共查询到20条相似文献,搜索用时 10 毫秒
1.
Eva Klopocki Bianca P. Hennig Randi Koll Emiel Baten Yves Gillerot Gabriele Krüger Petra Seemann 《American journal of human genetics》2010,86(3):434-439
Autosomal-dominant brachydactyly type E (BDE) is a congenital limb malformation characterized by small hands and feet predominantly as a result of shortened metacarpals and metatarsals. In a large pedigree with BDE, short stature, and learning disabilities, we detected a microdeletion of ∼900 kb encompassing PTHLH, the gene coding for parathyroid hormone related protein (PTHRP). PTHRP is known to regulate the balance between chondrocyte proliferation and the onset of hypertrophic differentiation during endochondral bone development. Inactivation of Pthrp in mice results in short-limbed dwarfism because of premature differentiation of chondrocyte. On the basis of our initial finding, we tested further individuals with BDE and short stature for mutations in PTHLH. We identified two missense (L44P and L60P), a nonstop (X178WextX∗54), and a nonsense (K120X) mutation. The missense mutation L60P was tested in chicken micromass culture with the replication-competent avian sarcoma leukosis virus retroviral expression system and was shown to result in a loss of function. Thus, loss-of-function mutations in PTHLH cause BDE with short stature. 相似文献
2.
Bernard Thienpont Litu Zhang Alex V. Postma Léon-Charles Tranchevent Kjeld Møllgård Iben Bache Klaartje van Engelen Geert Mortier Darrel Waggoner Yves Moreau Lars Allan Larsen 《American journal of human genetics》2010,86(6):839-288
Congenital heart defects (CHDs) are the most common major developmental anomalies and the most frequent cause for perinatal mortality, but their etiology remains often obscure. We identified a locus for CHDs on 6q24-q25. Genotype-phenotype correlations in 12 patients carrying a chromosomal deletion on 6q delineated a critical 850 kb region on 6q25.1 harboring five genes. Bioinformatics prioritization of candidate genes in this locus for a role in CHDs identified the TGF-β-activated kinase 1/MAP3K7 binding protein 2 gene (TAB2) as the top-ranking candidate gene. A role for this candidate gene in cardiac development was further supported by its conserved expression in the developing human and zebrafish heart. Moreover, a critical, dosage-sensitive role during development was demonstrated by the cardiac defects observed upon titrated knockdown of tab2 expression in zebrafish embryos. To definitively confirm the role of this candidate gene in CHDs, we performed mutation analysis of TAB2 in 402 patients with a CHD, which revealed two evolutionarily conserved missense mutations. Finally, a balanced translocation was identified, cosegregating with familial CHD. Mapping of the breakpoints demonstrated that this translocation disrupts TAB2. Taken together, these data clearly demonstrate a role for TAB2 in human cardiac development. 相似文献
3.
4.
Francine P. Favaro Lucas Alvizi Roseli M. Zechi-Ceide Debora Bertola Temis M. Felix Josiane de Souza Salmo Raskin Stephen R.F. Twigg Andrea M.J. Weiner Pablo Armas Ezequiel Margarit Nora B. Calcaterra Gregers R. Andersen Simon J. McGowan Andrew O.M. Wilkie Antonio Richieri-Costa Maria L.G. de Almeida Maria Rita Passos-Bueno 《American journal of human genetics》2014
5.
Christiane Zweier Eiko K. de Jong Alfredo Orrico Amanda L. Collins Merel A.W. Oortveld André Reis Anita Rauch 《American journal of human genetics》2009,85(5):655-141
Heterozygous copy-number variants and SNPs of CNTNAP2 and NRXN1, two distantly related members of the neurexin superfamily, have been repeatedly associated with a wide spectrum of neuropsychiatric disorders, such as developmental language disorders, autism spectrum disorders, epilepsy, and schizophrenia. We now identified homozygous and compound-heterozygous deletions and mutations via molecular karyotyping and mutational screening in CNTNAP2 and NRXN1 in four patients with severe mental retardation (MR) and variable features, such as autistic behavior, epilepsy, and breathing anomalies, phenotypically overlapping with Pitt-Hopkins syndrome. With a frequency of at least 1% in our cohort of 179 patients, recessive defects in CNTNAP2 appear to significantly contribute to severe MR. Whereas the established synaptic role of NRXN1 suggests that synaptic defects contribute to the associated neuropsychiatric disorders and to severe MR as reported here, evidence for a synaptic role of the CNTNAP2-encoded protein CASPR2 has so far been lacking. Using Drosophila as a model, we now show that, as known for fly Nrx-I, the CASPR2 ortholog Nrx-IV might also localize to synapses. Overexpression of either protein can reorganize synaptic morphology and induce increased density of active zones, the synaptic domains of neurotransmitter release. Moreover, both Nrx-I and Nrx-IV determine the level of the presynaptic active-zone protein bruchpilot, indicating a possible common molecular mechanism in Nrx-I and Nrx-IV mutant conditions. We therefore propose that an analogous shared synaptic mechanism contributes to the similar clinical phenotypes resulting from defects in human NRXN1 and CNTNAP2. 相似文献
6.
