首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of urethan anesthesia on cigarette smoke-induced airway responsiveness and permeability was studied in the guinea pig. Airway responsiveness was determined by measuring changes to airway resistance to graded doses of aerosolized histamine, and mucosal permeability was determined by measuring the appearance of fluorescein isothiocyanate-dextran (FITC-D) in the blood and examining its distribution in lung tissue after it had been delivered to the lung in an aerosol. The results confirm previous studies that smoke exposure increased airway responsiveness and mucosal permeability. They also show that urethan anesthesia administered before smoke exposure prevented the smoke-related changes in airway reactivity and mucosal permeability. In animals that remained conscious during the smoke exposure, there was increased deposition of the dextran in the regions of the bronchioloalveolar junctions with a more rapid uptake of FITC-D into the blood. We postulate that, when urethan anesthesia is administered before smoke exposure, the exudative phase of the inflammatory reaction produced by smoke exposure is suppressed.  相似文献   

2.
Summary To test the hypothesis that cigarette smoke produces changes in the morphology of tight junctions guinea pigs were exposed to cigarette smoke or air in a previously standardized fashion (Simani et al. 1974). Permeability is greatest one half hour following exposure to cigarette smoke (Hulbert et al. 1981). The animals were sacrificed at that time. The tracheal epithelium was studied using both thin-section and freeze-fracture techniques. A quantitative analysis of the organization and integrity of junctional complexes was performed for each animal. Organization was assessed by measuring and comparing areas delimited by PF fibers and EF furrows. PF fiber integrity was assessed by measuring uninterrupted lengths of fibers and furrows from freeze-fracture replicas. This assessment did not demonstrate a change in tight-junction morphology following exposure to cigarette smoke.  相似文献   

3.
We have earlier identified the presence of a 36 kDa Ca2+-dependent phospholipid-binding protein (PLBP) in guinea pig alveolar type II cells. PLBP has been suggested to act as a mediator in facilitating and regulating intracellular surfactant assembly and delivery to the plasma membrane of type II cells for secretion into alveolar space. It has been reported that cigarette smoke exposure (CSE) causes a decrease in the surfactant activity in bronchial washings. We have also reported earlier that mainstream (MS) and sidestream (SS) CSE causes desensitization of -adrenoreceptors in guinea pig alveolar type II cells. Since both Ca2+ and -adrenoreceptors are involved in surfactant secretion and PLBP is involved in surfactant delivery, it is important to know whether CSE causes any change in the PLBP level in alveolar type II cells. In the present study, we have demonstrated that MS and SS CSE causes a significant increase in the levels of PLBP in alveolar type II cells (107 and 150%, respectively) and in lung lavage (42 and 125%, respectively) in comparison to that in sham control (430 ng/mg protein in alveolar type II cells and 780 ng/mg protein in lung lavage). The mechanism by which smoke exposure causes an elevation in the levels of PLBP in alveolar type II cells and lung lavage remains to be investigated.  相似文献   

4.
Type II epithelial cells are essential for lung development and remodeling, as they are precursors for type I cells and can produce vascular mitogens. Although type II cell proliferation takes place after hyperoxia, it is unclear why alveolar remodeling occurs normally in adults whereas it is permanently disrupted in newborns. Using a line of transgenic mice whose type II cells could be identified by their expression of enhanced green fluorescent protein and endogenous expression of surfactant proteins, we investigated the age-dependent effects of hyperoxia on type II cell proliferation and alveolar repair. In adult mice, type II cell proliferation was low during room air and hyperoxia exposure but increased during recovery in room air and then declined to control levels by day 7. Eight weeks later, type II cell number and alveolar compliance were indistinguishable from those in room air controls. In newborn mice, type II cell proliferation markedly increased between birth and postnatal day 7 before declining by postnatal day 14. Exposure to hyperoxia between postnatal days 1 and 4 inhibited type II cell proliferation, which resumed during recovery and was aberrantly elevated on postnatal day 14. Eight weeks later, recovered mice had 70% fewer type II cells and 30% increased lung compliance compared with control animals. Recovered mice also had higher levels of T1alpha, a protein expressed by type I cells, with minimal changes detected in genes expressed by vascular cells. These data suggest that perinatal hyperoxia adversely affects alveolar development by disrupting the proper timing of type II cell proliferation and differentiation into type I cells.  相似文献   

