首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mature seeds of Trapella sinensis, after removal of receptacles, were germinated for 10 days at 23°C in the dark and then were illuminated. After illumination, the activity of δ-aminolaevulinic acid (ALA) dehydratase was determined in relation to chlorophyll synthesis, and increases in dry weight of the whole or of parts of a developing seedling. Internal programming of development was related to changes in ALA dehydratase activity on the basis of porphobilinogen synthesis. Exogenously added ALA as well as an extract of Chlorella cells promoted this activity. There was an enhancement of chlorophyll formation resulting in an enhancement of the photosynthetic rate and in an increase of growth promotion by addition of Chlorella extract.  相似文献   

2.
Abstract

4-Hydroxynonenal (HNE) is a highly toxic product of lipid peroxidation (LPO). Its role in the inhibition of cytochrome c oxidase activity and oxidative modifications of mitochondrial lipids and proteins were investigated. The exposure of mitochondria isolated from rat heart to HNE resulted in a time- and concentration-dependent inhibition of cytochrome c oxidase activity with an IC50 value of 8.3 ± 1.0 μM. Immunoprecipitation-Western blot analysis showed the formation of HNE adducts with cytochrome c oxidase subunit I. The loss of cytochrome c oxidase activity was also accompanied by reduced thiol group content and increased HNE-lysine fluorescence. Furthermore, there was a marked increase in conjugated diene formation indicating LPO induction by HNE. Fluorescence measurements revealed the formation of bityrosines and increased surface hydrophobicity of HNE-treated mitochondrial membranes. Superoxide dismutase + catalase and the HO? radical scavenger mannitol partially prevented inhibition of cytochrome c oxidase activity and formation of bityrosines. These findings suggest that HNE induces formation of reactive oxygen species and its damaging effect on mitochondria involves both formation of HNE–protein adducts and oxidation of membrane lipids and proteins by free radicals.  相似文献   

3.
In order to distinguish between the regulatory effects of oxygen tension and light intensity on cytochrome c oxidase protein and enzymatic activity cells of Rhodobacter capsulatus were shifted from phototrophic (anaerobic, light) growth to aerobic-light, aerobic-dark and to anaerobic-dark conditions, respectively. During shift-experiments the formation of oxidase protein and regulation of oxidase activity was followed by immunological and enzymatic means. The results support the idea, that the formation of oxidase protein is regulated by oxygen tension and light intensity changes, whereas the regulation of oxidase activity seems only to be correlated to the oxygen tension. A DNA sequence involved in the oxygen-dependent regulation of cytochrome oxidase could be identified in the regulation-deficient oxidase mutant H41 of R. capsulatus. Immunological investigations of cytochrome c 2 from mutant H41 demonstrated at the same time the participation of the c 2-polypeptide in the regulation of cytochrome c oxidase.Abbreviations Bchl bacteriochlorophyll - CIE crossed immuno-electrophoresis - DMSO dimethyl sulfoxide  相似文献   

4.
It was shown that the early growth of Trapella sinensis seedlings can be divided into two distinct stages based upon susceptibility for different growth-regulators, such as gibberellin, kinetin, and the extract of Chlorella cells grown in light. The two stages were observed on the 7th and the 10th days, respectively. Especially the epicotyl showed different sensitivities to the growth regulators mentioned above. The effect of gibberellin (GA3), kinetin and the extract of Chlorella cells grown in light on the growth of T. sinensis seedlings after germination at 23 °C in light at 2000 lux was investigated. Each addition was done at zero time and after 3, 6 and 10 days growth, and the effect was observed subsequent every 3 or 4 days.  相似文献   

5.
The facultative piezophile Shewanella violacea DSS12 is known to have respiratory components that alter under the influence of hydrostatic pressure during growth, suggesting that its respiratory system is adapted to high pressure. We analyzed the expression of the genes encoding terminal oxidases and some respiratory components of DSS12 under various growth conditions. The expression of some of the genes during growth was regulated by both the O2 concentration and hydrostatic pressure. Additionally, the activities of cytochrome c oxidase and quinol oxidase of the membrane fraction of DSS12 grown under various conditions were measured under high pressure. The piezotolerance of cytochrome c oxidase activity was dependent on the O2 concentration during growth, while that of quinol oxidase was influenced by pressure during growth. The activity of quinol oxidase was more piezotolerant than that of cytochrome c oxidase under all growth conditions. Even in the membranes of the non-piezophile Shewanella amazonensis, quinol oxidase was more piezotolerant than cytochrome c oxidase, although both were highly piezosensitive as compared to the activities in DSS12. By phylogenetic analysis, piezophile-specific cytochrome c oxidase, which is also found in the genome of DSS12, was identified in piezophilic Shewanella and related genera. Our observations suggest that DSS12 constitutively expresses piezotolerant respiratory terminal oxidases, and that lower O2 concentrations and higher hydrostatic pressures induce higher piezotolerance in both types of terminal oxidases. Quinol oxidase might be the dominant terminal oxidase in high-pressure environments, while cytochrome c oxidase might also contribute. These features should contribute to adaptation of DSS12 in deep-sea environments.  相似文献   

