首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Bone mineral density (BMD), a diagnostic parameter for osteoporosis and a clinical predictor of fracture, is a polygenic trait with high heritability. To identify genetic variants that influence BMD in different ethnic groups, we performed a genome-wide association study (GWAS) on 800 unrelated Southern Chinese women with extreme BMD and carried out follow-up replication studies in six independent study populations of European descent and Asian populations including 18,098 subjects. In the meta-analysis, rs2273061 of the Jagged1 (JAG1) gene was associated with high BMD (p = 5.27 × 10−8 for lumbar spine [LS] and p = 4.15 × 10−5 for femoral neck [FN], n = 18,898). This SNP was further found to be associated with the low risk of osteoporotic fracture (p = 0.009, OR = 0.7, 95% CI 0.57–0.93, n = 1881). Region-wide and haplotype analysis showed that the strongest association evidence was from the linkage disequilibrium block 5, which included rs2273061 of the JAG1 gene (p = 8.52 × 10−9 for LS and 3.47 × 10−5 at FN). To assess the function of identified variants, an electrophoretic mobility shift assay demonstrated the binding of c-Myc to the “G” but not “A” allele of rs2273061. A mRNA expression study in both human bone-derived cells and peripheral blood mononuclear cells confirmed association of the high BMD-related allele G of rs2273061 with higher JAG1 expression. Our results identify the JAG1 gene as a candidate for BMD regulation in different ethnic groups, and it is a potential key factor for fracture pathogenesis.  相似文献   

2.
Zuo L  Zhang CK  Wang F  Li CS  Zhao H  Lu L  Zhang XY  Lu L  Zhang H  Zhang F  Krystal JH  Luo X 《PloS one》2011,6(11):e26726
Several genome-wide association studies (GWASs) reported tens of risk genes for alcohol dependence, but most of them have not been replicated or confirmed by functional studies. The present study used a GWAS to search for novel, functional and replicable risk gene regions for alcohol dependence. Associations of all top-ranked SNPs identified in a discovery sample of 681 African-American (AA) cases with alcohol dependence and 508 AA controls were retested in a primary replication sample of 1,409 European-American (EA) cases and 1,518 EA controls. The replicable associations were then subjected to secondary replication in a sample of 6,438 Australian family subjects. A functional expression quantitative trait locus (eQTL) analysis of these replicable risk SNPs was followed-up in order to explore their cis-acting regulatory effects on gene expression. We found that within a 90 Mb region around PHF3-PTP4A1 locus in AAs, a linkage disequilibrium (LD) block in PHF3-PTP4A1 formed the only peak associated with alcohol dependence at p<10−4. Within this block, 30 SNPs associated with alcohol dependence in AAs (1.6×10−5≤p≤0.050) were replicated in EAs (1.3×10−3≤p≤0.038), and 18 of them were also replicated in Australians (1.8×10−3≤p≤0.048). Most of these risk SNPs had strong cis-acting regulatory effects on PHF3-PTP4A1 mRNA expression across three HapMap samples. The distributions of −log(p) values for association and functional signals throughout this LD block were highly consistent across AAs, EAs, Australians and three HapMap samples. We conclude that the PHF3-PTP4A1 region appears to harbor a causal locus for alcohol dependence, and proteins encoded by PHF3 and/or PTP4A1 might play a functional role in the disorder.  相似文献   

