetate plus H2 decreased when the culture was agitated. Agitation otherwise increased the rate of cellulose degradation in a growing culture but not under nongrowth conditions or with cell-free culture supernatant containing the extracellular cellulase. Shaking lowered the concentration of H2 in the culture broth and thus minimized inhibition by the H2 formed. Externally added H2 caused an increased formation of ethanol during growth on cellulose or cellobiose. However, at an atmospheric pressure as high as 355 kPa (50 lb/in2), H2 did not cause significant growth inhibition beyond an increasing lag phase (up to 24 h). Several criteria to specifically prove the purity of C. thermocellum cultures were suggested.  相似文献   

10.
Alpha-glucan phosphorylase catalyzes the reversible cleavage of α-1-4-linked glucose polymers into α-D-glucose-1-phosphate. We report the recombinant production of an α-glucan/maltodextrin phosphorylase (PF1535) from a hyperthermophilic archaeon, Pyrococcus furiosus, and the first detailed biochemical characterization of this enzyme from any archaeal source using a mass-spectrometry-based assay. The apparent 98 kDa recombinant enzyme was active over a broad range of temperatures and pH, with optimal activity at 80 °C and pH 6.5–7. This archaeal protein retained its complete activity after 24 h at 80 °C in Tris-HCl buffer. Unlike other previously reported phosphorylases, the Ni-affinity column purified enzyme showed broad substrate specificity in both the synthesis and degradation of maltooligosaccharides. In the synthetic direction of the enzymatic reaction, the lowest oligosaccharide required for the chain elongation was maltose. In the degradative direction, the archaeal enzyme can produce glucose-1-phosphate from maltotriose or longer maltooligosaccharides including both glycogen and starch. The specific activity of the enzyme at 80 °C in the presence of 10 mM maltoheptaose and at 10 mg ml–1 glycogen concentration was 52 U mg–1 and 31 U mg–1, respectively. The apparent Michaelis constant and maximum velocity for inorganic phosphate were 31 ± 2 mM and 0.60 ± 0.02 mM min–1 µg–1, respectively. An initial velocity study of the enzymatic reaction indicated a sequential bi-bi catalytic mechanism. Unlike the more widely studied mammalian glycogen phosphorylase, the Pyrococcus enzyme is active in the absence of added AMP.  相似文献   

11.
Phanerochaete chrysosporium produces intracellular soluble and particulate β-glucosidases and an extracellular β-glucosidase. The extracellular enzyme is induced by cellulose but repressed in the presence of glucose. The molecular weight of this enzyme is 90,000. The Km for p-nitrophenyl-β-glucoside is 1.6 × 10−4 M; the Ki for glucose, a competitive inhibitor, is 5.0 × 10−4 M. The Km for cellobiose is 5.3 × 10−4 M. The intracellular soluble enzyme is induced by cellobiose; this induction is prevented by cycloheximide. The presence of 300 mM glucose in the medium, however, had no effect on induction. The Km for p-nitrophenyl-β-glucoside is 1.1 × 10−4 M. The molecular weight of this enzyme is ~410,000. Both enzymes have an optimal temperature of 45°C and an Eact of 9.15 kcal (ca. 3.83 × 104 J). The pH optima, however, were ~7.0 and 5.5 for the intracellular and extracellular enzymes, respectively.  相似文献   

