首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A macromolecular complex of transferrin and a membrane component was isolated by gel filtration chromatography from Triton X-100-solubilized ghosts of reticulocytes previously incubated with 125I-labeled transferrin. This complex is believed to be transferrin specifically associated with its primary receptor. Following the procedures of Clark [14], the complex in Triton X-100 was found to behave as an asymmetric molecule with a molecular weight of approximately 250,000 and an axial ratio of 9:1. On SDS-polyacrylamide gel electrophoresis the complex displays, in addition to transferrin, components of molecular weights 176,000 and 95,000, respectively. The larger component may be a dimer of the smaller. Each appears to crosslink, with dimethyl suberimidate, to transferrin. These results are compatible with the hypothesis that the transferrin receptor itself has a molecular weight near 175,000 and may be a dimer of two smaller components each of molecular weight near 95,000.  相似文献   

2.
Chelating agents have been shown to induce characteristic changes in the light-minus-dark Fourier transform infrared (FTIR) difference spectrum for the S(2)/S(1) difference in the oxygen-evolving complex (OEC). Addition of various ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA)-type chelators, such as EDTA, O,O'-bis(2-aminoethyl)ethyleneglycol-N,N,N',N'-tetraacetic acid (EGTA), trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CyDTA), or N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA), to Ca(2+)-depleted PS II membranes resulted in the suppression of typical S(2)/S(1) vibrational features, including the symmetric (1365(+)/1404(-) cm(-1)) and the asymmetric (1587(+)/1566(-) cm(-1)) carboxylate stretching vibrations, as well as the amide I and II modes of the backbone polypeptides. In contrast, the addition of ethylenediamine-N,N'-diacetic acid (EDDA) showed less inhibitory effects. The effects of the chelators depended on the number of the carboxylate groups; chelators with more than two carboxymethyl groups were effective in altering the FTIR spectrum. The bridging structure that connects the two nitrogen atoms also influenced the inhibitory effects. However, the effects were not necessarily correlated with the stability constants of the chelators to Mn(2+). The vibrational modes that were suppressed by EDTA were almost completely restored by subsequent washing with Chelex-treated Ca(2+)-free buffer medium, indicating that the spectral changes are attributable to the reversible association of chelators with the Ca(2+)-depleted OEC. Nevertheless, prolonged incubation with chelators led to the impairment of the O(2)-evolving capability, with differences in the effectiveness, in the order that is consistent with that for the suppression effects on FTIR spectra. Chelators with carboxylate and/or carboxymethyl groups bound to a single nitrogen [nitrilotriacetic acid (NTA) and iminodiacetic acid (IDA)] or carbon (citric acid) were relatively ineffective for the suppression. A chelator that includes four phosphate groups, ethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic) acid (EDTPO), also showed suppression effects on both the carboxylate and amide modes. Based on these findings, a possible mode of interaction between the chelators and the Mn cluster is discussed.  相似文献   

