首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Plant red/far-red photoreceptor phytochromes are known as autophosphorylating serine/threonine kinases. However, the functional roles of autophosphorylation and kinase activity of phytochromes are largely unknown. We recently reported that the autophosphorylation of phytochrome A (phyA) plays an important role in regulating plant phytochrome signaling by controlling phyA protein stability. Two serine residues in the N-terminal extension (NTE) region were identified as autophosphorylation sites, and phyA mutant proteins with serine-to-alanine mutations were degraded in plants at a significantly slower rate than the wild-type under light conditions, resulting in transgenic plants with hypersensitive light responses. In addition, the autophosphorylation site phyA mutants had normal protein kinase activities. Collectively, our results suggest that phytochrome autophosphorylation provides a mechanism for signal desensitization in phytochrome-mediated light signaling by accelerating the degradation of phytochrome A.Key words: phytochrome, autophosphorylation, phosphorylation, protein kinase, protein degradation, light signaling, signal desensitizationHigher plants continually adapt to their light environments to promote photosynthesis for optimal growth and development. Natural light conditions are monitored by various plant photoreceptors, including red (R)/far-red (FR) photoreceptor phytochromes.1,2 Phytochromes are dimeric chromoproteins covalently linked to tetrapyrrole chromophore phytochromobilin, and exist as two photo-interconvertible species, red-light absorbing Pr and far-red-light absorbing Pfr forms. Phytochromes are biosynthesized as the Pr form in the dark, and are transformed to the Pfr form upon exposure to red light. This photoactivation of phytochromes induces a highly regulated signaling network for photomorphogenesis in plants.3,4 Recently, phosphorylation and dephosphorylation have been suggested to play important roles in phytochrome-mediated light signaling;5,6 for instance, a few phytochrome-associated protein phosphatases have been shown to act as positive regulators of phytochrome signaling.79 However, the functional roles of phytochrome phosphorylation remain to be explored.  相似文献   

4.
Kim J  Yi H  Choi G  Shin B  Song PS  Choi G 《The Plant cell》2003,15(10):2399-2407
Phytochromes regulate various light responses through their interactions with different signaling proteins, such as phytochrome interacting factor 3 (PIF3). However, the physiological functions of PIF3 in light signaling are not yet fully understood. To increase our understanding of these roles, we characterized a T-DNA insertional pif3 mutant and transgenic plants overexpressing the full-length PIF3. Transgenic overexpressing lines displayed longer hypocotyls and smaller cotyledons under red light and reduced cotyledon opening under both red and far-red light, whereas the pif3 mutant showed the opposite phenotypes. The accumulation of anthocyanin and chlorophyll further indicated complicated features of PIF3 function. The accumulation of anthocyanin was increased and the content of chlorophyll was decreased in the overexpression lines. Our data indicate that PIF3 plays complex roles depending on the type of light response and the light conditions.  相似文献   

5.
6.
Evolution of two-component signal transduction   总被引:16,自引:0,他引:16  
Two-component signal transduction (TCST) systems are the principal means for coordinating responses to environmental changes in bacteria as well as some plants, fungi, protozoa, and archaea. These systems typically consist of a receptor histidine kinase, which reacts to an extracellular signal by phosphorylating a cytoplasmic response regulator, causing a change in cellular behavior. Although several model systems, including sporulation and chemotaxis, have been extensively studied, the evolutionary relationships between specific TCST systems are not well understood, and the ancestry of the signal transduction components is unclear. Phylogenetic trees of TCST components from 14 complete and 6 partial genomes, containing 183 histidine kinases and 220 response regulators, were constructed using distance methods. The trees showed extensive congruence in the positions of 11 recognizable phylogenetic clusters. Eukaryotic sequences were found almost exclusively in one cluster, which also showed the greatest extent of domain variability in its component proteins, and archaeal sequences mainly formed species-specific clusters. Three clusters in different parts of the kinase tree contained proteins with serine-phosphorylating activity. All kinases were found to be monophyletic with respect to other members of their superfamily, such as type II topoisomerases and Hsp90. Structural analysis further revealed significant similarity to the ATP-binding domain of eukaryotic protein kinases. TCST systems are of bacterial origin and radiated into archaea and eukaryotes by lateral gene transfer. Their components show extensive coevolution, suggesting that recombination has not been a major factor in their differentiation. Although histidine kinase activity is prevalent, serine kinases have evolved multiple times independently within this family, accompanied by a loss of the cognate response regulator(s). The structural and functional similarity between TCST kinases and eukaryotic protein kinases raises the possibility of a distant evolutionary relationship.  相似文献   