12.
Despite the presence of β-1,2-glucan in nature, few β-1,2-glucan degrading enzymes have been reported to date. Recently, the Lin1839 protein from Listeria innocua was identified as a 1,2-β-oligoglucan phosphorylase. Since the adjacent lin1840 gene in the gene cluster encodes a putative glycoside hydrolase family 3 β-glucosidase, we hypothesized that Lin1840 is also involved in β-1,2-glucan dissimilation. Here we report the functional and structural analysis of Lin1840. A recombinant Lin1840 protein (Lin1840r) showed the highest hydrolytic activity toward sophorose (Glc-β-1,2-Glc) among β-1,2-glucooligosaccharides, suggesting that Lin1840 is a β-glucosidase involved in sophorose degradation. The enzyme also rapidly hydrolyzed laminaribiose (β-1,3), but not cellobiose (β-1,4) or gentiobiose (β-1,6) among β-linked gluco-disaccharides. We determined the crystal structures of Lin1840r in complexes with sophorose and laminaribiose as productive binding forms. In these structures, Arg572 forms many hydrogen bonds with sophorose and laminaribiose at subsite +1, which seems to be a key factor for substrate selectivity. The opposite side of subsite +1 from Arg572 is connected to a large empty space appearing to be subsite +2 for the binding of sophorotriose (Glc-β-1,2-Glc-β-1,2-Glc) in spite of the higher Km value for sophorotriose than that for sophorose. The conformations of sophorose and laminaribiose are almost the same on the Arg572 side but differ on the subsite +2 side that provides no interaction with a substrate. Therefore, Lin1840r is unable to distinguish between sophorose and laminaribiose as substrates. These results provide the first mechanistic insights into β-1,2-glucooligosaccharide recognition by β-glucosidase.  相似文献   

13.
1. Cell-free extracts from Epidinium ecaudatum (Crawley) hydrolysed the three hemicellulose fractions of pasture plants, but at different rates. 2. All of the constituent monosaccharides are released from the hemicellulose fractions, galactose and uronic acids being liberated at much slower rates than pentoses. 3. An arabinofuranosidase, which removes arabinose from highly branched arabinoxylan before the xylan chain can be hydrolysed, was isolated free from other pentosanases. 4. A xylanase hydrolysing xylan (by random cleavage) and xylodextrins of degree of polymerization (D.P.) > 3 to xylotriose and xylobiose was isolated free from other pentosanases. 5. A separate xylodextrinase hydrolysing (by random cleavage) xylodextrins of D.P. > 2 to xylobiose and xylose was also obtained; this enzyme did not hydrolyse xylan or xylobiose and the original extracts themselves possessed very weak xylobiase activity. 6. The epidinial extracts hydrolysed laminaribiose, laminarin, lichenin and cellodextrins of D.P. < 7 rapidly, cellobiose and gentiobiose slowly but cellulose not at all. 7. Polysaccharide glucose associated with plant linear B hemicellulose was liberated with cellobiose and possibly laminaribiose as intermediates. 8. The cellodextrinase hydrolysed cellopentaose initially to cellobiose plus cellotriose and is a distinctly different enzyme from the xylanase and xylodextrinase. 9. Extracts from Entodinium species and Eremoplastron bovis also hydrolysed all three types of plant hemicellose.  相似文献   

14.
A whole cell biotransformation system for reductive amination has been studied in recombinant Escherichia coli cells. Reductive amination of 2-keto-3-methylvalerate to l-isoleucine by a two-enzyme-cascade was achieved by overproduction of endogenous l-alanine dependent transaminase AvtA and heterologous l-alanine dehydrogenase from Bacillus subtilis in recombinant E. coli. Up to 100 mM l-isoleucine were produced from 100 mM 2-keto-3-methylvalerate and 100 mM ammonium sulfate. Regeneration of NADH as cofactor in the whole cell system was driven by glucose catabolism. The effects of defined gene deletions in the central carbon metabolism on biotransformation were tested. Strains lacking the NuoG subunit of NADH:ubiquinone oxidoreductase (complex I) or aceA encoding the glyoxylate cycle enzyme isocitrate lyase exhibited increased biotransformation rates.  相似文献   

