首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six naturally occurring but rare alleles of sn-glycerol-3-phosphate dehydrogenase (Gpdh) in Drosophila melanogaster have been investigated in this study. They all belong to a class of Gpdh UF (ultra-fast) alleles, because their electrophoretic mobilities are faster than that of the Gpdh F (fast) allele. The Gpdh UF variants are widespread, and have been reported from five continents. DNA sequence analysis has shown that the change in electrophoretic mobility was in each allele caused by a single amino acid residue substitution in the encoded protein. In the Xiamen UF allele it is a substitution of lysine (AAA) to asparagine (AAT) in exon 1 (residue 3). An asparagine (AAT) to aspartate (GAT) change was found in exon 6 (residue 336) in the Iowa UF and Netherlands UF alleles. The mobility of the Raleigh UF allele was altered by a valine (GTG) to glutamate (GAG) substitution in exon 3 (residue 76). Two mutations were detected in the Brazzaville UF allele: a lysine (AAG) to methionine (ATG) substitution in exon 2 (residue 68) is responsible for the ultra-fast phenotype of this variant, while a tyrosine (TAT) to phenylalanine (TTT) substitution in exon 4 (residue 244) is not expected to alter the electrophoretic mobility of the encoded protein. These results indicate that the Gpdh UF alleles originate from different mutational events, and only two of them — Iowa UF and Netherlands UF — might share a common ancestry. The GPDH activity of the Iowa UF allele is intermediate between those of the Gpdh S and Gpdh F control stocks. The other Gpdh UF variants have lower activities than the controls: Xiamen UF -83%, Raleigh UF -80% and Brazzaville UF -73% of the Gpdh F control.  相似文献   

2.
R. Cicchetti  A. Loverre 《Genetica》1988,78(3):159-167
The second chromosome Co-122 (Corato-122) extracted from a natural population of Drosophila melanogaster caught in Corato (Apulia) and maintained in the laboratory over the SM5 balancer chromosome, proved to carry: (1) a Segregation distorter factor, named Sd Co; (2) a recessive lethal mutation, termed mle-Co (maleless-Corato), which causes the lethality of only males; (3) another recessive lethal mutation, l(2)Co (lethal (2) Corato), probably arisen in the laboratory by mutation. This mutation accounts for the diminished recovery of homozygous females observed in the stock.The genetic features and the cytological analysis of the SD chromosome are reported, as well as the genetic localization of mle-Co and 1(2)Co and their cytogenetic mapping. An allelism test has ascertained that mle-Co is allelic to mle, a male-specific mutation described by Fukunaga et al., 1975. The tight linkage of mle-Co and 1(2)Co with Sd is discussed from the standpoint of population genetics.  相似文献   

3.
4.
Seven hundred fifty-four strains of mycobacteria were examined using 97 characters, and a “Hypothetical Mean Organism” (HMO) was prepared for each species using numerical classification. The species could be defined as a group of strains showing a mean S-value of 90% or more to a HMO and showing mean S-values of 89% or less to other HMOs. The following species were recognized: (1) M. tuberculosis, combining M. tuberculosis and M. bovis into one species; (2) M. kansasii; (3) M. novum; (4) M. avium, combining M. avium, M. nonchromogenicum, M. gastri, M. intracellulare and M. scrofulaceum into one species; (5) M. marinum; (6) M. thermoresistibile; (7) M. chitae; (8) M. borstelense; (9) M. abscessus; (10) M. fortuitum; (11) M. phlei; (12) M. aurum; (13) M. parafortuitum; (14) M. lacticola; (15) M. smegmatis. Dendrogram of the species showed two main stems, indicating that the genus Mycobacterium be divided into two subgenera, subgenus Mycobacterium (from M. tuberculosis to M. chitae) and subgenus My cornycobacterium (from M. borstelense to M. smegmatis). Some discrepancy was noted between the results of numerical classification using HMOs and that of the “proper” numerical classification, and this discrepancy is discussed.  相似文献   