6.
Orange, chlorophyll-deficient cells of Chlorella fusca were obtained by prolonged exposure (6 wk) to light and CO2 (1.5% in air) in a nitrogen-sparse medium: growth ceased after 6 days, chlorophyll formation after 3 days, and then chlorophyll degradation followed with a drop in chlorophyll a:b ratio. When the 6-wk-old cells were exposed to light in a nitrogen-rich medium and sparged with CO2 (1.5% in air) rapid chlorophyll synthesis ensued with preferential synthesis of chlorophyll a. Regreening under these conditions was complete in approximately 24–30 hr and during this period no cell division occurred. We were unable to demonstrate 5-aminolaevulinate synthase (EC 2.3.1.37) in cell-free extracts of regreening Chlorella but demonstrated aminolaevulinate formation by whole regreening cells incubated in the presence of laevulinate, an inhibitor of aminolaevulinate dehydratase (EC 4.2.1.24). Chlorophyll synthesis was almost completely inhibited by 100 mm laevulinate, and a stoichiometric relationship exists between aminolaevulinate formation and the chlorophyll deficit caused by the presence of laevulinate: thus, the use of the inhibitor provides a true indication of the ability of the cells to form aminolaevulinate.Using this technique we found that chlorophyll synthesis during regreening appears to be regulated by the availability of aminolaevulinate since there was a correlation between the rate of aminolaevulinate and chlorophyll synthesis: both reached a maximum about halfway through the regreening period. It was not possible to decide whether the availability of aminolaevulinate was limited by the level or activity of aminolaevulinate synthase or by the supply of succinyl CoA. Regreening of orange Chlorella was inhibited by cycloheximide. Regreening of Chlorella can occur in the dark if vigorously sparged with oxygen so differing from greening of higher plants which is light dependent.Both [1,4-14C]succinate and [2-14C]glycine were incorporated into aminolaevulinate by partly regreened Chlorella fusca cells incubated in the presence of laevulinate.  相似文献   

7.
Transition of n-hexadecane utilizing cultures of Candida maltosa to oxygen-limited growth caused an up to 6-fold increase of the cellular cytochrome P-450 content. Enhanced cytochrome P-450 formation required protein de novo synthesis and was not due to a change of the apo/holo-enzyme ratio as demonstrated by cycloheximide inhibition and immunological quantitation. The effect of low oxygen concentration (pO2=3–5%) was simulated by selective inhibition of alkane hydroxylation with carbon monoxide (at a pO2 of 70–75%). Enhanced cytochrome P-450 formation occurred even when a constant growth rate was maintained through utilization of a second non-repressive growth substrate. However, the presence of n-alkanes was an essential precondition. It was concluded, that the cytochrome P-450 formation was mainly regulated by the intracellular inducer concentration which depends on the relative rates of alkane transport into the cell and the actual alkane hydroxylating activity of the enzyme system.Abbreviation cyt cytochrome  相似文献   

8.
A method was established for the identification and quantification of indole-3-acetic acid (IAA) in extracts of the kelp Laminaria japonica. An IAA content of 90–95 μg kg−1 fresh weight in kelp extract was determined by high performance liquid chromatography (HPLC). IAA identification was based on a combination of co-chromatography and comparative chromatography with a standard, analysis of UV spectra, and atmospheric pressure electrospray mass spectrometry (APESI-MS). IAA was isolated by silica gel chromatography and HPLC. The effect on the growth of four marine microalgae of the pure IAA isolated from kelp extract was investigated. Exogenously added IAA from kelp enhanced the growth of Chlorella sp., Dunaliella salina and Porphyridium cruentum, but not that of Chaetoceros muelleri. IAA from kelp significantly inhibited the accumulation of soluble cellular proteins in Chlorella sp. and P. cruentum, and had a very significant effect on chlorophyll biosynthesis in Chlorella sp. However, there was no obvious effect of IAA on the regulation of biosynthesis of cellular polysaccharides in these four marine microalgae.  相似文献   