15.
The β-glucosidase encoded by the td2f2 gene was isolated from a compost microbial metagenomic library by functional screening. The protein was identified to be a member of the glycoside hydrolase family 1 and was overexpressed in Escherichia coli, purified, and biochemically characterized. The recombinant β-glucosidase, Td2F2, exhibited enzymatic activity with β-glycosidic substrates, with preferences for glucose, fucose, and galactose. Hydrolysis occurred at the nonreducing end and in an exo manner. The order of catalytic efficiency for glucodisaccharides and cellooligosaccharides was sophorose > cellotetraose > cellotriose > laminaribiose > cellobiose > cellopentaose > gentiobiose, respectively. Intriguingly, the p-nitrophenyl-β-d-glucopyranoside hydrolysis activity of Td2F2 was activated by various monosaccharides and sugar alcohols. At a d-glucose concentration of 1000 mm, enzyme activity was 6.7-fold higher than that observed in the absence of d-glucose. With 31.3 mm d-glucose, Td2F2 catalyzed transglycosylation to generate sophorose, laminaribiose, cellobiose, and gentiobiose. Transglycosylation products were detected under all activated conditions, suggesting that the activity enhancement induced by monosaccharides and sugar alcohols may be due to the transglycosylation activity of the enzyme. These results show that Td2F2 obtained from a compost microbial metagenome may be a potent candidate for industrial applications.  相似文献   

16.
Kennebec (cv) potatoes randomly developed translucent areas in their centrally located pith-parenchymal cells during storage. These defective areas were characterized as having reduced starch concentration and increased levels of free sugars (i. e. sucrose and glucose) and inorganic phosphate. Electron micrographs of potato tubers stored at 10° ± 1°C for 8 months indicated that the amyloplast membrane was still intact and continuous around starch granules in both normal and prematurely sweetened tissue. The total activities of phosphorylase and sucrose-6-P synthase were elevated 5.4- and 3.8-fold, respectively, in the defective tissue compared to healthy nonsweetened tubers while there were no significant differences in the levels of sucrose synthase, UDPglucose pyrophosphorylase, invertase, or α-amylase. Total and specific activities of acid phosphatase were only slightly elevated in translucent tissue but their increase was significant (P < 0.05, t test) over that seen in healthy tubers. The premature sweetening in storage may have been indirectly triggered by moisture and heat stress experienced during development. Translucency eventually led to physical deterioration of the tissue.  相似文献   

17.
Bacterial laminaribiose phosphorylase (LBP(bac)) was first identified and purified from cell-free extract of Paenibacillus sp. YM-1. It phosphorolyzed laminaribiose into α-glucose 1-phosphate and glucose, but did not phosphorolyze other glucobioses. It slightly phosphorolyzed laminaritriose and higher laminarioligosaccharides. The specificity of the degree of polymerization of the substrate was clearly different from that of the enzyme of Euglena gracilis (LBP(Eug)): LBP(bac) was more specific to laminaribiose than LBP(Eug). It showed acceptor specificity in reverse phosphorolysis similar to LBP(Eug). Cloning of the gene encoding LBP(bac) (lbpA) has revealed that LBP(bac) is a member of the glucoside hydrolase family 94, which includes cellobiose phosphorylase, cellodextrin phosphorylase, and N,N'-diacetylchitobiose phosphorylase. The genes that encode the components of an ATP-binding cassette sugar transporter specific to laminarioligosaccharides were identified upstream of lbpA, suggesting that the role of LBP(bac) is to utilize laminaribiose generated outside the cell. This role is different from that of LBP(Eug), which participates in the utilization of paramylon, the intracellular storage 1,3-β-glucan.  相似文献   