5.
We analyzed the pattern of gap junction protein (connexin) expression in vivo by indirect immunofluorescence. In normal rat lung sections, connexin (Cx)32 was expressed by type II cells, whereas Cx43 was more ubiquitously expressed and Cx46 was expressed by occasional alveolar epithelial cells. In response to bleomycin-induced lung injury, Cx46 was upregulated by alveolar epithelial cells, whereas Cx32 and Cx43 expression were largely unchanged. Given that Cx46 may form gap junction channels with either Cx43 or Cx32, we examined the ability of primary alveolar epithelial cells cultured for 6 days, which express Cx43 and Cx46, to form heterocellular gap junctions with cells expressing other connexins. Day 6 alveolar epithelial cells formed functional gap junctions with other day 6 cells or with HeLa cells transfected with Cx43 (HeLa/Cx43), but they did not communicate with HeLa/Cx32 cells. Furthermore, day 6 alveolar epithelial cells formed functional gap junction channels with freshly isolated type II cells. Taken together, these data are consistent with the notion that type I and type II alveolar epithelial cells communicate through gap junctions compatible with Cx43.  相似文献   

6.
7.
Immunohistochemical and in vitro studies indicate that caveolin-1, which occurs abundantly in alveolar epithelial type I cells and microvascular endothelial cells of the lung, is selectively downregulated in the alveolar epithelium following exposure to bleomycin. Bleomycin is also known to enhance the expression levels of metalloproteinases and of the metalloproteinase inducer CD147/EMMPRIN in lung cells. Experimental in vitro data has showed that MMP-inducing activity of CD147 is under the control of caveolin-1. We studied the effects of bleomycin on the expression of caveolin-1, CD147 and metalloproteinases using an alveolar epithelial rat cell line R3/1 with properties of both alveolar type I and type II cells and explanted rat lung slices. In parallel, retrospective samples of bleomycin-induced fibrosis in rats and mice as well as samples of wild type and caveolin-1 knockout animals were included for immunohistochemical comparison with in vitro data. Here we report that treatment with bleomycin downregulates caveolin-1 and increases CD147 and MMP-2 and -9 expression/activity in R3/1 cells using RT-PCR, Western blot analysis, MMP-2 activity assay and immunocytochemistry. Immunofluorescence double labeling revealed that caveolin-1 and CD147 were not colocalized in vitro. The in vitro findings were confirmed through immunohistochemical studies of the proteins in paraffin embedded precision-cut rat lung slices and in fibrotic rat lung tissues. The caveolin-1-negative hyperplastic ATII cells exhibited enhanced immunoreactivity for CD147 and MMP-2. Caveolin-1-negative ATI cells of fibrotic samples were mostly CD147 negative. There were no differences in the pulmonary expression of CD147 between the normal and caveolin-1 deficient animals. The results demonstrate that bleomycin-induced lung injury is associated with an increase in CD147 expression and MMP activity, particularly in alveolar epithelial cells. In addition, our data exclude any functional interaction between CD147 and alveolar epithelial caveolin-1.  相似文献   

8.
9.
哺乳动物肺泡上皮细胞主要由肺泡II型上皮细胞(AECII)和肺泡I型上皮细胞(AECI)组成。在肺发育和肺损伤修复过程中,AECII可转分化为AECI,体外原代培养的AECII有这种转分化的特性。现对AECII转分化的标志、影响及调控因素及其在肺损伤中的作用进行综述。  相似文献   