3.
D B McIntosh  D C Ross 《Biochemistry》1985,24(5):1244-1251
The effect of increasing concentrations of the nonionic detergent Triton X-100 on catalytic activity, stability, phospholipid content, and aggregational state of solubilized Ca2+ ion activated adenosinetriphosphatase (Ca2+-ATPase) of sarcoplasmic reticulum has been investigated. Increasing concentrations of Triton X-100 in the range 0.2-0.6% (w/v) inhibited ATP hydrolysis and p-nitrophenyl phosphate hydrolysis in parallel to the extent of 50% and 95%, respectively. Inactivation of p-nitrophenyl phosphate hydrolysis by preincubation in excess ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) at 25 degrees C was monophasic and first order at all concentrations of Triton X-100. The rate constant for inactivation increased sharply in the range 0.1-0.6% Triton X-100. At higher concentrations, the increase was less marked. Protein-protein associations of the solubilized ATPase were assessed by glutaraldehyde cross-linking and by ultracentrifugation in sucrose gradients. Both methods indicated a decrease in these associations in the 0.1-0.5% range. Cross-linking studies established that above 0.5% Triton X-100 the enzyme is greater than 90% monomeric. The amount of phospholipid associated with the ATPase, recovered from sucrose gradients, decreased from about 50 mol of phospholipid/mol of ATPase at 0.1% Triton X-100 to about 3 mol of phospholipid/mol of ATPase at 0.5% and higher concentrations. Monomeric ATPase and aggregated ATPase isolated from equilibrium mixtures of these components had similar phospholipid/protein ratios. The results indicated that with increasing Triton X-100 concentrations, inhibition of catalysis, destabilization, loss of protein-protein associations, and loss of phospholipid occur concurrently.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Hemin, but not iron, in the culture medium stimulates the maturation-associated loss of the transferrin receptor from sheep reticulocytes (t1/2 for loss approximately 6 hr) and its appearance in a population of externalized vesicles. A similar pattern is seen with nucleoside binding (a measure of the nucleoside transporter), where hemin increases the loss of binding activity from the cells during culture, concomitant with an increase in nucleoside binding in the externalized vesicles. Sheep reticulocytes retain the ability to synthesize the transferrin receptor, but the 35S-labeled receptors are not detected in released vesicles. Whereas hemin stimulates the loss of 35S-labeled transferrin receptors from the cell (t1/2 for loss approximately 20 hr), nonheme iron is more effective than heme. This difference in response of native and 35S-labeled receptor to hemin and iron supplements appears to be related to the differences in the two classes of receptors. Although the 35S-labeled receptor binds transferrin and both native and 35S-labeled peptides comigrate after chemical deglycosylation, the 35S-receptor is approximately 2 kD smaller than the native receptor and fails to acquire its complete size even when chased for up to 24 hr. Moreover, the 35S-labeled receptor is not expressed at the cell surface, but is retained in a nonrecycling compartment, where it is insensitive to digestion by trypsin at both 0 degrees C and 37 degrees C.  相似文献   

5.
Sheep reticulocytes from phlebotomized animals have a total transferrin binding potential that may exceed by an order of magnitude the surface binding capacity. Steady state uptake of transferrin at 37 degrees C is generally less than 50% of the total transferrin binding capacity. During long-term incubation of the reticulocytes, all transferrin binding ability is lost, the ability to internalize being lost most rapidly. The loss in ability to bind transferrin during long-term incubation is independent of the number of surface transferrin binding sites, since removal of surface receptors with pronase does not affect the rate of loss of the internal pool of receptors during long-term incubation. Moreover, after removing surface receptors with pronase, only a fraction of the original number of receptors is restored to the surface, despite the presence of a large pool of internal receptors. These data suggest that only a fraction of the internal pool of receptors is capable of recycling to the cell surface in sheep reticulocytes.  相似文献   

6.
A shift in the incubation temperature of rabbit alveolar macrophages (0 degree C leads to 37 degrees C leads to 0 degree C) resulted in a 40-60% reduction in the ability of cells to bind alphamacroglobulin. 125I-trypsin complexes (alphaM. 125I-T). The reduction in binding activity did not reflect a disruption of cell integrity since the levels of intracellular components (lactate dehydrogenase, beta-N-acetyl-hexosaminidase) or other plasma membrane components (alkaline phosphodiesterase) were unaltered. Analysis of receptor-ligand interaction indicated that the temperature shift effected a decline in receptor number rather than an alteration in ligand-receptor affinity. Studies indicated that a temperature shift resulted in the loss of unoccupied receptors, and that ligand bound to receptors was not lost. However, after ligand internalization, receptors were removed by the temperature shift. The rate of receptor loss was maximal when cells were incubated at temperatures greater than 24 degrees C. Receptor loss was not prevented by treatment of cells with colchicine, cytochalasin B, or N-ethylamaleimide, but was prevented by treatment with the cross-linking agent paraformaldehyde. Data indicate that the reduction in alphaM. 125I-T binding activity resulted from shedding of receptors into the media since media obtained from temperature-shifted cells contained material that competed with cell-bound receptors for alphaM. 125I-T. Additionally, binding of alphaM. 125I-T was diminished on membrane fragments obtained from temperature-shifted cells. Incubation with Triton X-100, of cells whose receptors were occupied with alphaM. 125I-T, led to the extraction of 40% of cell-bound activity. However, no radioactivity was extracted from cells labeled with alphaM. 125I-T after a temperature shift. Measurement of ligand accumulation by control and temperature-shifted cells incubated at 20 degrees C indicated that control cells exhibited a subpopulation of receptors capable of binding ligand but only slowly internalizing it. This subpopulation was not present on temperature-shifted cells. These results indicate that surface receptors for alphamacroglobulin . protease complexes are heterogeneous and that the temperature shift resulted in the selective loss of membrane components.  相似文献   