5.
The fixation of trans-(NH3)2Cl2 Pt(II) to poly(I)·poly(C) at low rb (< 0.05) leads to the formation of two complexed species. The major species (ca. 82% of bound platinum) involves coordination of platinum to a single hypoxanthine base, while the other species involves coordination of two hypoxanthine bases, which are either far apart on the same strand or on separate poly(I) strands, to the platinum. These same two species are found after reaction with poly(I), as are two other species throughout the entire rb range studied (rb = 0–0.30). The latter two species are assigned to trans-Pt bound to two bases on a poly(I) strand with (a) one or (b) two free bases between the two bound bases. These two species, (a) and (b), account for ca. 35% of the bound platinum, although the 1:1 species remains dominant (ca. 55%). These two additional species are observed at high rb (>0.075) after reaction with poly(I)·poly(C) but as very minor species. They are formed by reaction with melted poly(I) loops. Also at high rb, we have observed a shifted cytidine H5 resonance arising from interaction of trans-Pt with a melted loop of poly(C). Most probably, this arises from an intramolecular poly(I) to poly(C) crosslink. Results from the reaction of trans-Pt with poly(C) are presented for comparison.  相似文献   

6.
《Journal of bryology》2013,35(4):483-492
Abstract

141. Anomacaulis fiaccidus (Steph. 1917) Grolle c. n. has to replace A. hamatilobus (Grolle 1965) Schust. 142. Colura leratii (Steph. 1908) Steph. Has to replace C. apiculata Schiffn. ex Steph. 1916. 143. Herbertus sendtneri (Nees) Lindb. 1874 has to replace H. sendtneri (Nees) Evans 1917. 144. The redetected type of Herbertus stramineus (Dum.) Trev. in BR wholly justifies the recent usage of that name instead of H. aduncus auct. 145. The large styli of Jovetastella Tixier were misinterpreted as amphigastria. Jovetastella is reduced to subgeneric rank within Cololejeunea (Spruce) Schiffn., necessitating C. subg. Jovetastella (Tixier) Grolle n. st. et c. and C. paniensis (Tixier) Grolle c. n. 146. Lichenastrum Dill. 1811 is lectotypified with Jungermannia Ianceolata L. emend. Grolle, thus becoming a synonym of Jungermannia L. s. str. 147.Lophozia elongata Steph. has to replace L. elongata (Lindb. ex Kaal.) Steph. 148. Mannia triandra (Scop. 1772) Grolle c. n. has to replace M. rupestris (Nees 1817)Frye et Clark. A redetected type specimen of M archantia ludwigii Schwaegr. 1814 turned out to be Mannia triandra. Therefore Asterella gracilis (F. Web.) Underw. has to replace A. ludwigii auct. 149. Grimaldia chilensis Lindenb. ex Mont. 1839 was newly placed in synonymy of Sauteria berteroana Mont. 1839. 150. Telaranea nematodes (Gottsche ex Aust. 1879) Howe has to replace T. sejuncta auct., whereas the true T. sejuncta (Angstr. 1877) S. Arn. is a synonym of Arachniopsis diacantha (Mont. 1856) Howe. T. sejuncta yare breviseta (Herz.) Fulf. is still another species, thus the single record of T. nematodes or T. sejuncta from Juan Fernandez is rejected.  相似文献   