7.
D Wagner  U Hoecker    P H Quail 《The Plant cell》1997,9(5):731-743
Seedlings of a transgenic Arabidopsis line (ABO) that overexpresses phytochrome B (phyB) display enhanced deetiolation specifically in red light. To identify genetic loci necessary for phytochrome signal transduction in red light, we chemically mutagenized ABO seeds and screened M2 seedlings for revertants of the enhanced deetiolation response. One recessive, red light-specific extragenic revertant, designated red1, was isolated. The mutant phenotype was expressed in the original ABO background as well as in the nontransgenic Nossen (No-0) progenitor background. red1 is also deficient in several other aspects of red light-induced responses known to be mediated by phyB, such as inhibition of petiole elongation and the shade avoidance response. red1 was mapped to the bottom of chromosome 4 at a position distinct from all known photoreceptor loci. Together with complementation analysis, the data show that red1 is a novel photomorphogenic mutant. The evidence suggests that red1 represents a putative phytochrome signal transduction mutant potentially specific to the phyB pathway.  相似文献   

8.
A combination of physiological and genetic approaches was used to investigate whether phytochromes and blue light (BL) photoreceptors act in a fully independent manner during photomorphogenesis of Arabidopsis thaliana (L.) Heynh. Wild-type seedlings and phyA, phyBand hy4 mutants were daily exposed to 3 h BL terminated with either a red light (R) or a far-red light (FR) pulse. In wild-type and phyA-mutant seedlings, BL followed by an R pulse inhibited hypocotyl growth and promoted cotyledon unfolding. The effects of BL were reduced if exposure to BL was followed by an FR pulse driving phytochrome to the R-absorbing form (Pr). In the wild type, the effects of R versus FR pulses were small in seedlings not exposed to BL. Thus, maximal responses depended on the presence of both BL and the FR-absorbing form of phytochrome (Pfr) in the subsequent dark period. Impaired responses to BL and to R versus FR pulses were observed in phyB and hy4 mutants. Simultaneous irradiation with orange light indicated that BL, perceived by specific BL photoreceptors (i.e. not by phytochromes), required phytochrome B to display a full effect. These results indicate interdependent co-action between phytochrome B and BL photoreceptors, particularly the HY4 gene product. No synergism between phytochrome A (activated by continuous or pulsed FR) and BL photoreceptors was observed.Abbreviations BL blue light - D darkness - FR far-redlight - FRc continuous FR - Pfr FR-absorbing form of phytochrome - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - WT wild type We thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands), Professor J. Chory (Salk Institute, Calif., USA) and the Arabidopsis Biological Resource Center (Ohio State University, Ohio, USA) for their kind provision of the original seed batches. This work was financially supported by CONICET, Universidad de Buenos Aires (AG 040) and Fundación Antorchas (A-12830/1 0000/9)  相似文献   

9.
10.
Bacteria possess a signal transduction system, referred to as a two-component system, for adaptation to external stimuli. Each two-component system consists of a sensor protein-histidine kinase (HK) and a response regulator (RR), together forming a signal transduction pathway via histidyl-aspartyl phospho-relay. A total of 30 sensor HKs, including as yet uncharacterized putative HKs (BaeS, BasS, CreC, CusS, HydH, RstB, YedV, and YfhK), and a total of 34 RRs, including putative RRs (BaeR, BasR, CreB, CusR, HydG, RstA, YedW, YfhA, YgeK, and YhjB), have been suggested to exist in Escherichia coli. We have purified the carboxyl-terminal catalytic domain of 27 sensor HKs and the full-length protein of all 34 RRs to apparent homogeneity. Self-phosphorylation in vitro was detected for 25 HKs. The rate of self-phosphorylation differed among HKs, whereas the level of phosphorylation was generally co-related with the phosphorylation rate. However, the phosphorylation level was low for ArcB, HydH, NarQ, and NtrB even though the reaction rate was fast, whereas the level was high for the slow phosphorylation species BasS, CheA, and CreC. By using the phosphorylated HKs, we examined trans-phosphorylation in vitro of RRs for all possible combinations. Trans-phosphorylation of presumed cognate RRs by HKs was detected, for the first time, for eight pairs, BaeS-BaeR, BasS-BasR, CreC-CreB, CusS-CusR, HydH-HydG, RstB-RstA, YedV-YedW, and YfhK-YfhA. All trans-phosphorylation took place within less than 1/2 min, but the stability of phosphorylated RRs differed, indicating the involvement of de-phosphorylation control. In addition to the trans-phosphorylation between the cognate pairs, we detected trans-phosphorylation between about 3% of non-cognate HK-RR pairs, raising the possibility that the cross-talk in signal transduction takes place between two-component systems.  相似文献   