9.
Cyanobacterial thylakoids catalyze both photosynthetic and respiratory activities. In a photosystem I-less Synechocystis sp. PCC 6803 strain, electrons generated by photosystem II appear to be utilized by cytochrome oxidase. To identify the lumenal electron carriers (plastocyanin and/or cytochromes c 553, c 550, and possibly c M) that are involved in transfer of photosystem II-generated electrons to the terminal oxidase, deletion constructs for genes coding for these components were introduced into a photosystem I-less Synechocystis sp. PCC 6803 strain, and electron flow out of photosystem II was monitored in resulting strains through chlorophyll fluorescence yields. Loss of cytochrome c 553 or plastocyanin, but not of cytochrome c 550, decreased the rate of electron flow out of photosystem II. Surprisingly, cytochrome c M could not be deleted in a photosystem I-less background strain, and also a double-deletion mutant lacking both plastocyanin and cytochromec 553 could not be obtained. Cytochrome c M has some homology with the cytochrome c-binding regions of the cytochromecaa3 -type cytochrome oxidase from Bacillus spp. and Thermus thermophilus. We suggest that cytochrome c M is a component of cytochrome oxidase in cyanobacteria that serves as redox intermediate between soluble electron carriers and the cytochromeaa3 complex, and that either plastocyanin or cytochrome c 553 can shuttle electrons from the cytochrome b6f complex to cytochrome c M.  相似文献   

10.
The present study investigated the allelopathic effects of aqueous extracts of Castanea henryi litter on the growth and physiological responses of Brassica pekinensis and Zea mays. Treatment with high concentrations of leaf extract (0.05 g/ml for B. pekinensis and 0.10 g/ml for Z. mays) significantly increased malonaldehyde content and reduced seed germination, seedling growth, chlorophyll content, and the activity levels of antioxidant enzymes. These effects generally increased with increasing extract concentration. However, in Z. mays, low extract concentrations actually promoted seed germination, shoot growth, chlorophyll content, and antioxidant enzyme activity. The allelopathic effects of the various C. henryi extracts decreased as follows: leaf extract > twig extract > shell extract. Eleven potential allelochemicals including rutin, quercetin, luteolin, procyanidin A2, kaempferol, allantoin, propionic acid, salicylic acid, jasmonic acid, methylmalonic acid, and gentisic acid were identified in the leaves of C. henryi which were linked to the strongest allelopathic effects. These findings suggest that the allelopathic effects of C. henryi differ depending on receptor plant species, and that leaves are the most allelopathic litter in C. henryi.  相似文献   

11.
The development of photochemical activity during the greening of dark-grown barley seedlings (Hordeum vulgare L. cv. Svalöfs Bonus) was studied in relation to the formation of the high potential form of cytochrome b-559 (cytochrome b-559HP). Photosynthetic oxygen evolution from leaves was detected at 30 minutes of illumination. The rate of oxygen evolution per gram fresh weight of leaf was as high at 2 to 2.5 hours of greening as at 24 hours or in fully greened leaves. On a chlorophyll basis, the photosynthetic rate at 90 minutes of greening was 80-fold greater than the rate at 45 hours. It is concluded that the majority of photosynthetic units are functional at an early stage of greening, and that chlorophyll synthesis during greening serves to increase the size of the units.  相似文献   

12.

Aims

Metarhizin A was originally isolated from Metarhizium flavoviride as a potent inhibitor of the growth of insect and mammalian cells. In this study, we aimed to understand the molecular targets of metarhizin A involved in its anti-proliferative activity against human cells.

Main methods

Cell cycle regulators and signaling molecules were examined by immunoblotting using specific antibodies. A mitochondria-enriched fraction was prepared from mouse liver, and mitochondrial activity was monitored using an oxygen electrode. Enzyme activity was measured using purified cytochrome c oxidase and permeabilized cells.

Key findings

Metarhizin A inhibits the growth of MCF-7 cells with an IC50 value of ~ 0.2 μM and other cells in a similar manner; a cell cycle-dependent kinase inhibitor, p21, is selectively induced. Significant amounts of reactive oxygen species (ROS) are generated and ERK1/2 is activated in cells treated with metarhizin A. Metarhizin A completely suppresses oxygen consumption by mitochondria, and potently inhibits the activity of cytochrome c oxidase. It induces cell death when MCF-7 cells are cultured under limiting conditions.