3.
Nasopharyngeal carcinoma (NPC) is a multifactorial malignancy closely associated with genetic factors and Epstein-Barr virus infection. To identify the common genetic variants linked to NPC susceptibility, we conducted a genome-wide association study (GWAS) in 277 NPC patients and 285 healthy controls within the Taiwanese population, analyzing 480,365 single-nucleotide polymorphisms (SNPs). Twelve statistically significant SNPs were identified and mapped to chromosome 6p21.3. Associations were replicated in two independent sets of case-control samples. Two of the most significant SNPs (rs2517713 and rs2975042; pcombined = 3.9 × 10−20 and 1.6 × 10−19, respectively) were located in the HLA-A gene. Moreover, we detected significant associations between NPC and two genes: specifically, gamma aminobutyric acid b receptor 1 (GABBR1) (rs29232; pcombined = 8.97 × 10−17) and HLA-F (rs3129055 and rs9258122; pcombined = 7.36 × 10−11 and 3.33 × 10−10, respectively). Notably, the association of rs29232 remained significant (residual p < 5 × 10−4) after adjustment for age, gender, and HLA-related SNPs. Furthermore, higher GABAB receptor 1 expression levels can be found in the tumor cells in comparison to the adjacent epithelial cells (p < 0.001) in NPC biopsies, implying a biological role of GABBR1 in NPC carcinogenesis. To our knowledge, it is the first GWAS report of NPC showing that multiple loci (HLA-A, HLA-F, and GABBR1) within chromosome 6p21.3 are associated with NPC. Although some of these relationships may be attributed to linkage disequilibrium between the loci, the findings clearly provide a fresh direction for the study of NPC development.  相似文献   

4.
Genome-wide association studies (GWASs) primarily performed in European-ancestry (EA) populations have identified numerous loci associated with body mass index (BMI). However, it is still unclear whether these GWAS loci can be generalized to other ethnic groups, such as African Americans (AAs). Furthermore, the putative functional variant or variants in these loci mostly remain under investigation. The overall lower linkage disequilibrium in AA compared to EA populations provides the opportunity to narrow in or fine-map these BMI-related loci. Therefore, we used the Metabochip to densely genotype and evaluate 21 BMI GWAS loci identified in EA studies in 29,151 AAs from the Population Architecture using Genomics and Epidemiology (PAGE) study. Eight of the 21 loci (SEC16B, TMEM18, ETV5, GNPDA2, TFAP2B, BDNF, FTO, and MC4R) were found to be associated with BMI in AAs at 5.8 × 10−5. Within seven out of these eight loci, we found that, on average, a substantially smaller number of variants was correlated (r2 > 0.5) with the most significant SNP in AA than in EA populations (16 versus 55). Conditional analyses revealed GNPDA2 harboring a potential additional independent signal. Moreover, Metabochip-wide discovery analyses revealed two BMI-related loci, BRE (rs116612809, p = 3.6 × 10−8) and DHX34 (rs4802349, p = 1.2 × 10−7), which were significant when adjustment was made for the total number of SNPs tested across the chip. These results demonstrate that fine mapping in AAs is a powerful approach for both narrowing in on the underlying causal variants in known loci and discovering BMI-related loci.  相似文献   

5.
Shi Y  Qu J  Zhang D  Zhao P  Zhang Q  Tam PO  Sun L  Zuo X  Zhou X  Xiao X  Hu J  Li Y  Cai L  Liu X  Lu F  Liao S  Chen B  He F  Gong B  Lin H  Ma S  Cheng J  Zhang J  Chen Y  Zhao F  Yang X  Chen Y  Yang C  Lam DS  Li X  Shi F  Wu Z  Lin Y  Yang J  Li S  Ren Y  Xue A  Fan Y  Li D  Pang CP  Zhang X  Yang Z 《American journal of human genetics》2011,(6):438-813
High myopia, which is extremely prevalent in the Chinese population, is one of the leading causes of blindness in the world. Genetic factors play a critical role in the development of the condition. To identify the genetic variants associated with high myopia in the Han Chinese, we conducted a genome-wide association study (GWAS) of 493,947 SNPs in 1088 individuals (419 cases and 669 controls) from a Han Chinese cohort and followed up on signals that were associated with p < 1.0 × 10−4 in three independent cohorts (combined, 2803 cases and 5642 controls). We identified a significant association between high myopia and a variant at 13q12.12 (rs9318086, combined p = 1.91 × 10−16, heterozygous odds ratio = 1.32, and homozygous odds ratio = 1.64). Furthermore, five additional SNPs (rs9510902, rs3794338, rs1886970, rs7325450, and rs7331047) in the same linkage disequilibrium (LD) block with rs9318086 also proved to be significantly associated with high myopia in the Han Chinese population; p values ranged from 5.46 × 10−11 to 6.16 × 10−16. This associated locus contains three genes—MIPEP, C1QTNF9B-AS1, and C1QTNF9B. MIPEP and C1QTNF9B were found to be expressed in the retina and retinal pigment epithelium (RPE) and are more likely than C1QTNF9B-AS1 to be associated with high myopia given the evidence of retinal signaling that controls eye growth. Our results suggest that the variants at 13q12.12 are associated with high myopia.  相似文献   