7.
This study systematically examined the characteristics of specific binding of adult diferric transferrin to its receptor using a Triton X-100 solubilized preparation from human placentas as the receptor source. The following information was obtained. The ionic strength for maximal binding is in the range of 0.1-0.3 M NaCl. The pH optimum for specific binding extends over the range, from pH 6.0-10.0. Specific binding of diferric transferrin is not affected by 2.5 approximately 50 mM CaCl2 or by 10 mM EDTA. Triton X-100 in the concentration range of 0.02-3.0% does not affect specific binding. Specific binding is saturated within 10 min at 25 or 37 degrees C in the presence of excess amounts of diferric transferrin. The binding is reversible and the dissociation of diferric transferrin from the transferrin receptor is complete within 40 min at 25 degrees C. Apotransferrin, both adult and fetal, showed less binding than the holotransferrin species by competitive binding assay in the presence of 10 mM EDTA independent of up to 20 mM CaCl2. A 1500-fold molar excess of adult and fetal apotransferrin is required to give 40% inhibition for 125I-labeled diferric transferrin binding. Since calcium ion is not a factor, and since apotransferrin has such high binding affinity for iron (Ka = 1 X 10(24], this experiment suggests that the EDTA was necessary to prevent conversion of apotransferrin to holotransferrin from available iron in the reaction system. The specificity of the transferrin receptor for transferrin was examined by competitive binding studies in which 125I-diferric transferrin binding was measured in the presence of a series of other proteins. The proteins tested in the competitive binding studies were classified into three groups; in the first group were human serum albumin and ovalbumin; in the second group were proteins containing iron ions, such as hemoglobin, hemoglobin-haptoglobin complex, heme-hemopexin complex, ferritin, and diferric lactoferrin; in the third group were the metal-binding serum proteins, ceruloplasmin and metallothionein. None of these proteins except ferritin showed inhibition of diferric transferrin binding to the receptor. The effect of ferritin was small since a 700- to 1500-fold molar excess of ferritin is required for 50% inhibition of binding of diferric transferrin to the receptor.  相似文献   

8.
Microvilli isolated from 13762 mammary ascites tumor cells contain a major calcium-sensitive protein (AMV-p35) that can be isolated with microvillar microfilament cores prepared by Triton X-100 extraction in the presence but not absence of calcium. AMV-p35 can be readily purified from ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid extracts of the microfilament cores by chromatography on an anion exchange column, to which it does not bind. Immunoblot analysis indicates that AMV-p35 is related to calpactin I, the pp60src tyrosine kinase substrate. In the presence of calcium, AMV-p35 binds approximately 4 mol of chlorpromazine per mole of protein in a binding process showing apparent positive cooperativity, similar to calmodulin; however, in contrast to calmodulin, AMV-p35 also binds phenothiazine in the absence of calcium.  相似文献   

9.
Transferrin-membrane protein complexes were solubilized either with 0.4% sodium dodecyl sulfate (SDS), 1% Triton X-100 or 0.5% sulfobetaine 3-14 from the plasma membranes of rabbit reticulocytes previously labeled with 125I and then incubated with 131-labeled transferrin. When the solubilized membranes were analyzed by gel filtration fractionation, marked variation in the preservation of transferrin-transferrin receptor interaction was noted between the three detergents. After SDS solubilization, more than 80% of the 131I-labeled transferrin remained associated with membrane proteins with apparent molecular weight of the transferrin-receptor complexes of 1400 000 and 240 000. In contrast, after Triton X-100 solubilization only 40% of the transferrin was still complexed to membrane proteins with an apparent molecular weight of the complex of 450 000. Dissociation of transferrin from its receptor was most marked following sulfobetaine solubilization, with less than 30% of the transferrin still complexed. Following gel filtration 131I-labeled transferrin-125I-labeled membrane protein complexes were immunoprecipitated with goat specific anti-rabbit transferrin antibodies. The immunoprecipitates were analyzed under stringent dissociating conditions by two SDS-polyacrylamide gel electrophoretic techniques. In a linear 5-25% polyacrylamide gradient the 125I-labeled receptor obtained after membrane solubilization with all three detergents had an apparent molecular weight of 80 000. In contrast, in a different system using 10% polyacrylamide gel two 125I-labeled receptor components were detected wih apparent molecular weights of 90 000 and 80 000. These results demonstrate that estimates of the molecular weight of the transferrin receptor depended on the conditions of electrophoresis and suggest that the transferrin receptor is partially modified, perhaps by glycosylation.  相似文献   

