首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Each year at the annual ASHG meeting, addresses are given in honor of the society and a number of award winners. A summary of each of these addresses is given below. On the next pages, we have printed the Presidential Address and the addresses for the William Allan Award. The other addresses, accompanied by pictures of the speakers, can be found at www.ashg.org.  相似文献   

2.
Each year at the annual meeting of The American Society of Human Genetics (ASHG), addresses are given in honor of the Society and a number of award winners. A summary of each of these addresses is given below. On the following pages, we have printed the Presidential Address and the addresses for the William Allan and Curt Stern Awards. Webcasts of these addresses, as well as those of many other presentations, can be found at http://www.ashg.org.  相似文献   

3.
Each year at the annual meeting of The American Society of Human Genetics (ASHG), addresses are given in honor of The Society and a number of award winners. A summary of each of these addresses is given below. On the next pages, we have printed the Presidential Address and the addresses for the William Allan Award and the Victor A. McKusick Leadership Award. Webcasts of these addresses, as well as webcasts of many other presentations, can be found at http://www.ashg.org.  相似文献   

4.
Each year at the annual meeting of The American Society of Human Genetics (ASHG), addresses are given in honor of the Society and a number of award winners. A summary of each of these addresses is given below. On the following pages, we have printed the Presidential Address and the addresses for the William Allan and Curt Stern Awards. Webcasts of these addresses, as well as those of many other presentations, can be found at http://www.ashg.org.  相似文献   

5.
Each year at the annual meeting of The American Society of Human Genetics (ASHG), addresses are given in honor of The Society and a number of award winners. A summary of each of these is given below. On the following pages, we have printed the presidential address and the addresses for the William Allan Award, the Curt Stern Award, and the Victor A. McKusick Leadership Award. Webcasts of these addresses, as well as those of many other presentations, can be found at http://www.ashg.org.  相似文献   

6.
Each year at the annual meeting of The American Society of Human Genetics (ASHG), addresses are given in honor of The Society and a number of award winners. A summary of each of these addresses is given below. On the following pages, we have printed the presidential address and the addresses for the William Allan Award, the Curt Stern Award, and the Victor A. McKusick Leadership Award. Webcasts of these addresses, as well as those of many other presentations, can be found at http://www.ashg.org.  相似文献   

7.
Each year at the annual meeting of The American Society of Human Genetics (ASHG), addresses are given in honor of The Society and a number of award winners. A summary of each of these addresses is given below. On the following pages, we have printed the Presidential Address and the addresses for the William Allan Award, the Curt Stern Award, and the Victor A. McKusick Leadership Award. Webcasts of these addresses, as well as those of many other presentations, can be found at http://www.ashg.org.  相似文献   

8.
The Prp43 DExD/H-box protein is required for progression of the biochemically distinct pre-messenger RNA and ribosomal RNA (rRNA) maturation pathways. In Saccharomyces cerevisiae, the Spp382/Ntr1, Sqs1/Pfa1, and Pxr1/Gno1 proteins are implicated as cofactors necessary for Prp43 helicase activation during spliceosome dissociation (Spp382) and rRNA processing (Sqs1 and Pxr1). While otherwise dissimilar in primary sequence, these Prp43-binding proteins each contain a short glycine-rich G-patch motif required for function and thought to act in protein or nucleic acid recognition. Here yeast two-hybrid, domain-swap, and site-directed mutagenesis approaches are used to investigate G-patch domain activity and portability. Our results reveal that the Spp382, Sqs1, and Pxr1 G-patches differ in Prp43 two-hybrid response and in the ability to reconstitute the Spp382 and Pxr1 RNA processing factors. G-patch protein reconstitution did not correlate with the apparent strength of the Prp43 two-hybrid response, suggesting that this domain has function beyond that of a Prp43 tether. Indeed, while critical for Pxr1 activity, the Pxr1 G-patch appears to contribute little to the yeast two-hybrid interaction. Conversely, deletion of the primary Prp43 binding site within Pxr1 (amino acids 102–149) does not impede rRNA processing but affects small nucleolar RNA (snoRNA) biogenesis, resulting in the accumulation of slightly extended forms of select snoRNAs, a phenotype unexpectedly shared by the prp43 loss-of-function mutant. These and related observations reveal differences in how the Spp382, Sqs1, and Pxr1 proteins interact with Prp43 and provide evidence linking G-patch identity with pathway-specific DExD/H-box helicase activity.  相似文献   