7.
The phylogenetic systematics of the Gigartinaceae is discussed for seven genera and three undescribed generic lineages and 65 taxa representing 62 species based on an analysis of rbcL sequences and morphological evidence. An examination of rbcL trees resulting from analyses of these taxa identifies seven lineages: (i) ‘Gigartina’ alveata; (ii) Rhodoglossum/Gigartina; (iii) Chondracanthus; (iv) Ostiophyllum; (v) Sarcothalia; (vi) ‘Gigartina’ skottsbergii; and (vii) a large clade containing Iridaea/‘Sarcothalia’, Mazzaella and Chondrus. These lineages and Chondrus are strongly supported; however, two groups, Iridaea/‘Sarcothalia’ and Mazzaella, receive no bootstrap support. The morphology of the female reproductive system is investigated with the aid of computer-generated, color-coded tracings of photographs of cystocarps seen in cross section at different developmental stages. Seven basic cystocarp types were found which corresponded to species groups seen in rbcL trees. These were: (i) a ‘Gigartina’ alveata group in which the carposporangia-bearing filaments develop apomictically from gametophytic cells; (ii) a Rhodoglossum/Gigartina group in which gonimoblast filaments penetrate the surrounding envelope fusing progessively with envelope cells; (iii) a Chondracanthus group in which gonimoblast filaments penetrate the envelope but fuse with envelope cells only at late developmental stages; (iv) a Sarcothalia group in which the gonimoblast filaments displace an envelope composed mainly of secondary gametophytic filaments and link to envelope cells by terminal tubular gonimoblast cells; (v) an Iridaea group similar to the Sarcothalia group, but with an envelope composed of a mixture of medullary cells and secondary gametophytic filaments; (vi) a Mazzaella group that lacks a true envelope and in which gonimoblast filaments connect to modified gametophytic cells by means of terminal tubular cells; (vii) a Chondrus group in which gonimoblast filaments penetrate the medulla and link to modified medullary cells by means of conjunctor cells forming secondary pit connections. The further separation of these groups into genera is based largely on tetrasporangial characters.  相似文献   

8.
The biotransformations of cholic acid ( 1a ), deoxycholic acid ( 1b ), and hyodeoxycholic acid ( 1c ) to bendigoles and other metabolites with bacteria isolated from the rural slaughterhouse of Cayambe (Pichincha Province, Ecuador) were reported. The more active strains were characterized, and belong to the genera Pseudomonas and Rhodococcus. Various biotransformation products were obtained depending on bacteria and substrates. Cholic acid ( 1a ) afforded the 3‐oxo and 3‐oxo‐4‐ene derivatives 2a and 3a (45% and 45%, resp.) with Pmendocina ECS10, 3,12‐dioxo‐4‐ene derivative 4a (60%) with Rherythropolis ECS25, and 9,10‐secosteroid 6 (15%) with Rherythropolis ECS12. Bendigole F ( 5a ) was obtained in 20% with Pfragi ECS22. Deoxycholic acid ( 1b ) gave 3‐oxo derivative 2b with Pprosekii ECS1 and Rherythropolis ECS25 (20% and 61%, resp.), while 3‐oxo‐4‐ene derivative 3b was obtained with Pprosekii ECS1 and Pmendocina ECS10 (22% and 95%, resp.). Moreover, P. fragi ECS9 afforded bendigole A ( 8b ; 80%). Finally, P. mendocina ECS10 biotransformed hyodeoxycholic acid ( 1c ) to 3‐oxo derivative 2c (50%) and Rherythropolis ECS12 to 6α‐hydroxy‐3‐oxo‐23,24‐dinor‐5β‐cholan‐22‐oic acid ( 9c , 66%). Bendigole G ( 5c ; 13%) with Pprosekii ECS1 and bendigole H ( 8c ) with Pprosekii ECS1 and Rherythropolis ECS12 (20% and 16%, resp.) were obtained.  相似文献   

9.
Summary An approach for the screening of mit - mutants, the isolation and preliminary classification of a series of such mutants is reported. Loss and retention of 8 mit - and 6 drug r markers in mitDNA was analyzed in populations of rho- clones derived from four yeast strains. The populations studied constitute a representative fraction of the rho- petites formed during growth at 35° C under the influence of mutation tsp-25 which is in common to the four strains. The majority of the rho- clones retained several of the markers studied. Depending on the marker regarded retention frequencies between 15% (oxi3) and 45% (oli1, cob) were observed. Loss of one and retention of the other of a pair of markers was determined in all rho- clones of the four populations. The frequencies of marker separation by rho- deletion thus obtained are assumed to reflect the distance between markers on the mitochondrial genome: the higher the frequency of separation the longer the distance between two markers. Based on these frequencies a unique order of markers on a circular map was determined. Positions of markers on a scale from 0 to 100 were found to be: cap/ery (0) — olil (16) — cob1-1354 (21) — ana101 (22) — cob2-1625 (24) — oli2 (35) — pho1 (40) — oxi3-2501 (44) — oxi3-3771 (47) — par (65) — oxi2 (79) — oxil (87) tms8 (93) —cap (100). The relevance of this map as to the faithful representation of the topology of gene loci on mitDNA is discussed. Correlation of retention frequencies of markers to their map positions reveals a pronounced polarity: mitDNA segments carrying the cob-oli1 segment prevail whereas segments retaining oxi3 are the least frequent.  相似文献   