Significance

Metarhizin A is a potent inhibitor of cytochrome c oxidase and activates the MAPK pathway through the generation of ROS, which induces growth arrest of cells, and, under some conditions, enhances cell death. The cytochrome c oxidase system is a possible molecular target of metarhizin A.  相似文献   

13.
In this study, 5 μmol·L−1 abscisic acid (ABA) and gibberellic acid (GA3) were used to study the effect of both growth regulators on the morphological parameters and pigment composition of Andrographis paniculata. The growth regulators were applied by means of foliar spray during morning hours. ABA treatment inhibited the growth of the stem and internodal length when compared with control, whereas GA3 treatment increased the plant height and internodal length. The total number of leaves per plant decreased in the ABA-treated plants, but GA3 treatment increased the total number of leaves when compared with the control. Both growth regulators (ABA and GA3) showed increased leaf area. ABA and GA3 treatments slightly decreased the total root growth at all the stages of growth. The growth regulator treatments increased the whole plant fresh and dry weight at all stages of growth. ABA enhanced the fresh and dry weight to a larger extent when compared with GA3. An increase in the total chlorophyll content was recorded in ABA and GA3 treatments. The chlorophyll-a, chlorophyll-b, and carotenoids were increased by ABA and GA3 treatments when compared with the control plants. The xanthophylls and anthocyanin content were increased with ABA and GA3 treatments in A. paniculata plants.  相似文献   

14.
We report here on the characterization and isolation of two ecotypes of Chlorella vulgaris Beyerinck that coexist in wastewater reservoirs. One ecotype (C1) contains high amounts of chlorophyll b, is capable of autotrophic growth, and can utilize only a few organic solutes for growth. The second ecotype (C2) contains low amounts of chlorophyll b, requires vitamin B12, and can support its growth with a broad range of organic compounds. Of the two ecotypes, the latter showed slower growth rates when light was the sole source of energy. Cells of C2-type Chlorella attained higher photosynthetic activities than C1-type cells at saturating irradiances. However, their low chlorophyll b content and lower light utilization efficiency suggest that C2-type Chlorella contains relatively low amounts of light-harvesting antennae, a disadvantage in severely light-limited ecosystems like wastewater reservoirs. We hypothesize that the two Chlorella types coexist by adopting different lifestyles: C1-type cells rely largely on their photosynthetic potential for energy conservation and growth, whereas C2-type cells may exploit their heterotrophic properties for this purpose.  相似文献   

15.
Sclerin, a colorless crystalline, C13H14O4 compound melting at 123°C was at first isolated as a lipase formation stimulating constituent of Sclerotinia libertiana, from its own mycelial extract, and infrared spectrum showed the presence a hydroxyl group and a lactone ring. Sclerin was found to promote also the enzyme formation and growth of various plant seedlings such as those of castor bean-, mung bean-, and rice seedlings. In the growth of the sclerin-treated plant, promotion of root formation and increase of dry weight per unit shoot length were noticed, and the combined use of sclerin and gibberellin brought about a synergistic effect on the growth of rice seedlings. The relationship between sclerin and some other plant growth regulators in the enzyme formation of germinating seeds was also described.  相似文献   

16.
The eukaryotic unicellular microalgae Chlorella salina, Dicrateria inornata, and Isochrysis galbana were grown under control (fluorescent 20 W m–2) and UV-B enhanced (UV-BE, 0.5 W m–2) fluorescent radiation. The growth rate showed marginal increase under UV-BE. Decrease in protein content was observed in Dicrateria cells but in Chlorella an initial increase up to 4 d and in Isochrysis an increase at days 4 and 5 was noted. The chlorophyll a content showed marked increase in Chlorella and Isochrysis but in Dicrateria a decline was found. UV-BE reduced the photosynthetic activity in all three species, but the reduction was larger in Chlorella and Dicrateria. Fluorescence excitation spectra for F682 in Chlorella cells grown for 5 d under UV-BE showed reduction in all peaks. In contrast to this, in Dicrateria and Isochrysis cells, the 530 and 590 nm excitation peaks increased with an appreciable decrease in the 466 nm peak. SDS-PAGE analysis revealed significant decrease in the contents of 47, 33, and 23 kDa polypeptides in Chlorella cells. In Dicrateria cells, significant loss in the content of 55, 38, and 18 kDa polypeptides was observed. The content of low molecular mass polypeptides (15 kDa) remained unaffected. Isochrysis cells were more stable in preserving the content of thylakoid polypeptides.  相似文献   

