首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Niemann-Pick type C (NPC) disease is an autosomal recessive lipid-storage disorder usually characterized by hepatosplenomegaly and severe progressive neurological dysfunction, resulting from mutations affecting either the NPC1 gene (in 95% of the patients) or the yet-to-be-identified NPC2 gene. Our initial study of 25 patients with NPC1 identified a T3182-->C transition that leads to an I1061T substitution in three patients. The mutation, located in exon 21, affects a putative transmembrane domain of the protein. PCR-based tests with genomic DNA were used to survey 115 unrelated patients from around the world with all known clinical and biochemical phenotypes of the disease. The I1061T allele constituted 33 (14.3%) of the 230 disease-causing alleles and was never found in controls (>200 alleles). The mutation was particularly frequent in patients with NPC from Western Europe, especially France (11/62 alleles) and the United Kingdom (9/32 alleles), and in Hispanic patients whose roots were in the Upper Rio Grande valley of the United States. The I1061T mutation originated in Europe and the high frequency in northern Rio Grande Hispanics results from a founder effect. All seven unrelated patients who were homozygous for the mutation and their seven affected siblings had a juvenile-onset neurological disease and severe alterations of intracellular LDL-cholesterol processing. The mutation was not found (0/40 alleles) in patients with the severe infantile neurological form of the disease. Testing for this mutation therefore has important implications for genetic counseling of families affected by NPC.  相似文献   

2.
3.
Mutations in mitochondrial complex II (MCII; succinate dehydrogenase, Sdh) genes cause familiar pheochromocytoma/paraganglioma tumors. Several mechanisms have been proposed to account for Sdh-mutation-induced tumorigenesis, the most accepted of which is based on the constitutive expression of the hypoxia-inducible factor 1α (Hif1α) at normal oxygen tension, a theory referred to as “pseudo-hypoxic drive”. Other molecular processes, such as oxidative stress, apoptosis, or chromatin remodeling have been also proposed to play a causative role. Nevertheless, the actual contribution of each of these mechanisms has not been definitively established. Moreover, the biological factors that determine the tissue-specificity of these tumors have not been identified. In this work, we made use of the inducible SDHD-ESR mouse, a conditional mutant in the SdhD gene, which encodes the small subunit of MCII, and that acts as a tumor suppressor gene in humans. The analysis of the Hif1α pathway in SDHD-ESR tissues and in two newly derived cell lines after complete SdhD loss -a requirement for hereditary paraganglioma type-1 tumor formation in humans- partially recapitulated the “pseudo-hypoxic” response and rendered inconsistent results. Therefore, we performed microarray analysis of adrenal medulla and kidney in order to identify other early gene expression changes elicited by SdhD deletion. Our results revealed that each mutant tissue displayed different variations in their gene expression profiles affecting to different biological processes. However, we found that the Cdkn1a gene was up-regulated in both tissues. This gene encodes the cyclin-dependent kinase inhibitor p21WAF1/Cip1, a factor implicated in cell cycle, senescence, and cancer. The two SDHD-ESR cell lines also showed accumulation of this protein. This new and unprecedented evidence for a link between SdhD dysfunction and p21WAF1/Cip1 will open new avenues for the study of the mechanisms that cause tumors in Sdh mutants. Finally, we discuss the actual role of Hif1α in tumorigenesis.  相似文献   

4.
5.
The spinal muscular atrophies (SMAs) are a genetically and clinically heterogeneous group of disorders characterized by degeneration and loss of anterior horn cells in the spinal cord, leading to muscle weakness and atrophy. Spinal muscular atrophy with pontocerebellar hypoplasia (SMA-PCH, also known as pontocerebellar hypoplasia type 1 [PCH1]) is one of the rare infantile SMA variants that include additional clinical manifestations, and its genetic basis is unknown. We used a homozygosity mapping and positional cloning approach in a consanguineous family of Ashkenazi Jewish origin and identified a nonsense mutation in the vaccinia-related kinase 1 gene (VRK1) as a cause of SMA-PCH. VRK1, one of three members of the mammalian VRK family, is a serine/threonine kinase that phosphorylates p53 and CREB and is essential for nuclear envelope formation. Its identification as a gene involved in SMA-PCH implies new roles for the VRK proteins in neuronal development and maintenance and suggests the VRK genes as candidates for related phenotypes.  相似文献   