10.
The genus Etiennea Matile‐Ferrero is synonymized with Hemilecanium Newstead (Hemiptera: Coccidae). We base this decision on a morphological comparative study of adult females, adult males and first‐instar nymphs (crawlers), including a phylogenetic analysis. We recovered a sister group relationship between the type species of the two genera, Etiennea villiersi Matile‐Ferrero and Hemilecanium theobromae Newstead; that is, each was more closely related to the other than either was to other species in their respective genera. All species hitherto included in Etiennea are transferred to Hemilecanium: H. bursera (Hodgson & Kondo) comb. nov., H. cacao (Hodgson) comb. nov., H. candelabra (Hodgson) comb. nov., H. capensis (Hodgson) comb. nov., H. carpenteri (Newstead) comb. nov., H. cephalomeatus (Hodgson) comb. nov., H. combreti (Hodgson) comb. nov., H. ferina (De Lotto) comb. nov., H. ferox (Newstead) comb. nov., H. gouligouli (Hodgson) comb. nov., H. halli (Hodgson) comb. nov., H. kellyi (Brain) comb. nov., H. madagascariensis (Hodgson) comb. nov., H. montrichardiae (Newstead) comb. nov., H. multituberculum (Hodgson) comb. nov., H. petasus (Hodgson) comb. nov., H. sinetuberculum (Hodgson) comb. nov., H. tafoensis (Hodgson) comb. nov., H. ulcusculum (Hodgson) comb. nov., and H. villiersi (Matile‐Ferrero) comb. nov. Keys to the adult females of all 26 species and known adult males and first‐instar nymphs are provided. The adult males and first‐instar nymphs of H. theobromae Newstead and E. villiersi Matile‐Ferrero are for the first time fully described and illustrated. One new potential pest species of Hemilecanium, H. uesatoi Kondo & Hardy sp. nov., which was collected on three islands of the Ryukyu Archipelago, Japan, is described and illustrated based on the adult female, adult male and first‐instar nymph. We discuss evidence that H. uesatoi is a new introduction to the Ryukyu Archipelago. The first‐instar nymphs of Hemilecanium can be divided into two distinct morphological groups, the petasus group and the theobromae group.  相似文献   

11.
    
Summary The hybrid produced between a Carbondale haploid strain (-methyl-glucoside rapid fermenter) and a haploid strain (non-fermenter), derived from a hybrid between a homothallic and a heterothallicSaccharomyces, showed an irregular segregation pattern with regard to the fermentation of this sugar.To explain this irregularity, three pairs of alleles,MG 1/mg 1,MG 2/mg 2 andMG 3/mg 3, were assumed to be in quantitative control of the fermetation. Haploid cultures carrying the genotypes (1)mg 1 mg 2 mg 3, (2)MG 1 mg 2 mg 3, (3)mg 1 MG 2 mg 3, (4)mg 1 mg 2 MG 3, (5)MG 1 MG 2 mg 3, (6)MG 1 mg 2 MG 3, (7)mg 1 MG 2 MG 3, and (8)MG 1 MG 2 MG 3, were actually recovered. Strains equipped with: either (1) or (2); either (4) or (6); (3); (5); (7); or (8) are non-fermenters, extremely-slow-fermenters, slow-fermenters, medium-fermenters, semi-rapid-fermenters and rapid-fermenters respectively.The role of these genes in sugar fermentation and the identity or nonidentity of some of these genes with maltose and sucrose genes was discussed.With 2 Figures in the Text  相似文献   