17.
Summary Alcohol oxidase biosynthesis was induced when Pichia pastoris was grown in a medium containing methanol as the sole carbon and energy source. Specific activity was highest during the logarithmic phase of growth (1.22 g acetaldehyde produced/g cell dry wt. per hour), and declined steadily thereafter. The addition of 0.1% (w/v) yeast extract to the methanol growth medium promoted higher biomass production, increased alcohol oxidase specific activity, and contributed to increased enzyme stability under use conditions. When P. pastoris was used for wholecell bioconversions, 30.2 g of ethanol were oxidized to 28 g acetaldehyde in 12 h, at a carbon recovery of 97%. Acetaldehyde concentrations in excess of 1 M were achieved when the concentration of the TRIS buffer, used to chemically trap the acetaldehyde, was increased to 1 M.Issued as NRCC no. 30256Offprint requests to: W. D. Murray  相似文献   

18.
An ensemble of structural models of the adduct between cytochrome c and cytochrome c oxidase from Paracoccus denitrificans has been calculated based on the experimental data from site-directed mutagenesis and NMR experiments that have accumulated over the last years of research on this system. The residues from each protein that are at the protein–protein interface have been identified by the above experimental work, and this information has been converted in a series of restraints explicitly used in calculations. It is found that a single static structural model cannot satisfy all experimental data simultaneously. Therefore, it is proposed that the adduct exists as a dynamic ensemble of different orientations in equilibrium, and may be represented by a combination or average of the various limiting conformations calculated here. The equilibrium involves both conformations that are competent for electron transfer and conformations that are not. Long-range recognition of the partners is driven by non-specific electrostatic interactions, while at shorter distances hydrophobic contacts tune the reciprocal orientation. Electron transfer from cytochrome bc 1 to cytochrome c oxidase is mediated through cytochrome c experiencing multiple encounters with both of its partners, only part of which are productive. The number of encounters, and thus the electron transfer rate, may be increased by the formation of a cytochrome bc 1–cytochrome c oxidase supercomplex and/or (in human) by increasing the concentration of the two enzymes in the membrane space. Protein Data Bank Accession numbers The coordinates of the five best structural models for each of the four clusters have been deposited in the Protein Data Bank (PDB ID 1ZYY).  相似文献   

19.
Rhodospirillum rubrum CAF10, a spontaneous cytochrome oxidase defective mutant, was isolated from strain S1 and used to analyze the aerobic respiratory system of this bacterium. In spite of its lack of cytochrome oxidase activity, strain CAF10 grew aerobically in the dark although at a decreased rate and with a reduced final yield. Furthermore, aerobically grown mutant cells took up O2 at high rates and membranes isolated from those cells exhibited levels of NADH and succinate oxidase activities which were similar to those of wild type membranes. It was observed also that whereas in both strains O2 uptake (intact cells) and NADH and succinate oxidase activities (isolated membranes) were not affected by 0.2 mM KCN, the cytochrome oxidase activity of the wild type strain was inhibited about 90% by 0.2 mM KCN. These data indicate the simultaneous presence of two terminal oxidases in the respiratory system of R. rubrum, a cytochrome oxidase and an alternate oxidase, and suggest that the rate of respiratory electron transfer is not limited at the level of the terminal oxidases. It was also found that the aerobic oxidation of cellular cytochrome c 2 required the presence of a functional cytochrome oxidase activity. Therefore it seems that this electron carrier, which only had been shown to participate in photosynthetic electron transfer, is also a constituent of the respiratory cytochrome oxidase pathway.Abbreviations DCIP 2,6-dichlorophenolindophenol - DMPD N,N-dimethyl-p-phenylenediamine - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]-glycine  相似文献   

20.
The cytochrome oxidase activity (oxygen uptake in the dark) of a membrane preparation from Anabaena variabilis was found to be stimulated by cytochrome c-553 and plastocyanin obtained from this alga. Cytochrome c from horse heart was as active as cytochrome c-553, whereas little or no stimulation of oxygen uptake was obtained with cytochromes c 2 from two Rhodospirillaceae, the plastidic cytochrome c-552 from Euglena, and plastocyanin from spinach. Cytochrome c-553 (A. variabilis) stimulated photosystem 1 activity in the same preparation much more than cytochrome c (horse heart). The results indicate that cytochrome c-553 and plastocyanin, besides their established function as electron donors of photosystem 1, participate in respiratory electron transport as reductants of a terminal oxidase. Photooxidation and dark oxidation show a different donor specificity.Abbreviations Chl chlorophyll a - TMPD N,N,N,N-tetramethyl-p-phenylenediamine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号