6.
Genetic risk for multiple sclerosis (MS) is thought to involve both common and rare risk alleles. Recent GWAS and subsequent meta-analysis have established the critical role of the HLA locus and identified new common variants associated to MS. These variants have small odds ratios (ORs) and explain only a fraction of the genetic risk. To expose potentially rare, high-impact alleles, we conducted a GWAS of 68 distantly related cases and 136 controls from a high-risk internal isolate of Finland with increased prevalence and familial occurrence of MS. The top 27 loci with p < 10−4 were tested in 711 cases and 1029 controls from Finland, and the top two findings were validated in 3859 cases and 9110 controls from more heterogeneous populations. SNP (rs744166) within the STAT3 gene was associated to MS (p = 2.75 × 10−10, OR 0.87, confidence interval 0.83–0.91). The protective haplotype for MS in STAT3 is a risk allele for Crohn disease, implying that STAT3 represents a shared risk locus for at least two autoimmune diseases. This study also demonstrates the potential of special isolated populations in search for variants contributing to complex traits.  相似文献   

7.
Height is a classic complex trait with common variants in a growing list of genes known to contribute to the phenotype. Using a genecentric genotyping array targeted toward cardiovascular-related loci, comprising 49,320 SNPs across approximately 2000 loci, we evaluated the association of common and uncommon SNPs with adult height in 114,223 individuals from 47 studies and six ethnicities. A total of 64 loci contained a SNP associated with height at array-wide significance (p < 2.4 × 10−6), with 42 loci surpassing the conventional genome-wide significance threshold (p < 5 × 10−8). Common variants with minor allele frequencies greater than 5% were observed to be associated with height in 37 previously reported loci. In individuals of European ancestry, uncommon SNPs in IL11 and SMAD3, which would not be genotyped with the use of standard genome-wide genotyping arrays, were strongly associated with height (p < 3 × 10−11). Conditional analysis within associated regions revealed five additional variants associated with height independent of lead SNPs within the locus, suggesting allelic heterogeneity. Although underpowered to replicate findings from individuals of European ancestry, the direction of effect of associated variants was largely consistent in African American, South Asian, and Hispanic populations. Overall, we show that dense coverage of genes for uncommon SNPs, coupled with large-scale meta-analysis, can successfully identify additional variants associated with a common complex trait.  相似文献   

8.
Neuroblastoma is a malignant neoplasm of the developing sympathetic nervous system that is notable for its phenotypic diversity. High-risk patients typically have widely disseminated disease at diagnosis and a poor survival probability, but low-risk patients frequently have localized tumors that are almost always cured with little or no chemotherapy. Our genome-wide association study (GWAS) has identified common variants within FLJ22536, BARD1, and LMO1 as significantly associated with neuroblastoma and more robustly associated with high-risk disease. Here we show that a GWAS focused on low-risk cases identified SNPs within DUSP12 at 1q23.3 (P = 2.07×10−6), DDX4 and IL31RA both at 5q11.2 (P = 2.94×10−6 and 6.54×10−7 respectively), and HSD17B12 at 11p11.2 (P = 4.20×10−7) as being associated with the less aggressive form of the disease. These data demonstrate the importance of robust phenotypic data in GWAS analyses and identify additional susceptibility variants for neuroblastoma.  相似文献   