12.
《Fly》2013,7(4):275-284
Enhancer of rudimentary, e(r), encodes a small nuclear protein, ER, that has been implicated in the regulation of pyrimidine metabolism, DNA replication, and cell proliferation. In Drosophila melanogaster, a new recessive Notch allele, Nnd-p, was isolated as a lethal in combination with an e(r) allele, e(r)p2. Both mutants are viable as single mutants. Nnd-p is caused by a P-element insertion in the 5' UTR, 378-bp upstream of the start of translation. Together the molecular and genetic data argue that Nnd-p is a hypomorphic allele of N. The three viable notchoid alleles, Nnd-p, Nnd-1, and Nnd-3, are lethal in combination with e(r)- alleles. Our present hypothesis is that e(r) is a positive regulator of the Notch signaling pathway and that the lethality of the Ne(r) double mutants is caused by a reduction in the expression of the pathway. This is supported by the rescue of the lethality by a mutation in Hairless, a negative regulator of N, and by the synthetic lethality of dxe(r) double mutants. Further support for the hypothesis is a reduction in E(spl) expression in an e(r)- mutant. Immunostaining localizes ER to the nucleus, suggesting a nuclear function for ER. A role in the Notch signaling pathway, suggests that e(r) may be expressed in the nervous system. This turns out to be the case, as immunostaining of ER shows that ER is localized to the developing CNS.  相似文献   

13.
Length–weight (LWR) and length–length (LLR) relationships were estimated for 11 Alburnoides species from 15 localities throughout Iran. These represent the first reports of LWR and LLRs data for 10 species, including: Alburnoides coadi (40 specimens), A. damghani (30), A. eichwaldii (110), A. holciki (30), A. idigensis (113), A. namaki (30), A. nicolausi (30), A. parhami (30), A. qanati (30) and A. tabarestanensis (30) and first LLR data for A. samiii. Nine of these species are endemic and two are native to Iran. The length–weight parameter b for these species ranged from a minimum of 2.94 for Alburnoides nicolausi to a maximum of 3.37 for Alburnoides parhami, with regression coefficients (r2) ranging from 0.91 to 0.99. All LLRs were highly significant (r2 > 0.96).  相似文献   

14.
To evaluate the sectional classification in Carex, subgenus Carex, the ITS region of 117 species belonging to 32 sections was analyzed with Neighbor Joining (NJ) and Markov chain Monte Carlo (MCMC) methods. In our analyses (1) species of subgenus Indocarex appear as a statistically well supported group within subgenus Carex. (2) The representatives of sections Vesicariae, Hirtae, Pseudocypereae, Ceratocystis, Spirostachyae, Bicolores, Paniceae, Trachychlaenae, Scirpinae, Atratae and Albae group in statistically supported clades with higher support in MCMC than in NJ. (3) C. rariflora clusters with representatives of section Limosae, however only weakly supported. (4) Taxa of section Phacocystis are divided in two statistically supported subclusters that are closely related to a core group of section Hymenochlaenae. (5) Species of sections Montanae, Pachystylae, Digitatae, Phacocystis, Rhomboidales, Careyanae and Frigidae are segregated into two or more clusters each. (6) Five species of section Frigidae cluster together, whereas the seven others are in scattered positions. Based on these results, delimitation of sections is discussed.  相似文献   

15.
About 160 kb of DNA were cloned from the 2B region of the X chromosome, where the early ecdysone puff develops and the ecs locus is located. On the physical map of this sequence the positions of 13 chromosome rearrangement breakpoints interfering with both puff development and the ecs locus proximally and distally, were plotted by means of in situ hybridization. The maximal size of the ecs locus is about 100 kb (between the breakpoint of In(1)Hw 49c and the proximal end of Df(1)St472) The DNA sequences essential for normal puffing are located within the ecs locus between the In(1)br lt103 and Df(1)St472 breakpoints and comprise about 65 kb. Thus the puff develops as a result of ecs activation. Since Df(1)P154, which reduces the puff size and removes the proximal part of the ecs locus, does not prevent puff induction by ecdysone, while removing the distal part of the locus by Df(1)St469 completely stops development of the puff, we conclude that the regulatory zone of the locus, which reacts to hormone is located in the distal parts of both the puff and the locus, proximal to the breakpoint of In(1)br lt103 .Since In(1)br lt103 , Df(1)pn7b and Df(1)br R1 damage ecs but do not prevent puffing it is proposed that there is a second regulatory zone for this locus with a minimal size of 15–20 kb (between the breakpoints of Df(1)br R1 and In(1)br lt103). After cytogenetic and electron microscopic analysis of 2B puff formation it seems very likely that the site of puff formation is situated in the proximal part of 2B3-4 and after enhancement of ecs expression by hormone it spreads proximally to the 2B6 band which does not puff. When the puff regresses at puff stages (PS)10-11 its material does not condense completely and a zone of residual puffing joins the condensed material located distal to it. This material can give the impression of a separate band, designated 2B5 in Bridges' map. For convenience we propose to call the site giving rise to the puff as 2B3-5.  相似文献   

