首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Developmental cell》2022,57(18):2181-2203.e9
  1. Download : Download high-res image (207KB)
  2. Download : Download full-size image
  相似文献   

2.
3.
Drosophila genetics has identified several components of the Hedgehog signaling pathway, but the mechanism by which they act remains elusive. In this issue of Developmental Cell, a report by Zhang et al. provides evidence that the kinesin-related protein Costal-2 forms a multi-component scaffold that mediates Hedgehog signaling.  相似文献   

4.
In addition to its role in embryonic development, the Hedgehog pathway has been shown to be an active participant in cancer development, progression, and metastasis. Although this pathway is activated by autocrine signaling by Hedgehog ligands, it can also initiate paracrine signaling with cells in the microenvironment. This creates a network of Hedgehog signaling that determines the malignant behavior of the tumor cells. As a result of paracrine signal transmission, the effects of Hedgehog signaling most profoundly influence the stromal cells that constitute the tumor microenvironment. The stromal cells in turn produce factors that nurture the tumor. Thus, such a resonating cross-talk can amplify Hedgehog signaling, resulting in molecular chatter that overall promotes tumor progression. Inhibitors of Hedgehog signaling have been the subject of intense research. Several of these inhibitors are currently being evaluated in clinical trials. Here, we review the role of the Hedgehog pathway in the signature characteristics of cancer cells that determine tumor development, progression, and metastasis. This review condenses the latest findings on the signaling pathways that are activated and/or regulated by molecules generated from Hedgehog signaling in cancer and cites promising clinical interventions. Finally, we discuss future directions for identifying the appropriate patients for therapy, developing reliable markers of efficacy of treatment, and combating resistance to Hedgehog pathway inhibitors.  相似文献   

5.
6.
《Developmental cell》2022,57(14):1758-1775.e7
  1. Download : Download high-res image (141KB)
  2. Download : Download full-size image
  相似文献   

7.
Here, we present the preparation of a sulfated, fully protected tetrasaccharide derivative following the glycosaminoglycan (GAG)-related sequence GlcNAc-β(1?→?4)-Glc-β(1?→?3). The tetramer was efficiently assembled via an iterative glycosylation strategy using monosaccharide building blocks. A fluorous tag was attached at position 6 of the reducing end unit enabling the purification of reaction intermediates by simple fluorous solid phase extraction. Fluorescence polarization competition experiments revealed that the synthesized tetrasaccharide strongly interacts with two heparin-binding growth factors, midkine and FGF-2 (IC50 of 270?nM and 2.4?µM, respectively). Our data indicate that this type of oligosaccharide derivatives, displaying sulfates, hydrophobic protecting groups and a fluorinated tail can be considered as interesting GAG mimetics for the regulation of relevant carbohydrate-protein interactions.  相似文献   

8.
The senescence‐associated secretory phenotype (SASP) is a striking characteristic of senescence. Accumulation of SASP factors causes a pro‐inflammatory response linked to chronic disease. Suppressing senescence and SASP represents a strategy to prevent or control senescence‐associated diseases. Here, we identified a small molecule SR9009 as a potent SASP suppressor in therapy‐induced senescence (TIS) and oncogene‐induced senescence (OIS). The mechanism studies revealed that SR9009 inhibits the SASP and full DNA damage response (DDR) activation through the activation of the NRF2 pathway, thereby decreasing the ROS level by regulating the expression of antioxidant enzymes. We further identified that SR9009 effectively prevents cellular senescence and suppresses the SASP in the livers of both radiation‐induced and oncogene‐induced senescence mouse models, leading to alleviation of immune cell infiltration. Taken together, our findings suggested that SR9009 prevents cellular senescence via the NRF2 pathway in vitro and in vivo, and activation of NRF2 may be a novel therapeutic strategy for preventing cellular senescence.  相似文献   

9.
The objective of this study was to determine if a functional heterodimer of prolactin receptor (PRLR) and growth hormone receptor (GHR) can be formed in humans. A novel ligand was designed that is composed of a GHR antagonist (B2036) and a PRLR antagonist (G129R) fused in tandem (B2036-G129R). Because both B2036 and G129R are binding site 2 inactive antagonists, the B2036-G129R fusion protein, in theory contains only two functional binding site 1s: one for GHR and one for PRLR. We examined the behavior of this chimeric ligand in cell lines known to express GHR, PRLR, or both receptors. The data presented show that B2036-G129R is inactive in IM-9 cells that express only GHR or Nb2 cells that express PRLR. In T-47D cells that coexpress PRLR and GHR, B2036-G129R activates JAK2/STAT5 signaling. These findings provide evidence that B2036-G129R is able to activate signal transduction through a heterodimer of PRLR and GHR in humans.  相似文献   

10.
Intrauterine growth retardation (IUGR) impairs immune function in children. IUGR is associated with an imbalance of oxidative stress and abnormal apoptosis. Therefore, an IUGR rats model was established to determine the antioxidant capacity and apoptosis in newborn IUGR rats and explored whether these effects were regulated after Docosahexaenoic acid (DHA) supplementation to rat pups. First, eight normal-birth-weight (NBW) and eight IUGR neonatal rats (a 10% low-protein diet) were used to obtain the antioxidant capacity and apoptosis in IUGR rat pups. Then, 32 newborn rats were randomly assigned to the normal birth weight (NBW), DHA supplementation for NBW (ND), IUGR, and DHA supplementation for IUGR (ID) groups. Starting from the 7th day after birth, DHA was given to the experimental group and the same volume of distilled water was given to the control group for 21 days. (1) DHA improved the serum and spleen CD4/CD8 ratios and IL-4 and IFN-γ mRNA expression. (2) DHA decreased the level of MDA, but increased T-AOC in serum and spleen. (3) DHA increased the protein expression of Bcl-2 while decreased Bax. (4) DHA increased protein expression of the Nrf2 signaling pathway and the downstream antioxidant genes GSH-PX and CAT. DHA may alleviate the impairment of spleen cellular immunity in IUGR rat pups by inhibiting oxidative stress and apoptosis related to the activation of Nrf2 signaling pathway.  相似文献   