10.
It is well established that hyperoxia injures and kills alveolar endothelial and type I epithelial cells of the lung. Although type II epithelial cells remain morphologically intact, it remains unclear whether they are also damaged. DNA integrity was investigated in adult mice whose type II cells were identified by their endogenous expression of pro-surfactant protein C or transgenic expression of enhanced green fluorescent protein. In mice exposed to room air, punctate perinuclear 8-oxoguanine staining was detected in approximately 4% of all alveolar cells and in 30% of type II cells. After 48 or 72 h of hyperoxia, 8-oxoguanine was detected in 11% of all alveolar cells and in >60% of type II cells. 8-Oxoguanine colocalized by confocal microscopy with the mitochondrial transmembrane protein cytochrome oxidase subunit 1. Type II cells isolated from hyperoxic lungs exhibited nuclear DNA strand breaks by comet assay even though they were viable and morphologically indistinguishable from cells isolated from lungs exposed to room air. These data reveal that type II cells exposed to in vivo hyperoxia have oxidized and fragmented DNA. Because type II cells are essential for lung remodeling, our findings raise the possibility that they are proficient in DNA repair.  相似文献   

11.
The development and maintenance of the Sertoli cell junctional complex were investigated in prepubertal and adult guinea pigs. To correlate the structure of the blood-testis barrier with its permeability, the polyene antibiotic filipin (a cholesterol-binding agent of low molecular weight: 570.70) was added to the fixative as a tracer visible in freeze-fracture replicas. Discontinuous zonules, intermediate junctions (i.e., adhering fasciae) and gap junctions all proved permeable to filipin in the two age groups. Only the continuous occluding zonules characteristic of the adult guinea pig's testis were impermeable to the tracer. In pubertal animals, the establishment of the blood-testis barrier coincided with the completion of the junctional strands in occluding zonules. The formation of occluding zonules was similar in the newborn and the adult. In the adult, the Sertoli cell junctional complexes contained three types of cell junctions: occluding, adhering, and gap junctions. The sequence of occluding and adhering junctions from the base to the apex of the epithelium was the reverse of that demonstrated in most epithelia. The impermeable continuous occluding zonules at the base showed parallel patterns of uninterrupted junctional strands, whereas the permeable discontinuous zonules found higher in the epithelium showed a meandering pattern of broken strands. Our observations indicate that (1) Sertoli cell junctional complexes form near the young germinal cells at the base of the seminiferous epithelium and break down near the older germinal cells toward the apex; (2) the various patterns and orientations of the junctional strands reflect, respectively, the different stages of disintegration of the occluding zonules and the conformation of the mature Sertoli cell to the irregular contours of the germinal cells; (3) there is no relationship between permeability and junctional strand orientation; and (4) the cellular contacts between Sertoli cells and germinal cells situated below the blood-testis barrier may represent the early stages of formation of junctional elements which ultimately become incorporated into the Sertoli cell junctional complex.  相似文献   

12.
Yu S  Stahl E  Li Q  Ouyang A 《Life sciences》2008,82(5-6):324-330
Antigen challenge in sensitized guinea pig esophagus in vitro induces mast cell degranulation and histamine release. This study tests the hypothesis that antigen inhalation in vivo induces infiltration of the esophageal epithelium by mast cells and eosinophils via a histamine pathway. Actively sensitized guinea pigs were exposed to inhaled 0.1% ovalbumin. One or 24 h after inhalation exposure, the esophagus was processed for immunofluorescent staining of mast cell tryptase and eosinophil major basic protein (MBP). Additional animals were pretreated with thioperamide, a histamine H4/H3 receptor antagonist. Total tryptase- and MBP-labeled cells and percent of positive cells in the epithelial layer were counted. The total number of mast cells was unchanged after inhalation challenge, but the percentage in the epithelium increased 1 h after challenge. The total number of eosinophils increased 1 h after challenge, and the percentage migrating to the epithelium increased by 24 h after challenge. Mast cell migration into the mucosal epithelium preceded that of eosinophils. Thioperamide inhibited mast cell and eosinophil migration. In conclusion, antigen inhalation in sensitized animals induces mast cells and eosinophils to infiltrate in the esophageal epithelium via histamine-mediated mechanism.  相似文献   