7.
Developmental Dyslexia (DD) is a heritable, complex genetic disorder characterized by specific impairment in reading and writing ability that is substantially below the expected reading ability given the person's chronological age, measured intelligence and age-appropriate education. More than ten susceptible genes have been identified for DD. A Single Nucleotide Polymorphism (SNP) of these genes was found to be associated with various phenotypes of DD. To identify the role of SNPs of four candidate genes namely, MRPL19/C2ORF3, ROBO1 and THEM2 in an Indian population, we genotyped eight SNPs of these genes in 157 children with DD and 212 normal readers using a MassARRAY technique with a MALDI-TOF MS analyzer. Power analysis of some of these SNPs showed > 80% of power. Chi-square test, Odds Ratios (ORs), 95% Confidence Intervals (CIs) and Bonferroni's correction were applied to identify the significance of the genotyped SNPs and haplotypes. Our study failed to show any association of SNPs and haplotypes of these genes with DD in an Indian population. 相似文献
8.
Joy Armistead Sunita Khatkar Britta Meyer Nehal Patel Gail Coghlan Ryan E. Lamont Shuangbo Liu Peter A. Cattini Peter Koetter Cheryl R. Greenberg Karl-Dieter Entian Barbara Triggs-Raine 《American journal of human genetics》2009,84(6):728-739
Bowen-Conradi syndrome (BCS) is an autosomal-recessive disorder characterized by severely impaired prenatal and postnatal growth, profound psychomotor retardation, and death in early childhood. Nearly all reported BCS cases have been among Hutterites, with an estimated birth prevalence of 1/355. We previously localized the BCS gene to a 1.9 Mbp interval on human chromosome 12p13.3. The 59 genes in this interval were ranked as candidates for BCS, and 35 of these, including all of the best candidates, were sequenced. We identified variant :c.400A→G, p.D86G in the 18S ribosome assembly protein EMG1 as the probable cause of BCS. This mutation segregated with disease, was not found in 414 non-Hutterite alleles, and altered a highly conserved aspartic acid (D) residue. A structural model of human EMG1 suggested that the D86 residue formed a salt bridge with arginine 84 that would be disrupted by the glycine (G) substitution. EMG1 mRNA was detected in all human adult and fetal tissues tested. In BCS patient fibroblasts, EMG1 mRNA levels did not differ from those of normal cells, but EMG1 protein was dramatically reduced in comparison to that of normal controls. In mammalian cells, overexpression of EMG1 harboring the D86G mutation decreased the level of soluble EMG1 protein, and in yeast two-hybrid analysis, the D86G substitution increased interaction between EMG1 subunits. These findings suggested that the D-to-G mutation caused aggregation of EMG1, thereby reducing the level of the protein and causing BCS. NM_006331.6相似文献
9.
Vincenzo A. Gennarino Elizabeth E. Palmer Laura M. McDonell Li Wang Carolyn J. Adamski Amanda Koire Lauren See Chun-An Chen Christian P. Schaaf Jill A. Rosenfeld Jessica A. Panzer Ute Moog Shuang Hao Ann Bye Edwin P. Kirk Pawel Stankiewicz Amy M. Breman Arran McBride Huda Y. Zoghbi 《Cell》2018,172(5):924-936.e11
10.
FACL4, a New Gene Encoding Long-Chain Acyl-CoA Synthetase 4, Is Deleted in a Family with Alport Syndrome, Elliptocytosis, and Mental Retardation 总被引:1,自引:0,他引:1
Monica Piccini Francesca Vitelli Mirella Bruttini Barbara R. Pober Jon J. Jonsson Marcello Villanova Massimo Zollo Giuseppe Borsani Andrea Ballabio Alessandra Renieri 《Genomics》1998,47(3):350
11.