11.
12.
13.
14.
Since its discovery in the late 1990s as a signaling molecule in the Ras/Ral pathway, Reps2 has emerged as an important player in receptor-mediated endocytosis. Reps2 contains Eps15 homology (EH) domains, proline-rich regions, and a coiled-coil domain that engage in several protein-protein interactions to coordinate the internalization of various receptors with molecular signaling. Reps2 has clinical importance as it suppresses the ability of its binding partner RalBP1 to transport chemotherapeutic drugs, such as doxorubicin, out of a cell. Reps2 is also dysregulated during the progression of prostate cancer and is a potential biomarker for breast and prostate cancer.  相似文献   

15.
The altered metabolism of cancer can render cells dependent on the availability of metabolic substrates for viability. Investigating the signaling mechanisms underlying cell death in cells dependent upon glucose for survival, we demonstrate that glucose withdrawal rapidly induces supra‐physiological levels of phospho‐tyrosine signaling, even in cells expressing constitutively active tyrosine kinases. Using unbiased mass spectrometry‐based phospho‐proteomics, we show that glucose withdrawal initiates a unique signature of phospho‐tyrosine activation that is associated with focal adhesions. Building upon this observation, we demonstrate that glucose withdrawal activates a positive feedback loop involving generation of reactive oxygen species (ROS) by NADPH oxidase and mitochondria, inhibition of protein tyrosine phosphatases by oxidation, and increased tyrosine kinase signaling. In cells dependent on glucose for survival, glucose withdrawal‐induced ROS generation and tyrosine kinase signaling synergize to amplify ROS levels, ultimately resulting in ROS‐mediated cell death. Taken together, these findings illustrate the systems‐level cross‐talk between metabolism and signaling in the maintenance of cancer cell homeostasis.  相似文献   

16.
Pancreatic adenocarcinoma (PDA) is characterized by a dense desmoplastic reaction that comprises 60–90% of the tumor, while only 10–40% of the tumor is composed of malignant epithelial cells. This desmoplastic reaction is composed of stromal fibroblast cells, extracellular matrix proteins, and immune cells. Accumulating evidence has suggested that the stromal and epithelial cell compartments interact during the pathogenesis of this disease. Therefore, it is important to identify the signaling pathways responsible for this interaction to better understand the mechanisms by which PDA invades and metastasizes. Here, we show that secreted stromal factors induce invasion of PDA cells. Specifically, hedgehog signaling from the tumor cells induces tenascin C (TnC) secretion from the stromal cells that acts back upon the tumor cells in a paracrine fashion to induce the invasion of PDA cells through its' receptor annexin A2 (AnxA2). Therefore, blocking the interaction between TnC and AnxA2 has the potential to prevent liver metastasis in PDA.  相似文献   

17.
W Lu  D Gong  D Bar-Sagi  P A Cole 《Molecular cell》2001,8(4):759-769
The regulation of protein tyrosine phosphatase (PTPase) SHP-2 is proposed to involve tyrosine phosphorylation on two tail tyrosine residues. Using "expressed protein ligation", nonhydrolyzable phosphotyrosine analogs were introduced at known phosphorylation sites in SHP-2. Biochemical analysis suggests that a phosphonate at Tyr542 interacts intramolecularly with the N-terminal SH2 domain to relieve basal inhibition of the PTPase, whereas a phosphonate at Tyr-580 stimulates the PTPase activity by interaction with the C-terminal SH2 domain. Microinjection experiments indicate that a single phosphorylation of Tyr-542 of SHP-2 is sufficient to activate the MAP kinase pathway in living cells. These studies support a novel mechanism explaining how tyrosine phosphorylation of a PTPase is important in signal transduction.  相似文献   

18.
19.
Despite being a cell-matrix adhesion molecule, beta4 integrin can prompt the multiplication of neoplastic cells dislodged from their substrates (anchorage-independent growth). However, the molecular events underlying this atypical behavior remain partly unexplored. We found that activation of the Met receptor for hepatocyte growth factor results in the tyrosine phosphorylation of beta4, which is instrumental for integrin-mediated recruitment of the tyrosine phosphatase Shp2. Shp2 binding to beta4 enhances the activation of Src, which, in turn, phosphorylates the multiadaptor Gab1 predominantly on consensus sites for Grb2 association, leading to privileged stimulation of the Ras-extracellular signal-regulated kinase (ERK) cascade. This signaling axis can be inhibited by small interfering RNA-mediated beta4 depletion, by a beta4 mutant unable to bind Shp2, and by pharmacological and genetic inhibition of Shp2 or Src. Preservation of the beta4 docking sites for Shp2 as well as the integrity of Shp2, Src, or ERK activity are required for the beta4-mediated induction of anchorage-independent growth. These results unravel a novel pathway whereby beta4 directs tyrosine kinase-based signals toward adhesion-unrelated outcomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号