13.
To identify specific lung cells possessing functional beta-adrenergic receptors, we developed an immunoperoxidase-staining procedure capable of in situ localization of cells responding to beta-agonist stimulation with a rise in adenosine 3',5'-cyclic monophosphate (cAMP). Isoproterenol was instilled into the airways of excised intact guinea pig lungs for 5 min and resulted in a six to eightfold rise in cAMP. Immediately thereafter, the lungs were washed in and fixed with 10% buffered Formalin. Sections were then stained using immunoperoxidase techniques and monoclonal antibodies directed against cAMP. We found that isoproterenol-stimulated lungs had widespread increased staining for immunoreactive cAMP. The specific cells consistently demonstrating marked increases in staining were airway epithelial cells, airway smooth muscle cells, alveolar and parenchymal macrophages, and alveolar lining cells, including both type I and type II cells, and capillary endothelial cells. Of all tissues, the airway epithelium was the most intensely stained area for beta-agonist-induced immunoreactive cAMP. The techniques employed herein should make possible the in situ localization of cells responding to any stimuli capable of increasing cAMP, thereby allowing the specific identification of cells possessing functional adenylate cyclase-linked receptors.  相似文献   

14.
The embryonic development of Melasoma saliceti takes eight days at room temperature. At the beginning of the 5th day the endoderm cells have already formed a unilayered epithelium of the midgut primordium. The midgut epithelium is formed by flat cells that are not connected by specialized intercellular junctions. Large vesicles can be seen in dilated intercellular spaces of the epithelium. Cytoplasmic projections, similar to microvilli, appear in the vesicles. During the 5th day ofdevelopment, the vesicles grow and become enclosed by the intercellular junctions of a zonula adherens type. During the 6th day of development the cell junctions surrounding the vesicles become transformed into a septate type. On the 8th day of development the vesicles come close to the apical sides of the midgut cells and open towards the yolk. At the same time the microvilli spread over the apical surface of the midgut primordium to form the regular brushborder of the larval midgut. In the species studied the vesicles appear to "prefabricate" the apical surfaces of the future midgut epithelium.  相似文献   

15.
The tricellular region of epithelial tight junctions was previously dismissed as a possible avenue of permeability. One reason was that the two parallel vertical fibers, which penetrate the depth of the tight junction, were apparently cross-linked. Another reason was that the tricellular region of the tight junction is deeper than the adjacent bicellular regions. In the course of several freeze-fracture studies of epithelial tight junctions we have made observations which led us to re-assess the tricellular region as an avenue of permeability. We believe that information from ectoplasmic fracture faces is less subject to artifacts and, in ectoplasmic fracture faces of tricellular regions, cross-linking of the vertical furrows has not been observed. In guinea pig tracheal epithelium the tricellular junction is only about 1 micron deep. Following exposure to cigarette smoke, lanthanum ion staining has been observed in some tricellular junctions. It seems that earlier reasons for dismissing tricellular regions of the tight junction as permeability sites may be insufficient and that there is some evidence to support a role in permeability.  相似文献   