10.
Receptors for thyrotropin-releasing hormone were solubilized by Triton X-100. Membrane fractions from GH3 pituitary tumor cells were incubated with thyrotropin-releasing hormone in order to saturate specific receptor sites before the addition of detergent. The amount of protein-bound hormone solubilized by Triton X-100 was proportional to the fractional saturation of specific membrane receptors. Increasing detergent:protein ratios from 0.5 to 20 led to a progressive loss of hormone . receptor complex from membrane fractions with a concomitant increase in soluble protein-bound hormone. The soluble hormone . receptor complex was not retained by 0.22 micron filters and remained soluble after ultracentrifugation. Following incubation with high (2.5--10%) concentrations of Triton X-100 and other non-ionic detergents, or following repeated detergent extraction, at least 18% of specifically bound thyrotropin-releasing hormone remained associated with particulate material. Unlike the hormone receptor complex, the free hormone receptor was inactivated by Triton X-100. A 50% loss of binding activity was obtained with 0.01% Triton X-100, corresponding to a detergent:protein ratio of 0.033. The hormone . receptor complex was included in Sepharose 6B and exhibited an apparent Stoke radius of 46 A in buffers containing Triton X-100. The complex aggregated in detergent-free buffers. Soluble hormone receptors were separated from excess detergent and thyrotropin-releasing hormone by chromatography on DEAE-cellulose. Thyrotropin-releasing hormone dissociated from soluble receptors with a half-time of 120 min at 0 degrees C, while the membrane hormone . receptor complex was stable for up to 5 at 0 degrees C.  相似文献   

11.
The characteristics of the activation of a histone H4 kinase activity in Triton X-100 lysates of rabbit peritoneal neutrophils pretreated with fMet-Leu-Phe were studied: The activation of the kinase was a) inhibited by the antagonist of formylpeptide, t-Boc-(Phe-Leu)2(-)-Phe, b) completely inhibited by pertussis toxin pretreatment, c) not affected by the pretreatment of neutrophils with an activator of protein kinase C, phorbol-12-myristate-13-acetate, or an inhibitor of protein kinase C, 1-(5-isoquinoline-sulfonyl)-2-methyl-piperazine, and d) not inhibited in the cells preloaded with the intracellular calcium chelators, bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetra acetic acid acetoxymethyl-ester (BAPTA/AM). These results suggest that the stimulus-induced activation of H4 kinase requires functional receptor and GTP-binding protein but neither calcium mobilization nor protein kinase C activation.  相似文献   

12.
Treatment of synaptic membranes from rat brainstem and spinal cord with the nonionic detergent Triton X-100 at 1-10 microliters/mg protein caused a marked increase in glycine receptor (3H)strychnine binding expressed per mg of residual membrane protein. The effect was maximal (220 +/- 6% of control) at 5 microliters Triton/mg protein, while higher concentrations caused progressive loss of strychnine binding ability of membranes (27 +/- 6% at 25 microliters Triton/mg protein). The increase in strychnine binding caused by low Triton X-100 reflected an increase in membrane Bmax, the kD being unaffected by the treatment. The affinity of glycine analogues for receptor sites was not appreciably affected by the detergent either. The findings suggest an enrichment of the synaptic membrane preparation in glycine receptors, caused by the solubilization by Triton of membrane constituents not related to the receptor sites.  相似文献   