Catechol-O-methyl transferase (COMT) plays an important role in the metabolism of neurotransmitters. Two alleles of the COMT gene as a result of a G/A transition in the exon 4 can lead to different COMT enzymatic activities. Much genetic research has revealed that this COMT functional polymorphism was related to human psychiatric disorders. Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) methods were used to discern the relationships among the functional polymorphism of COMT, mental retardation (MR), and general cognitive ability of children. The results of the case-control analysis showed that there was no association between the frequencies of genotypes of COMT and MR (x2=0.776, P>0.05) or between the frequency of COMT alleles and MR (x2=0.335, P>0.05). COMT polymorphism was found in children whose intelligence quotient (IQ) was above 55. In normal children (IQ≥85), the frequencies of high-activity allele COMTH and the homozygote genotype COMTHH were 60.98% and 79.28%, respectively. Both were higher than those of the borderline group (46.67% and 70.67%, 0.10 > P>0.05). Therefore, the result of this study suggests that this functional polymorphism is not an important risk factor for MR, but the COMTHH genotype may have a positive effect on cognitive performance in normal children in the Qinba area. 相似文献
12.
Francesco Brancati Paola Fortugno Irene Bottillo Emmanuelle Josselin Emanuele Agolini Emanuele Bellacchio Alfredo Rossi Liborio Stuppia Stefan Mundlos Sigmar Stricker Uwe Kornak Giovanna Zambruno 《American journal of human genetics》2010,87(2):265-533
Ectodermal dysplasias form a large disease family with more than 200 members. The combination of hair and tooth abnormalities, alopecia, and cutaneous syndactyly is characteristic of ectodermal dysplasia-syndactyly syndrome (EDSS). We used a homozygosity mapping approach to map the EDSS locus to 1q23 in a consanguineous Algerian family. By candidate gene analysis, we identified a homozygous mutation in the PVRL4 gene that not only evoked an amino acid change but also led to exon skipping. In an Italian family with two siblings affected by EDSS, we further detected a missense and a frameshift mutation. PVRL4 encodes for nectin-4, a cell adhesion molecule mainly implicated in the formation of cadherin-based adherens junctions. We demonstrated high nectin-4 expression in hair follicle structures, as well as in the separating digits of murine embryos, the tissues mainly affected by the EDSS phenotype. In patient keratinocytes, mutated nectin-4 lost its capability to bind nectin-1. Additionally, in discrete structures of the hair follicle, we found alterations of the membrane localization of nectin-afadin and cadherin-catenin complexes, which are essential for adherens junction formation, and we found reorganization of actin cytoskeleton. Together with cleft lip and/or palate ectodermal dysplasia (CLPED1, or Zlotogora-Ogur syndrome) due to an impaired function of nectin-1, EDSS is the second known “nectinopathy” caused by mutations in a nectin adhesion molecule. 相似文献
13.
A New Neurological Syndrome with Mental Retardation, Choreoathetosis, and Abnormal Behavior Maps to Chromosome Xp11 下载免费PDF全文
Edwin Reyniers Patrick Van
Bogaert Nils Peeters Lieve Vits Fernand Pauly Erik Fransen Nicole Van
Regemorter R. Frank Kooy 《American journal of human genetics》1999,65(5):1406-1412
Choreoathetosis is a major clinical feature in only a small number of hereditary neurological disorders. We define a new X-linked syndrome with a unique clinical picture characterized by mild mental retardation, choreoathetosis, and abnormal behavior. We mapped the disease in a four-generation pedigree to chromosome Xp11 by linkage analysis and defined a candidate region containing a number of genes possibly involved in neuronal signaling, including a potassium channel gene and a neuronal G protein-coupled receptor. 相似文献
14.
Jin He Qi-Jie Zhang Qi-Fang Lin Ya-Fang Chen Xiao-Zhen Lin Min-Ting Lin Shen-Xing Murong Ning Wang Wan-Jin Chen 《Gene》2013
Spinal muscular atrophy (SMA) is a common and lethal autosomal recessive neurodegenerative disorder, which is caused by mutations of the survival motor neuron 1 (SMN1) gene. Additionally, the phenotype is modified by several genes nearby SMN1 in the 5q13 region. In this study, we analyzed mutations in SMN1 and quantified the modifying genes, including SMN2, NAIP, GTF2H2, and H4F5 by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), multiplex ligation-dependent probe amplification (MLPA), TA cloning, allele-specific long-range PCR, and Sanger sequencing in 157 SMA patients. Most SMA patients (94.90%) possessed a homozygous SMN1 deletion, while 10 patients demonstrated only the absence of exon 7, but the presence of exon 8. Two missense mutations (c.689 C > T and c.844 C > T) were identified in 2 patients who both carried a single copy of SMN1. We found inverse correlations between SMN2, the NAIP copy number, and the clinical severity of the disease. Furthermore, 7 severe type I patients possessed large-scale deletions, including SMN1, NAIP, and GTF2H2. We conclude that SMN1 gene conversion, SMN1 subtle mutations, SMN2 copy number, and the extent of deletion in the 5q13 region should all be considered in the genotype–phenotype analysis of SMA. 相似文献
15.