9.
Asthma is a complex phenotype influenced by genetic and environmental factors. We conducted a genome-wide association study (GWAS) with 938 Japanese pediatric asthma patients and 2,376 controls. Single-nucleotide polymorphisms (SNPs) showing strong associations (P<1×10−8) in GWAS were further genotyped in an independent Japanese samples (818 cases and 1,032 controls) and in Korean samples (835 cases and 421 controls). SNP rs987870, located between HLA-DPA1 and HLA-DPB1, was consistently associated with pediatric asthma in 3 independent populations (P combined = 2.3×10−10, odds ratio [OR] = 1.40). HLA-DP allele analysis showed that DPA1*0201 and DPB1*0901, which were in strong linkage disequilibrium, were strongly associated with pediatric asthma (DPA1*0201: P = 5.5×10−10, OR = 1.52, and DPB1*0901: P = 2.0×10−7, OR = 1.49). Our findings show that genetic variants in the HLA-DP locus are associated with the risk of pediatric asthma in Asian populations.  相似文献   

10.
Sarcoidosis is a systemic inflammatory disease characterized by the formation of granulomas in affected organs. Genome-wide association studies (GWASs) of this disease have been conducted only in European population. We present the first sarcoidosis GWAS in African Americans (AAs, 818 cases and 1,088 related controls) followed by replication in independent sets of AAs (455 cases and 557 controls) and European Americans (EAs, 442 cases and 2,284 controls). We evaluated >6 million SNPs either genotyped using the Illumina Omni1-Quad array or imputed from the 1000 Genomes Project data. We identified a novel sarcoidosis-associated locus, NOTCH4, that reached genome-wide significance in the combined AA samples (rs715299, P AA-meta = 6.51×10−10) and demonstrated the independence of this locus from others in the MHC region in the same sample. We replicated previous European GWAS associations within HLA-DRA, HLA-DRB5, HLA-DRB1, BTNL2, and ANXA11 in both our AA and EA datasets. We also confirmed significant associations to the previously reported HLA-C and HLA-B regions in the EA but not AA samples. We further identified suggestive associations with several other genes previously reported in lung or inflammatory diseases.  相似文献   

11.
Low plasma levels of carotenoids and tocopherols are associated with increased risk of chronic disease and disability. Because dietary intake of these lipid-soluble antioxidant vitamins is only poorly correlated with plasma levels, we hypothesized that circulating carotenoids (vitamin A-related compounds) and tocopherols (vitamin E-related compounds) are affected by common genetic variation. By conducting a genome-wide association study in a sample of Italians (n = 1190), we identified novel common variants associated with circulating carotenoid levels and known lipid variants associated with α-tocopherol levels. Effects were replicated in the Women's Health and Aging Study (n = 615) and in the α-Tocopherol, β-Carotene Cancer Prevention (ATBC) study (n = 2136). In meta-analyses including all three studies, the G allele at rs6564851, near the β-carotene 15,15′-monooxygenase 1 (BCMO1) gene, was associated with higher β-carotene (p = 1.6 × 10−24) and α-carotene (p = 0.0001) levels and lower lycopene (0.003), zeaxanthin (p = 1.3 × 10−5), and lutein (p = 7.3 × 10−15) levels, with effect sizes ranging from 0.10–0.28 SDs per allele. Interestingly, this genetic variant had no significant effect on plasma retinol (p > 0.05). The SNP rs12272004, in linkage disequilibrium with the S19W variant in the APOA5 gene, was associated with α-tocopherol (meta-analysis p = 7.8 × 10−10) levels, and this association was substantially weaker when we adjusted for triglyceride levels (p = 0.002). Our findings might shed light on the controversial relationship between lipid-soluble anti-oxidant nutrients and human health.  相似文献   