13.
The mechanism of transferrin uptake by reticulocytes was investigated using rabbit transferrin labelled with 125I and 59Fe and rabbit reticulocytes which had been treated with trypsin, Pronase or neuraminidase. Low concentrations of the proteolytic enzymes produced a small increase in transferrin and iron uptake by the cells. However, higher concentrations or incubation of the cells with the enzymes for longer periods caused a marked fall in transferrin and iron uptake. This fall was associated with a reduction in the proportion of cellular transferrin which was bound to a cell membrane component solubilized with the non-ionic detergent, Teric 12A9. The effect of trypsin and Pronase on transferrin release from the cells was investigated in the absence and in the presence of N-ethylmaleimide which inhibits the normal process of transferrin release. It was found that only a small proportion of transferrin which had been taken up by reticulocytes at 37 degrees C but nearly all that taken up 4 degrees C was released when the cells were subsequently incubated with trypsin plus N-ethylmaleimide, despite the fact that about 80% of the 59Fe in the cells was released in both instances. Neuraminidase produced no change in transferrin and iron uptake by the cells. These experiments provide evidence that transferrin uptake by reticulocytes requires interaction with a receptor which is protein in nature and that following uptake at 37 degrees C, most of the transferrin is located at a site unavailable to the action of proteolytic enzymes. The results support the hypothesis that transferrin enters reticulocytes by endocytosis.  相似文献   

14.
We investigated whether insulin forms covalent bonds with its receptors on erythrocytes and reticulocytes, as it does in adipocytes (1). Of the [125I]-insulin specifically bound at 37 degrees C to human and rat erythrocytes and rat reticulocytes, only 1.5-2.3% was non-dissociable on extensive washing. When ghosts prepared from the washed cells were solubilized in Triton X-100, only 0.6-1.5% of the specifically bound radioactivity appeared in the void volume of a Sephadex G-50 column. Moreover in contrast to adipocytes, this high molecular weight radioactivity was not immunoprecipitable by antibodies to the insulin receptor and was dissociated during chromatography in sodium dodecyl sulphate. Thus we have been unable to demonstrate the formation of covalent bonds between insulin and its receptors on erythrocytes and reticulocytes. This finding is consistent with the hypothesis that covalent binding of insulin is a necessary receptor modification for insulin's metabolic effects.  相似文献   

15.
The possible role of calcium in the uptake of transferrin and iron by rabbit reticulocytes was investigated by altering cellular calcium levels through the use of the chelating agents EDTA and ethyleneglycol-bis-(3-aminoethylether)-N,N′-tetraacetic acid (EGTA) and the ionophores, A23187 and X537A. Incubation of reticuloyctes with EDTA or EGTA at 4°C had no effect on transferrin and iron uptake but incubation at 37°C resulted in an irreversible inhibition associated with decreased adsorption of transferrin to the cells and evidence of inactivation or loss of the transferrin receptors. Transferrin and iron uptake were also inhibited when the cells were incubated with A23187 or X537A. In the case of A23187 the action was primarily exerted on the temperature-sensitive stage of transferrin uptake and was associated with loss of cellular K+ and decrease in cell size. The effect was greater when Ca2+ was added to the incubation medium than its absence. X537A produced relatively greater inhibition of iron uptake than of transferrin uptake, associated with a reduction in cellular ATP concentratio. The action of X537A was unaffected by the presence of Ca2+ in the incubation medium.The results obtained with EDTA and EGTA indicate that cell membrane Ca2+ is required for the integrity or binding of transferrin receptors to the reticulocyte membrane. No evidence was obtained from the experiments with ionophores that an increase of cellular Ca2+ affects transferrin and iron uptake directly. The inhibition caused by A23187 was mainly due to a reduction in cell size resulting from increased membrane permeability to K+ and that caused by X537A appeared to result from an inhibition of energy metabolism and ATP production.  相似文献   

16.
Preparative isoelectric focusing of human diferric transferrin preparations yielded seven bands with different isoelectric points, due to differences in sialic acid content. Incubation of rat reticulocytes at 37 and 4 degrees C with differic preparations of four of these transferrin forms labeled with 59Fe and 125I show no differences in membrane binding of iron and transferrin and in iron uptake. Hence it is concluded that the carbohydrate chains are not directly involved in the process of iron delivery to reticulocytes.  相似文献   