6.
Phospholipids also play a major role in maintaining the lipid droplet (LD) morphology. In our current study, deletion of LPL1 resulted in altered morphology of LDs and was confirmed by microscopic analysis. LPL1/YOR059c contains lipase specific motif GXSXG and acetate labeling in the LPL1 overexpressed strains depicted a decrease in glycerophospholipids and an increase in free fatty acids. The purified Lpl1p showed phospholipase activity with broader substrate specificity, acting on all glycerophospholipids primarily at sn-2 position and later at sn-1 position. Localization studies precisely revealed that Lpl1 is exclusively localized in the LD at the stationary phase. Site directed mutagenesis experiments clearly demonstrated that the lipase motif is vital for the phospholipase activity. In summary, our results demonstrate that yeast Lpl1 exerts phospholipase activity, plays a vital role in LD morphology, and its absence results in altered LD size. Based on the localization and enzyme activity we renamed YOR059c as LPL1 (LD phospholipase 1).  相似文献   

7.
We report on the identification of a 0.3 Mb inherited recurrent but variable copy-number gain at Xq28 in affected males of four unrelated families with X-linked mental retardation (MR). All aberrations segregate with the disease in the families, and the carrier mothers show nonrandom X chromosome inactivation. Tiling Xq28-region-specific oligo array revealed that all aberrations start at the beginning of the low copy repeat LCR-K1, at position 153.20 Mb, and end just distal to LCR-L2, at 153.54 Mb. The copy-number gain always includes 18 annotated genes, of which RPL10, ATP6AP1 and GDI1 are highly expressed in brain. From these, GDI1 is the most likely candidate gene. Its copy number correlates with the severity of clinical features, because it is duplicated in one family with nonsyndromic moderate MR, is triplicated in males from two families with mild MR and additional features, and is present in five copies in a fourth family with a severe syndromic form of MR. Moreover, expression analysis revealed copy-number-dependent increased mRNA levels in affected patients compared to control individuals. Interestingly, analysis of the breakpoint regions suggests a recombination mechanism that involves two adjacent but different sets of low copy repeats. Taken together, our data strongly suggest that an increased expression of GDI1 results in impaired cognition in a dosage-dependent manner. Moreover, these data also imply that a copy-number gain of an individual gene present in the larger genomic aberration that leads to the severe MECP2 duplication syndrome can of itself result in a clinical phenotype as well.  相似文献   

8.
9.
Cranioectodermal dysplasia (CED) is a disorder characterized by craniofacial, skeletal, and ectodermal abnormalities. Most cases reported to date are sporadic, but a few familial cases support an autosomal-recessive inheritance pattern. Aiming at the elucidation of the genetic basis of CED, we collected 13 patients with CED symptoms from 12 independent families. In one family with consanguineous parents two siblings were affected, permitting linkage analysis and homozygosity mapping. This revealed a single region of homozygosity with a significant LOD score (3.57) on chromosome 3q21-3q24. By sequencing candidate genes from this interval we found a homozygous missense mutation in the IFT122 (WDR10) gene that cosegregated with the disease. Examination of IFT122 in our patient cohort revealed one additional homozygous missense change in the patient from a second consanguineous family. In addition, we found compound heterozygosity for a donor splice-site change and a missense change in one sporadic patient. All mutations were absent in 340 control chromosomes. Because IFT122 plays an important role in the assembly and maintenance of eukaryotic cilia, we investigated patient fibroblasts and found significantly reduced frequency and length of primary cilia as compared to controls. Furthermore, we transiently knocked down ift122 in zebrafish embryos and observed the typical phenotype found in other models of ciliopathies. Because not all of our patients harbored mutations in IFT122, CED seems to be genetically heterogeneous. Still, by identifying CED as a ciliary disorder, our study suggests that the causative mutations in the unresolved cases most likely affect primary cilia function too.  相似文献   

10.
Mitochondrial biogenesis is dependent on both nuclearly and mitochondrially encoded proteins. Study of the nuclearly encoded mitochondrial gene products and their effect on mitochondrial genome expression is essential to understanding mitochondrial function. Mutations in the nuclear gene CBP1 of Saccharomyces cerevisiae result in degradation of mitochondrially encoded cytochrome b (cob) RNA; thus, the cells are unable to respire. Putative roles for the CBP1 protein include processing of precursor RNA to yield the mature 5' end of cob mRNA and/or physical protection of the mRNA from degradation by nucleases. To examine the activity of CBP1, we generated temperature-sensitive cbp1 mutant strains by polymerase chain reaction (PCR) mutagenesis and in vivo recombination. These temperature-sensitive cbp1 strains lack cob mRNA only at the nonpermissive temperature. Quantitative primer extension analyses of RNA from these strains and from a cbp1 deletion strain demonstrated that CBP1 is required for the stability of precursor RNAs in addition to production of the stable mature mRNA. Thus, CBP1 is not involved solely in the protection of mature cob mRNA from nucleases. Moreover, we found that mature mRNAs are undetectable while precursor RNAs are reduced only slightly at the nonpermissive temperature. Collectively, these data lead us to favor a hypothesis whereby CBP1 protects cob precursor RNAs and promotes the processing event that generates the mature 5' end of the mRNA.  相似文献   