12.
Three genetic loci for lung cancer risk have been identified by genome-wide association studies (GWAS), but inherited susceptibility to specific histologic types of lung cancer is not well established. We conducted a GWAS of lung cancer and its major histologic types, genotyping 515,922 single-nucleotide polymorphisms (SNPs) in 5739 lung cancer cases and 5848 controls from one population-based case-control study and three cohort studies. Results were combined with summary data from ten additional studies, for a total of 13,300 cases and 19,666 controls of European descent. Four studies also provided histology data for replication, resulting in 3333 adenocarcinomas (AD), 2589 squamous cell carcinomas (SQ), and 1418 small cell carcinomas (SC). In analyses by histology, rs2736100 (TERT), on chromosome 5p15.33, was associated with risk of adenocarcinoma (odds ratio [OR] = 1.23, 95% confidence interval [CI] = 1.13–1.33, p = 3.02 × 10−7), but not with other histologic types (OR = 1.01, p = 0.84 and OR = 1.00, p = 0.93 for SQ and SC, respectively). This finding was confirmed in each replication study and overall meta-analysis (OR = 1.24, 95% CI = 1.17–1.31, p = 3.74 × 10−14 for AD; OR = 0.99, p = 0.69 and OR = 0.97, p = 0.48 for SQ and SC, respectively). Other previously reported association signals on 15q25 and 6p21 were also refined, but no additional loci reached genome-wide significance. In conclusion, a lung cancer GWAS identified a distinct hereditary contribution to adenocarcinoma.  相似文献   

13.
Although genome-wide association studies have implicated many individual loci in complex diseases, identifying the exact causal alleles and the cell types within which they act remains greatly challenging. To ultimately understand disease mechanism, researchers must carefully conceive functional studies in relevant pathogenic cell types to demonstrate the cellular impact of disease-associated genetic variants. This challenge is highlighted in autoimmune diseases, such as rheumatoid arthritis, where any of a broad range of immunological cell types might potentially be impacted by genetic variation to cause disease. To this end, we developed a statistical approach to identify potentially pathogenic cell types in autoimmune diseases by using a gene-expression data set of 223 murine-sorted immune cells from the Immunological Genome Consortium. We found enrichment of transitional B cell genes in systemic lupus erythematosus (p = 5.9 × 10−6) and epithelial-associated stimulated dendritic cell genes in Crohn disease (p = 1.6 × 10−5). Finally, we demonstrated enrichment of CD4+ effector memory T cell genes within rheumatoid arthritis loci (p < 10−6). To further validate the role of CD4+ effector memory T cells within rheumatoid arthritis, we identified 436 loci that were not yet known to be associated with the disease but that had a statistically suggestive association in a recent genome-wide association study (GWAS) meta-analysis (pGWAS < 0.001). Even among these putative loci, we noted a significant enrichment for genes specifically expressed in CD4+ effector memory T cells (p = 1.25 × 10−4). These cell types are primary candidates for future functional studies to reveal the role of risk alleles in autoimmunity. Our approach has application in other phenotypes, outside of autoimmunity, where many loci have been discovered and high-quality cell-type-specific gene expression is available.  相似文献   

14.
Parkinson''s disease (PD) was recently found to be associated with HLA in a genome-wide association study (GWAS). Follow-up GWAS''s replicated the PD-HLA association but their top hits differ. Do the different hits tag the same locus or is there more than one PD-associated variant within HLA? We show that the top GWAS hits are not correlated with each other (0.00≤r2≤0.15). Using our GWAS (2000 cases, 1986 controls) we conducted step-wise conditional analysis on 107 SNPs with P<10−3 for PD-association; 103 dropped-out, four remained significant. Each SNP, when conditioned on the other three, yielded PSNP1 = 5×10−4, PSNP2 = 5×10−4, PSNP3 = 4×10−3 and PSNP4 = 0.025. The four SNPs were not correlated (0.01≤r2≤0.20). Haplotype analysis (excluding rare SNP2) revealed increasing PD risk with increasing risk alleles from OR = 1.27, P = 5×10−3 for one risk allele to OR = 1.65, P = 4×10−8 for three. Using additional 843 cases and 856 controls we replicated the independent effects of SNP1 (Pconditioned-on-SNP4 = 0.04) and SNP4 (Pconditioned-on-SNP1 = 0.04); SNP2 and SNP3 could not be replicated. In pooled GWAS and replication, SNP1 had ORconditioned-on-SNP4 = 1.23, Pconditioned-on-SNP4 = 6×10−7; SNP4 had ORconditioned-on-SNP1 = 1.18, Pconditioned-on-SNP1 = 3×10−3; and the haplotype with both risk alleles had OR = 1.48, P = 2×10−12. Genotypic OR increased with the number of risk alleles an individual possessed up to OR = 1.94, P = 2×10−11 for individuals who were homozygous for the risk allele at both SNP1 and SNP4. SNP1 is a variant in HLA-DRA and is associated with HLA-DRA, DRB5 and DQA2 gene expression. SNP4 is correlated (r2 = 0.95) with variants that are associated with HLA-DQA2 expression, and with the top HLA SNP from the IPDGC GWAS (r2 = 0.60). Our findings suggest more than one PD-HLA association; either different alleles of the same gene, or separate loci.  相似文献   