16.
17.
Tao Yang Jose G. Gurrola II Sui M. Chiu Peter M. Snyder 《American journal of human genetics》2009,84(5):651-657
Mutations in SLC26A4 cause nonsyndromic hearing loss associated with an enlarged vestibular aqueduct (EVA, also known as DFNB4) and Pendred syndrome (PS), the most common type of autosomal-recessive syndromic deafness. In many patients with an EVA/PS phenotype, mutation screening of SLC26A4 fails to identify two disease-causing allele variants. That a sizable fraction of patients carry only one SLC26A4 mutation suggests that EVA/PS is a complex disease involving other genetic factors. Here, we show that mutations in the inwardly rectifying K+ channel gene KCNJ10 are associated with nonsyndromic hearing loss in carriers of SLC26A4 mutations with an EVA/PS phenotype. In probands from two families, we identified double heterozygosity in affected individuals. These persons carried single mutations in both SLC26A4 and KCNJ10. The identified SLC26A4 mutations have been previously implicated in EVA/PS, and the KCNJ10 mutations reduce K+ conductance activity, which is critical for generating and maintaining the endocochlear potential. In addition, we show that haploinsufficiency of Slc26a4 in the Slc26a4+/− mouse mutant results in reduced protein expression of Kcnj10 in the stria vascularis of the inner ear. Our results link KCNJ10 mutations with EVA/PS and provide further support for the model of EVA/PS as a multigenic complex disease. 相似文献
18.
Sze Chern Lim Katherine R. Smith David A. Stroud Alison G. Compton Elena J. Tucker Ayan Dasvarma Luke C. Gandolfo Justine E. Marum Matthew McKenzie Heidi L. Peters David Mowat Peter G. Procopis Bridget Wilcken John Christodoulou Garry K. Brown Michael T. Ryan Melanie Bahlo David R. Thorburn 《American journal of human genetics》2014
19.
Previous studies and replication analyses have linked chromosome 18q21.1–23 with type 2 diabetes (T2DM) and its complications, including diabetic nephropathy (DN). Here we investigated the association of POL1-nearby variant rs488846, MALT1-nearby variant rs2874116, MC4R-nearby variant rs1942872, PHLPP rs9958800 and DSEL-nearby variant rs9966483 single nucleotide polymorphisms (SNPs) in the 18q region, previously linked with DN in African-Americans, with T2DM in (North African) Tunisian subjects, followed by their association with DN, which was performed subsequent to the analysis of the association with T2DM. Study subjects comprised 900 T2DM cases and 748 normoglycemic control, and genotyping was carried out by PCR–RFLP analysis. Of the 5 SNPs analyzed, POL1-nearby variant rs488846 [P = 0.044], and MC4R-nearby variant rs1942872 [P = 0.012] were associated with moderate risk of T2DM. However, there was a lack of consistency in the association of the 5 tested SNPs with DN. As such, it appears that the three chromosome 18q region variants appear to play a role in T2DM pathogenesis, but not with DN in North African Tunisian Arabs. 相似文献
20.
Lisa G. Riley Peter Hickey Matthew McKenzie Sze Chern Lim David Thorburn Michael T. Ryan Melanie Bahlo 《American journal of human genetics》2010,87(1):52-4343
Mitochondrial respiratory chain disorders are a heterogeneous group of disorders in which the underlying genetic defect is often unknown. We have identified a pathogenic mutation (c.156C>G [p.F52L]) in YARS2, located at chromosome 12p11.21, by using genome-wide SNP-based homozygosity analysis of a family with affected members displaying myopathy, lactic acidosis, and sideroblastic anemia (MLASA). We subsequently identified the same mutation in another unrelated MLASA patient. The YARS2 gene product, mitochondrial tyrosyl-tRNA synthetase (YARS2), was present at lower levels in skeletal muscle whereas fibroblasts were relatively normal. Complex I, III, and IV were dysfunctional as indicated by enzyme analysis, immunoblotting, and immunohistochemistry. A mitochondrial protein-synthesis assay showed reduced levels of respiratory chain subunits in myotubes generated from patient cell lines. A tRNA aminoacylation assay revealed that mutant YARS2 was still active; however, enzyme kinetics were abnormal compared to the wild-type protein. We propose that the reduced aminoacylation activity of mutant YARS2 enzyme leads to decreased mitochondrial protein synthesis, resulting in mitochondrial respiratory chain dysfunction. MLASA has previously been associated with PUS1 mutations; hence, the YARS2 mutation reported here is an alternative cause of MLASA. 相似文献