16.
17.
18.
An increased standardised rate of mortality from pleural mesothelioma among the population of Biancavilla (Sicily, Italy) has been attributed to exposure to fluoro-edenite fibres. Our aim was to establish whether and how these fibres may induce pathological effects using an in vivo model. Lung tissue collected from 60 healthy sheep selected from six flocks habitually grazing near Biancavilla and from 10 control sheep was fixed formalin and paraffin-embedded; sections were stained with haematoxylin-eosin, Masson trichrome and Gomori argentic impregnation. Histochemical studies and immunohistochemical analysis for the localisation of TRAIL, DR5 and MMP13 were also performed. The lungs of exposed sheep exhibited fibrosis and loss of alveolar architecture with honeycombing of alveolar cavities. Fluoro-edenite fibres were detected close to the alveolar epithelium and interstitia. The parenchyma showed hyaline degeneration and strong PAS-positivity in the interstitium, proteoglycan alterations, reflecting a damaged basal membrane and an involvement of the interstitial matrix. MMP-13 was overexpressed, mainly in fibroblasts and epithelial cells, while positivity for TRAIL and DR5 was detected on alveolar surfaces and in the vascular stroma. The initial pathological event seems to involve first the alveoli and subsequently the interstitium, giving rise to classic honeycombing. The triggering event at the level of type I pneumocytes would damage the cytoplasmic membrane resulting in loss of cell elements and exposure of underlying capillaries, and eventually in a series of reactions including macrophage activation, possible release of growth factors and metaplasic reconstruction of lung alveoli. Immunopositivity for TRAIL and MMP-13 receptor suggests that apoptotic processes may also be activated by fluoro-edenite.  相似文献   

19.
Type I cell-like morphology in tight alveolar epithelial monolayers   总被引:7,自引:0,他引:7  
The pulmonary alveolar epithelium separates air spaces from a fluid-filled interstitium and might be expected to exhibit high resistance to fluid and solute movement. Previous studies of alveolar epithelial barrier properties have been limited due to the complex anatomy of adult mammalian lung. In this study, we characterized a model of isolated alveolar epithelium with respect to barrier transport properties and cell morphology. Alveolar epithelial cells were isolated from rat lungs and grown as monolayers on tissue culture-treated Nuclepore filters. On Days 2-6 in primary culture, monolayers were analyzed for transepithelial resistance (Rt) and processed for electron microscopy. Mean cell surface area and arithmetic mean thickness (AMT) were determined using morphometric techniques. By Day 5, alveolar epithelial cells in vitro exhibited morphologic characteristics of type I alveolar pneumocytes, with thin cytoplasmic extensions and protruding nuclei. Morphometric data demonstrated that alveolar pneumocytes in vitro develop increased surface area and decreased cytoplasmic AMT similar to young type I cells in vivo. Concurrent with the appearance of type I cell-like morphology, monolayers exhibited high Rt (greater than 1000 omega.cm2), consistent with the development of tight barrier properties. These monolayers of isolated alveolar epithelial cells may reflect the physiological and morphological properties of the alveolar epithelium in vivo.  相似文献   

20.
The alveolar surface of the lung is lined by two classes of epithelial cells, type I and type II cells. Type I cells cover more than 97% of the alveolar surface. Although this cell type is felt to be essential for normal gas exchange, neither unique identifying characteristics nor functions have been described for the type I cell. We have produced monoclonal antibodies to (a) component(s) of molecular weight 40,000 and 42,000 of the apical surface of rat alveolar type I cells. The antibodies are specific to the lung in Western blots of organ homogenates. In immunocytochemical studies of frozen lung at the level of both light and electron microscopy, the monoclonal antibodies appear to react specifically with the apical plasma membrane of type I cells. Airway, vascular, interstitial cells, type II cells and macrophages are not immunoreactive. Western blots of isolated type I cells (approx. 70% pure) also demonstrate immunoreactivity at molecular weights of 40,000 and 42,000. When the lung is injured, type I cells may be damaged and sloughed from the alveolar surface. Alveolar repair occurs when the second type of alveolar cell, the type II cell, divides. Cell progeny may retain type II cell morphology or may differentiate into type I cells. Western blots of freshly isolated type II cells (approx. 85% pure) do not display immunoreactivity with our monoclonal antibodies. However, type II cells maintained in culture acquire immunoreactivity to monoclonal antibodies, demonstrating that type II cells in vitro have the capacity to develop a characteristic associated with type I cells in situ. The availability of markers for a specific membrane component of type I cells should facilitate the study of many questions on alveolar functions, development and response to injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号