11.
12.
PhoP-PhoQ是调控沙门菌毒力的重要双组分信号转导系统,由组氨酸蛋白激酶PhoQ和反应调节蛋白PhoP组成。PhoP-PhoQ可调节沙门菌对Mg2+及其他周质环境的适应性,并调控沙门菌感染中毒力基因的转录和表达。PhoP-PhoQ调控的毒力基因参与沙门菌对上皮细胞的侵袭、胞内生存、对抗菌肽的抵抗反应、脂质A的修饰、Ⅲ型分泌系统效应蛋白的分泌等环节。PhoP-PhoQ还可与其他双组分信号转导系统或调节子合作,调控沙门菌的毒力。因此,PhoP-PhoQ双组分信号转导系统在沙门菌的毒力调控中发挥重要作用。  相似文献   

13.
14.
Bacterial two-component systems (TCSs) and small regulatory RNAs (sRNAs) form densely interconnected networks that integrate and transduce information from the environment into fine-tuned changes of gene expression. Many TCSs control target genes indirectly through regulation of sRNAs, which in turn regulate gene expression by base-pairing with mRNAs or targeting a protein. Conversely, sRNAs may control TCS synthesis, thereby recruiting the TCS regulon to other regulatory networks. Several TCSs control expression of multiple homologous sRNAs providing the regulatory networks with further flexibility. These sRNAs act redundantly, additively or hierarchically on targets. The regulatory speed of sRNAs and their unique features in gene regulation make them ideal players extending the flexibility, dynamic range or timing of TCS signaling.  相似文献   

15.
Bacterial two-component systems (TCS) are key signal transduction networks regulating global responses to environmental change. Environmental signals may modulate the phosphorylation state of sensor kinases (SK). The phosphorylated SK transfers the phosphate to its cognate response regulator (RR), which causes physiological response to the signal. Frequently, the SK is bifunctional and, when unphosphorylated, it is also capable of dephosphorylating the RR. The phosphatase activity may also be modulated by environmental signals. Using the EnvZ/OmpR system as an example, we constructed mathematical models to examine the steady-state and kinetic properties of the network. Mathematical modelling reveals that the TCS can show bistable behaviour for a given range of parameter values if unphosphorylated SK and RR form a dead-end complex that prevents SK autophosphorylation. Additionally, for bistability to exist the major dephosphorylation flux of the RR must not depend on the unphosphorylated SK. Structural modelling and published affinity studies suggest that the unphosphorylated SK EnvZ and the RR OmpR form a dead-end complex. However, bistability is not possible because the dephosphorylation of OmpR approximately P is mainly done by unphosphorylated EnvZ. The implications of this potential bistability in the design of the EnvZ/OmpR network and other TCS are discussed.  相似文献   

16.
Plants experience a variety of environmental stresses such as cold, drought, freezing, flooding, wounding, heat and UV-B, all of which result in decreased productivity. Among abiotic stresses, UV-B stress is considered to be a critical factor affecting the rate of plant growth because the amount of UV-B reaching the Earth’s surface is constantly increasing. While high fluence rates of UV-B trigger stress-related processes, low fluence rates of UV-B induce photomorphogenesis, a crucial developmental process at the early seedling stage in plants. Among the signaling components involved in UV-B-mediated cellular response, a clade composed of UVR8-COP1-HY5 has been shown to be a central sequence that effectively transduces the pathway from the primary signal to adaptation response. This review summarizes the most recent progress in studies of UVR8-COP1-HY5 as the key players participating in the UV-B signal transduction pathway. The current understanding of additional UV-B signaling components including substrate receptors of multi-subunit E3 ubiquitin ligase is also discussed.  相似文献   

17.
18.
19.
Two-component signal transduction pathways in Arabidopsis   总被引:19,自引:0,他引:19       下载免费PDF全文
Hwang I  Chen HC  Sheen J 《Plant physiology》2002,129(2):500-515
The two-component system, consisting of a histidine (His) protein kinase that senses a signal input and a response regulator that mediates the output, is an ancient and evolutionarily conserved signaling mechanism in prokaryotes and eukaryotes. The identification of 54 His protein kinases, His-containing phosphotransfer proteins, response regulators, and related proteins in Arabidopsis suggests an important role of two-component phosphorelay in plant signal transduction. Recent studies indicate that two-component elements are involved in plant hormone, stress, and light signaling. In this review, we present a genome analysis of the Arabidopsis two-component elements and summarize the major advances in our understanding of Arabidopsis two-component signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号