16.
Summary

Saxifraga rosacea is recorded and Poa scotica described new to Scotland. The position of segregate taxa or breeding units within several species complexes is clarified within Scotland: (a) the hexaploid cytotype within the mostly tetraploid Campanula rotundifolia; (b) diploid Hedera helix and tetraploid H. hibernica;, (c) diploid and tetraploid Deschampsia cespitosa, D. alpina and D. parviflora; (d) octoploid sub-species scotica within usually hexaploid Festuca rubra; (e) an octoploid mountain Agrostis; (f) fertile hexaploid Potentilla anserina; (g) an approximately triploid aneuploid Vaccinium uliginosum ssp. microphyllum.  相似文献   

17.
We examined the hypothesis that genotypic variation among populations of commonly co‐occurring phreatophytic trees (Populus fremontii, Salix gooddingii) and the shrub (Salix exigua) regulates aboveground net primary productivity (ANPP) at a hot site at the edge of the species’ distribution. We used a provenance trial in which replicated genotypes from populations varying in mean annual temperature were transplanted to a common garden adjacent to the Lower Colorado River in southeastern California. The garden environment represented an extreme maximum temperature for the study species. Four major findings emerged: (1) Genotypic variation in ANPP was significant for all species with broad‐sense heritability (H2) across populations of 0.11, 0.13, and 0.10 for P. fremontii, S. gooddingii, and S. exigua, respectively, and within‐population H2 ranging from 0.00 to 0.25, 0.00 to 0.44, and 0.02 to 0.21, respectively. (2) Population ANPP decreased linearly as mean annual maximum temperature (MAMT) transfer distance increased for both P. fremontii (r2 = 0.64) and S. gooddingii (r2 = 0.37), whereas it did not change for S. exigua; (3) Populations with similar MAMT to that of the common garden were 1.5 and 1.2 times more productive than populations with 5.0 °C MAMT transfer distances for P. fremontii and S. gooddingii, respectively; and (4) Variation in regression slopes among species for the relationship between ANPP and MAMT indicate species‐specific responses to temperature. As these plant species characterize a threatened habitat type and support a diverse community that includes endangered species, ecosystem restoration programs should consider using both local genotypes and productive genotypes from warmer environments to maximize productivity of riparian ecosystems in the face of global climate change.  相似文献   

18.
To characterize the prevalence and assess the zoonotic transmission burden of Cryptosporidium species/genotypes in pet birds in Henan, China, 434 fecal samples were acquired from 14 families of birds in pet shops. The overall prevalence of Cryptopsoridium was 8.1% (35/434) by the Sheather’s sugar flotation technique. The Cryptosporidium-positive samples were analyzed by DNA sequence analysis of the small subunit (SSU) rRNA gene. Three Cryptosporidium species and two genotypes were identified, including C. baileyi (18/35 or 51.4%) in five red-billed leiothrixes (Leiothrix lutea), four white Java sparrows (Padda oryzivora), four common mynas (Acridotheres tristis), two zebra finches (Taeniopygia guttata), a crested Lark (Galerida cristata), a Gouldian finch (Chloebia gouldiae), and a black-billed magpie (Pica pica); Cryptosporidium meleagridis (3/35 or 8.6%) in a Bohemian waxwing (Bombycilla garrulus), a Rufous turtle dove (Streptopelia orientalis), and a fan-tailed pigeon (Columba livia); Cryptosporidium galli (5/35 or 14.3%) in four Bohemian waxwings (Bombycilla garrulus) and a silver-eared Mesia (Leiothrix argentauris); Cryptosporidium avian genotype III (3/35 or 8.6%) in two cockatiels (Nymphicus hollandicus) and a red-billed blue magpie (Urocissa erythrorhyncha); and Cryptosporidium avian genotype V (6/35 or 17.1%) in six cockatiels (Nymphicus hollandicus). Among the pet birds, 12 species represented new hosts for Cryptosporidum infections. The presence of C. meleagridis raises questions on potential zoonotic transmission of cryptosporidiosis from pet birds to humans.  相似文献   