11.
A more rapid and powerful response against repeated exposure of same pathogen in vertebrates is usually considered as the reflection of immunological memory, but it is not well understood in invertebrates. In the present study, the temporal expression profiles of Chlamys farreri peptidoglycan recognition protein-S1 (CfPGRP-S1) gene after two challenges of Listonella anguillarum were examined to evaluate priming response in scallops. The up-regulation of CfPGRP-S1 mRNA occurred 3 h earlier, and the expression level was significant higher (P < 0.05), after the second challenge than that after the first challenge. The preliminary results provided new insights into invertebrate immunological memory, and they also would be helpful to develop strategies for disease control.  相似文献   

12.
The endomembrane system plays essential roles in plant development, but the proteome responsible for its function and organization remains largely uncharacterized in plants. Here, we identified and characterized the HYPERSENSITIVE TO LATRUNCULIN B1 (HLB1) protein isolated through a forward-genetic screen in Arabidopsis thaliana for mutants with heightened sensitivity to actin-disrupting drugs. HLB1 is a plant-specific tetratricopeptide repeat domain-containing protein of unknown function encoded by a single Arabidopsis gene. HLB1 associated with the trans-Golgi network (TGN)/early endosome (EE) and tracked along filamentous actin, indicating that it could link post-Golgi traffic with the actin cytoskeleton in plants. HLB1 was found to interact with the ADP-ribosylation-factor guanine nucleotide exchange factor, MIN7/BEN1 (HOPM INTERACTOR7/BREFELDIN A-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1) by coimmunoprecipitation. The min7/ben1 mutant phenocopied the mild root developmental defects and latrunculin B hypersensitivity of hlb1, and analyses of a hlb1/ min7/ben1 double mutant showed that hlb1 and min7/ben1 operate in common genetic pathways. Based on these data, we propose that HLB1 together with MIN7/BEN1 form a complex with actin to modulate the function of the TGN/EE at the intersection of the exocytic and endocytic pathways in plants.  相似文献   

13.
14.
15.
Apobec-1, the catalytic subunit of the mammalian apolipoprotein B (apoB) mRNA-editing enzyme, is a cytidine deaminase with RNA binding activity for AU-rich sequences. This RNA binding activity is required for Apobec-1 to mediate C-to-U RNA editing. Filter binding assays, using immobilized Apobec-1, demonstrate saturable binding to a 105-nt apoB RNA with a K(d) of approximately 435 nM. A series of AU-rich templates was used to identify a high-affinity ( approximately 50 nM) binding site of consensus sequence UUUN[A/U]U, with multiple copies of this sequence constituting the high-affinity binding site. In order to determine whether this consensus site could be functionally demonstrated from within an apoB RNA, circular-permutation analysis was performed, revealing one major (UUUGAU) and one minor (UU) site located 3 and 16 nucleotides, respectively, downstream of the edited base. Secondary-structure predictions reveal a stem-loop flanking the edited base with Apobec-1 binding to the consensus site(s) at an open loop. A similar consensus (AUUUA) is present in the 3' untranslated regions of several mRNAs, including that of c-myc, that are known to undergo rapid degradation. In this context, it is presumed that the consensus motif acts as a destabilizing element. As an independent test of the ability of Apobec-1 to bind to this sequence, F442A cells were transfected with Apobec-1 and the half-life of c-myc mRNA was determined following actinomycin D treatment. These studies demonstrated an increase in the half-life of c-myc mRNA from 90 to 240 min in control versus Apobec-1-expressing cells. Apobec-1 expression mutants, in which RNA binding activity is eliminated, failed to alter c-myc mRNA turnover. Taken together, the data establish a consensus binding site for Apobec-1 embedded in proximity to the edited base in apoB RNA. Binding to this site in other target RNAs raises the possibility that Apobec-1 may be involved in other aspects of RNA metabolism, independent of its role as an apoB RNA-specific cytidine deaminase.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号