18.
This study was designed to compare the uptake and distribution of 14C among fructose, glucose, sucrose, and starch in the cob, pedicel, and endosperm tissues of maize (Zea mays L.) kernels induced to abort by high temperature with those that develop normally. Kernels cultured in vitro at 30 and 35°C were transferred to [14C]sucrose media 10 days after pollination. Kernels cultured at 35°C aborted prior to the onset of linear dry matter accumulation. Significant uptake into the cob, pedicel, and endosperm of radioactivity associated with the soluble and starch fractions of the tissues was detected after 24 hours in culture on labeled media. After 8 days in culture on [14C]sucrose media, 48 and 40% of the radioactivity associated with the cob carbohydrates was found in the reducing sugars at 30 and 35°C, respectively. This indicates that some of the sucrose taken up by the cob tissue was cleaved to fructose and glucose in the cob. Of the total carbohydrates, a higher percentage of label was associated with sucrose and a lower percentage with fructose and glucose in pedicel tissue of kernels cultured at 35°C compared to kernels cultured at 30°C. These results indicate that sucrose was not cleaved to fructose and glucose as rapidly during the unloading process in the pedicel of kernels induced to abort by high temperature. Kernels cultured at 35°C had a much lower proportion of label associated with endosperm starch (29%) than did kernels cultured at 30°C (89%). Kernels cultured at 35°C had a correspondingly higher proportion of 14C in endosperm fructose, glucose, and sucrose. These results indicate that starch synthesis in the endosperm is strongly inhibited in kernels induced to abort by high temperature even though there is an adequate supply of sugar.  相似文献   

19.
Diosgenin is an important precursor for synthesis of more than 200 steroidal hormone medicines. Rhizome of Dioscorea zingiberensis C. H. Wright (RDZ) contained the highest content of diosgenin in Dioscorea plant species. Diosgenin is traditionally extracted by acid hydrolysis from RDZ. However, the acid hydrolysis process produces massive wastewater which caused serious environment pollution. In this study, diosgenin extraction by direct biotransformation with Penicillium dioscin was investigated. The spawn cultivation conditions were optimized as: Czapeks liquid culture medium without sugar and agar (1,000 ml) + 6.0 g dioscin/6.0 g DL, 30 °C, 36 h; solid fermentation of RDZ: mycelia/RDZ of 0.05 g/kg, 30 °C, 50 h; the yield of diosgenin was over 90 %. Spawn cultivation was crucial for the direct biotransformation. In the spawn cultivation, amount and ratio of dioscin/DL were the key factors to promote biotransformation activity of P. dioscin. This biotransformation method was environment-friendly, simple and energy saving, and might be a potential substitute for acid hydrolysis in diosgenin extraction industry.  相似文献   

20.
Yeast strain Clavispora NRRL Y-50464 is able to produce cellulosic ethanol from lignocellulosic materials without addition of external β-glucosidase by simultaneous saccharification and fermentation. A β-glucosidase BGL1 protein from this strain was recently reported supporting its cellobiose utilization capability. Here, we report two additional new β-glucosidase genes encoding enzymes designated as BGL2 and BGL3 from strain NRRL Y-50464. Quantitative gene expression was analyzed and the gene function of BGL2 and BGL3 was confirmed by heterologous expression using cellobiose as a sole carbon source. Each gene was cloned and partially purified protein obtained separately for direct enzyme assay using varied substrates. Both proteins showed the highest specific activity at pH 5 and relatively strong affinity with a Km of 0.08 and 0.18 mM for BGL2 and BGL3, respectively. The optimum temperature was found to be 50°C for BGL2 and 55°C for BGL3. Both proteins were able to hydrolyze 1,4 oligosaccharides evaluated in this study. They also showed a strong resistance to glucose product inhibition with a Ki of 61.97 and 38.33 mM for BGL2 and BGL3, respectively. While BGL3 was sensitive showing a significantly reduced activity to 4% ethanol, BGL2 demonstrated tolerance to ethanol. Its activity was enhanced in the presence of ethanol but reduced at concentrations greater than 16%. The presence of the fermentation inhibitors furfural and HMF did not affect the enzyme activity. Our results suggest that a β-glucosidase gene family exists in Clavispora NRRL Y-50464 with at least three members in this group that validate its cellobiose hydrolysis functions for lower-cost cellulosic ethanol production. Results of this study confirmed the cellobiose hydrolysis function of strain NRRL Y-50464, and further supported this dual functional yeast as a candidate for lower-cost cellulosic ethanol production and next-generation biocatalyst development in potential industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号