19.
Six clades are inferred from a phylogenetic analysis including 42 species belonging to the Empis (Coptophlebia) hyalea‐group. These clades are named as follows: E. (C.) acris, E. (C.) aspina, E. (C.) atratata, E. (C.) hyalea, E. (C.) jacobsoni and E. (C.) nahaeoensis. The presence of two dorsal more or less developed epandrial projections is considered autapomorphic for the E. (C.) hyalea‐group in addition to two characters previously found to support the monophyly of this group (presence of an unsclerotized zone in the middle of labella and epandrium unpaired). Amongst the cladistically analysed species, 24 are newly described [ E. ( C. ) acris , E. ( C. ) aspina , E. ( C. ) cameronensis , E. ( C. ) duplex , E. ( C. ) incurva , E. ( C. ) inferiseta , E. ( C. ) kuaensis , E. ( C. ) lachaisei , E. ( C. ) lamellalta , E. ( C. ) lata , E. ( C. ) loici , E. ( C. ) longiseta , E. ( C. ) mengyangensis , E. ( C. ) menglunensis , E. ( C. ) missai , E. ( C. ) nimbaensis , E. ( C. ) padangensis , E. ( C. ) parvula , E. ( C. ) projecta , E. ( C. ) pseudonahaeoensis , E. ( C. ) submetallica , E. ( C. ) urumae , E. ( C. ) vitisalutatoris and E. ( C. ) woitapensis ], five are reviewed [E. (C.) hyalea Melander, E. (C.) jacobsoni De Meijere, E. (C.) ostentator Melander, E. (C.) sinensis Melander and E. (C.) thiasotes Melander] and 13 were recently described in two previous papers. Two additional species, E. (C.) abbrevinervis De Meijere and E. (C.) multipennata Melander, are also reviewed but not included in the cladistic analysis since they are only known from the female. A lectotype is designated for E. (C.) jacobsoni. A key is provided to the six clades of the E. (C.) hyalea‐group as well as to species of each clade. A catalogue of the E. (C.) hyalea‐group, including 72 species, is given. The taxonomic status of 25 additional species mainly described by Bezzi and Brunetti, from the Oriental and Australasian regions, is discussed. The E. (C.) hyalea‐group is firstly recorded from the Palaearctic Region and Australia. Finally, the distribution and the habitats of the species compared with their phylogeny suggest a possible relationship between the diversification of the group and forest fragmentations during the Quaternary. © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society, 2005, 145 , 339–391.  相似文献   

20.
Summary We have initiated a cytogenetic analysis of chromosome region 89A of Drosophila melanogaster by isolating a set of radiation-induced mutations causing loss of function of P[(w)B]1-1, a transposon bearing the white locus inserted in 89A. Complementation tests and cytological examination of these chromosomes identified four new deficiencies (Df(3R)Po 2, Df(3R)Po 3, Df(3R)Po 4 and Df(3R)c(3)G 2 ). The new deficiencies and three previously identified deficiencies (Df(3R)sbd 26, Df(3R)sbd 45 and Df(3R)sbd 105) were tested for the ability to complement mutations in the enzyme loci Po and Aldox-1, the indirect flight muscle genes Tm2 and act88F, the morphological mutations jvl, sbd 2 and Sb, the vital loci srp, pnr and mor, and a newly described vital locus l(3)89Aa. We also used linkage analysis to determine the order and relative positions of P[(w)B]1-1 and an independent transposon insertion, P[w+]21, with respect to cv-c, Po, Aldox-1 and sbd 2. Cytological examination of the deficiencies and analysis of the transformed lines by in situ hybridization permits the correlation of genetically defined regions with specific polytene chromosome bands. A revised cytogenetic map of the 8817–8913 region is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号