15.
Crohn''s disease (CD) and celiac disease (CelD) are chronic intestinal inflammatory diseases, involving genetic and environmental factors in their pathogenesis. The two diseases can co-occur within families, and studies suggest that CelD patients have a higher risk to develop CD than the general population. These observations suggest that CD and CelD may share common genetic risk loci. Two such shared loci, IL18RAP and PTPN2, have already been identified independently in these two diseases. The aim of our study was to explicitly identify shared risk loci for these diseases by combining results from genome-wide association study (GWAS) datasets of CD and CelD. Specifically, GWAS results from CelD (768 cases, 1,422 controls) and CD (3,230 cases, 4,829 controls) were combined in a meta-analysis. Nine independent regions had nominal association p-value <1.0×10−5 in this meta-analysis and showed evidence of association to the individual diseases in the original scans (p-value <1×10−2 in CelD and <1×10−3 in CD). These include the two previously reported shared loci, IL18RAP and PTPN2, with p-values of 3.37×10−8 and 6.39×10−9, respectively, in the meta-analysis. The other seven had not been reported as shared loci and thus were tested in additional CelD (3,149 cases and 4,714 controls) and CD (1,835 cases and 1,669 controls) cohorts. Two of these loci, TAGAP and PUS10, showed significant evidence of replication (Bonferroni corrected p-values <0.0071) in the combined CelD and CD replication cohorts and were firmly established as shared risk loci of genome-wide significance, with overall combined p-values of 1.55×10−10 and 1.38×10−11 respectively. Through a meta-analysis of GWAS data from CD and CelD, we have identified four shared risk loci: PTPN2, IL18RAP, TAGAP, and PUS10. The combined analysis of the two datasets provided the power, lacking in the individual GWAS for single diseases, to detect shared loci with a relatively small effect.  相似文献   

16.
African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10−8). SNP rs7560163 (P = 7.0×10−9, OR (95% CI) = 0.75 (0.67–0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10−5) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.  相似文献   

17.
Blood cells participate in vital physiological processes, and their numbers are tightly regulated so that homeostasis is maintained. Disruption of key regulatory mechanisms underlies many blood-related Mendelian diseases but also contributes to more common disorders, including atherosclerosis. We searched for quantitative trait loci (QTL) for hematology traits through a whole-genome association study, because these could provide new insights into both hemopoeitic and disease mechanisms. We tested 1.8 million variants for association with 13 hematology traits measured in 6015 individuals from the Australian and Dutch populations. These traits included hemoglobin composition, platelet counts, and red blood cell and white blood cell indices. We identified three regions of strong association that, to our knowledge, have not been previously reported in the literature. The first was located in an intergenic region of chromosome 9q31 near LPAR1, explaining 1.5% of the variation in monocyte counts (best SNP rs7023923, p = 8.9 × 10−14). The second locus was located on chromosome 6p21 and associated with mean cell erythrocyte volume (rs12661667, p = 1.2 × 10−9, 0.7% variance explained) in a region that spanned five genes, including CCND3, a member of the D-cyclin gene family that is involved in hematopoietic stem cell expansion. The third region was also associated with erythrocyte volume and was located in an intergenic region on chromosome 6q24 (rs592423, p = 5.3 × 10−9, 0.6% variance explained). All three loci replicated in an independent panel of 1543 individuals (p values = 0.001, 9.9 × 10−5, and 7 × 10−5, respectively). The identification of these QTL provides new opportunities for furthering our understanding of the mechanisms regulating hemopoietic cell fate.  相似文献   