17.
The uptake of iron from transferrin by isolated rat hepatocytes and rat reticulocytes has been compared. The results show the following. 1) Reticulocytes and hepatocytes express plasma membrane NADH:ferricyanide oxidoreductase activity. The activity, expressed per 10(6) cells, is approximately 60-fold higher in the hepatocyte than in the reticulocyte. 2) Hepatocyte plasma membrane NADH:ferricyanide oxidoreductase activity and uptake of iron from transferrin are stimulated by low oxygen concentration and inhibited by iodoacetate. In reticulocytes, similar changes are seen in NADH:ferricyanide oxidoreductase activity, but not on iron uptake. 3) Ferricyanide inhibits the uptake of iron from transferrin by hepatocytes, but has no effect on iron uptake by reticulocytes. 4) Perturbants of endocytosis and endosomal acidification have no inhibitory effect on hepatocyte iron uptake, but inhibit reticulocyte iron uptake. 5) Hydrophilic iron chelators effectively inhibit hepatocyte iron uptake, but have no effect on reticulocyte iron uptake. Hydrophobic iron chelators generally inhibit both hepatocyte and reticulocyte iron uptake. 6) Divalent metal cations with ionic radii similar to or less than the ferrous iron ion are effective inhibitors of hepatocyte iron uptake with no effect on reticulocyte iron uptake. The results are compatible with hepatocyte uptake of iron from transferrin by a reductive process at the cell surface and reticulocyte iron uptake by receptor-mediated endocytosis.  相似文献   

18.
Sigma receptors once considered as a class of opioid receptors are now regarded as unique orphan receptors, distinguished by the ability to bind various pharmacological agents such as the progesterone (steroid), haloperidol (anti-psychotic), and drugs of abuse such as cocaine and methamphetamine. The sigma-1 receptor is a 223 amino acid protein, proposed to have two transmembrane segments. We have developed a scheme for the purification of the guinea pig sigma-1 receptor following overexpression in Escherichia coli as a maltose binding protein (MBP) fusion and extraction with Triton X-100. Affinity chromatography using an amylose column and Ni2+ affinity column was used to purify the sigma-1 receptor. The sigma-1 receptor purified by this method is a 26 kDa polypeptide as assessed by SDS-PAGE, binds sigma ligands with high affinity and can be specifically photoaffinity labeled with the sigma-1 receptor photoprobe, [125I]-iodoazidococaine. Ligand binding using [3H]-(+)-pentazocine indicated that approximately half of the purified protein in Triton X-100 bound to radioligand. The MBP-sigma-1 receptor and the sigma-1 receptor in 0.5% triton were maximally stable for approximately two weeks at -20 degrees C in buffer containing 30% glycerol.  相似文献   

19.
We have isolated several Chinese hamster ovary cell lines with temperature-sensitive defects in the recycling of receptors after endocytosis. These cell lines were selected using fluorescence-activated cell sorting for retention of a pulse of labeled transferrin after a chase in the presence of unlabeled transferrin. One of these cell lines, TfT1.11, was selected for further characterization. In TfT1.11 the trapping of transferrin within the cells is paralleled by a loss of cell surface transferrin receptors. Within 4 h after the shift from 33 to 41 degrees C the surface binding of transferrin is reduced to 18% of parental cells at 41 degrees C. The trapping of transferrin and the loss of transferrin receptor from the cell surface are caused by a temperature-conditional 5.5-fold decrease in the initial rate of transferrin recycling. TfT1.11 cells also rapidly lose 89% of their ability to take up alpha 2-macroglobulin after the temperature shift to 41 degrees C. These data indicate that the TfT1.11 cell line has a pleiotropic defect in receptor recycling.  相似文献   

20.
The transferrin receptor undergoes extensive co- and post-translational modifications during its biosynthesis. In this study, the functional and structural properties of the transferrin receptor from tunicamycin-treated A431 cells were examined. Incubation of A431 cells with this inhibitor of asparagine-linked glycosylation results in a shift of the apparent molecular weight of the transferrin receptor from 94,000 to 79,000. The electrophoretic mobility of the receptor from treated cells is that of a monomer under nonreducing conditions, whereas the transferrin receptor in untreated cells has the mobility of a dimer under identical conditions. This result indicates a lack of disulfide bond formation between subunits of the receptor from tunicamycin-treated cells. In solution no dimers can be detected with cross-linking studies. This unglycosylated receptor does not appear to stably bind transferrin as demonstrated by a lack of isolation of this form of the receptor with transferrin-linked Sepharose. It is not transported to the surface of A431 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号