18.
Myopia is the most common vision disorder and the leading cause of visual impairment worldwide. However, gene variants identified to date explain less than 10% of the variance in refractive error, leaving the majority of heritability unexplained (“missing heritability”). Previously, we reported that expression of APLP2 was strongly associated with myopia in a primate model. Here, we found that low-frequency variants near the 5’-end of APLP2 were associated with refractive error in a prospective UK birth cohort (n = 3,819 children; top SNP rs188663068, p = 5.0 × 10−4) and a CREAM consortium panel (n = 45,756 adults; top SNP rs7127037, p = 6.6 × 10−3). These variants showed evidence of differential effect on childhood longitudinal refractive error trajectories depending on time spent reading (gene x time spent reading x age interaction, p = 4.0 × 10−3). Furthermore, Aplp2 knockout mice developed high degrees of hyperopia (+11.5 ± 2.2 D, p < 1.0 × 10−4) compared to both heterozygous (-0.8 ± 2.0 D, p < 1.0 × 10−4) and wild-type (+0.3 ± 2.2 D, p < 1.0 × 10−4) littermates and exhibited a dose-dependent reduction in susceptibility to environmentally induced myopia (F(2, 33) = 191.0, p < 1.0 × 10−4). This phenotype was associated with reduced contrast sensitivity (F(12, 120) = 3.6, p = 1.5 × 10−4) and changes in the electrophysiological properties of retinal amacrine cells, which expressed Aplp2. This work identifies APLP2 as one of the “missing” myopia genes, demonstrating the importance of a low-frequency gene variant in the development of human myopia. It also demonstrates an important role for APLP2 in refractive development in mice and humans, suggesting a high level of evolutionary conservation of the signaling pathways underlying refractive eye development.  相似文献   

19.
We repurposed existing genotypes in DNA biobanks across the Electronic Medical Records and Genomics network to perform a genome-wide association study for primary hypothyroidism, the most common thyroid disease. Electronic selection algorithms incorporating billing codes, laboratory values, text queries, and medication records identified 1317 cases and 5053 controls of European ancestry within five electronic medical records (EMRs); the algorithms'' positive predictive values were 92.4% and 98.5% for cases and controls, respectively. Four single-nucleotide polymorphisms (SNPs) in linkage disequilibrium at 9q22 near FOXE1 were associated with hypothyroidism at genome-wide significance, the strongest being rs7850258 (odds ratio [OR] 0.74, p = 3.96 × 10−9). This association was replicated in a set of 263 cases and 1616 controls (OR = 0.60, p = 5.7 × 10−6). A phenome-wide association study (PheWAS) that was performed on this locus with 13,617 individuals and more than 200,000 patient-years of billing data identified associations with additional phenotypes: thyroiditis (OR = 0.58, p = 1.4 × 10−5), nodular (OR = 0.76, p = 3.1 × 10−5) and multinodular (OR = 0.69, p = 3.9 × 10−5) goiters, and thyrotoxicosis (OR = 0.76, p = 1.5 × 10−3), but not Graves disease (OR = 1.03, p = 0.82). Thyroid cancer, previously associated with this locus, was not significantly associated in the PheWAS (OR = 1.29, p = 0.09). The strongest association in the PheWAS was hypothyroidism (OR = 0.76, p = 2.7 × 10−13), which had an odds ratio that was nearly identical to that of the curated case-control population in the primary analysis, providing further validation of the PheWAS method. Our findings indicate that EMR-linked genomic data could allow discovery of genes associated with many diseases without additional genotyping cost.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号