9.
10.
11.
12.
13.
Jae Hoon Bahn  Gyunghee Lee    Jae H. Park 《Genetics》2009,181(3):965-975
PAR proteins (partitioning defective) are major regulators of cell polarity and asymmetric cell division. One of the par genes, par-1, encodes a Ser/Thr kinase that is conserved from yeast to mammals. In Caenorhabditis elegans, par-1 governs asymmetric cell division by ensuring the polar distribution of cell fate determinants. However the precise mechanisms by which PAR-1 regulates asymmetric cell division in C. elegans remain to be elucidated. We performed a genomewide RNAi screen and identified six genes that specifically suppress the embryonic lethal phenotype associated with mutations in par-1. One of these suppressors is mpk-1, the C. elegans homolog of the conserved mitogen activated protein (MAP) kinase ERK. Loss of function of mpk-1 restored embryonic viability, asynchronous cell divisions, the asymmetric distribution of cell fate specification markers, and the distribution of PAR-1 protein in par-1 mutant embryos, indicating that this genetic interaction is functionally relevant for embryonic development. Furthermore, disrupting the function of other components of the MAPK signaling pathway resulted in suppression of par-1 embryonic lethality. Our data therefore indicates that MAP kinase signaling antagonizes PAR-1 signaling during early C. elegans embryonic polarization.ASYMMETRIC cell division, a process in which a mother cell divides in two different daughter cells, is a fundamental mechanism to achieve cell diversity during development. We use the early embryo of Caenorhabditis elegans as a model system to study asymmetric cell division. The C. elegans one-cell embryo divides asymmetrically along its anteroposterior axis, generating two cells of different sizes and fates: the larger anterior daughter cell will generate somatic tissues while the smaller posterior daughter cell will generate the germline (Sulston et al. 1983).A group of proteins called PAR proteins (partitioning defective) is required for asymmetric cell division in C. elegans (Kemphues et al. 1988). Depletion of any of the seven par genes (par-1 to -6 and pkc-3) leads to defects in asymmetric cell division and embryonic lethality (Kemphues et al. 1988; Kirby et al. 1990; Tabuse et al. 1998; Hung and Kemphues 1999; Hao et al. 2006). PAR-3 and PAR-6 are conserved proteins that contain PDZ-domains and form a complex with PKC-3 (Etemad-Moghadam et al. 1995; Izumi et al. 1998; Tabuse et al. 1998; Hung and Kemphues 1999). This complex becomes restricted to the anterior cortex of the embryo in response to spatially defined actomyosin contractions occurring in the embryo upon fertilization (Goldstein and Hird 1996; Munro et al. 2004). The posterior cortex of the embryo that becomes devoid of the anterior PAR proteins is occupied by the RING protein PAR-2 and the Ser/Thr kinase PAR-1 (Guo and Kemphues 1995; Boyd et al. 1996; Cuenca et al. 2003). Once polarized, the anterior and posterior PAR proteins mutually exclude each other from their respective cortices (Etemad-Moghadam et al. 1995; Boyd et al. 1996; Cuenca et al. 2003; Hao et al. 2006). Loss of function of the gene par-1, as opposed to loss of most other par genes, results in embryos that exhibit only subtle effects on the polarized cortical domains occupied by the other PAR proteins (Cuenca et al. 2003). However defects in this gene are associated with a more symmetric division in size, an aberrant distribution of cell fate specification markers, altered cell fates of the daughter cells of the embryo, and ultimately embryonic lethality (Kemphues et al. 1988; Guo and Kemphues 1995).PAR-1 controls asymmetric cell division and cell fate specification by regulating the localization of the two highly similar CCCH-type zinc-finger proteins MEX-5 and MEX-6 (referred to as MEX-5/6). MEX-5 and MEX-6 are 70% identical in their amino acid sequence and fulfill partially redundant functions in the embryo (Schubert et al. 2000). In wild-type animals, endogenous MEX-5 and GFP fusions of MEX-6 localize primarily to the anterior of the embryo while both proteins are evenly distributed in par-1 mutant embryos (Schubert et al. 2000; Cuenca et al. 2003). This suggests that in wild-type animals, PAR-1 acts in part by restricting MEX-5 and MEX-6 to the anterior of the embryo. The precise mechanism of this regulation is not known, but an elegant study performed for MEX-5 indicates that differential protein mobility in the anterior and posterior cytoplasm of the one-cell embryo contributes to this asymmetry (Tenlen et al. 2008). While increased mobility in the posterior of the one-cell embryo correlates with a par-1- and par-4-dependent phosphorylation on MEX-5, the kinase directly phosphorylating MEX-5 remains to be identified (Tenlen et al. 2008).Some of the phenotypes associated with loss of par-1 function are dependent on the function of mex-5 and mex-6. First, loss of function of par-1 leads to a decreased stability and aberrant localization of the posterior cell fate specification marker PIE-1, a protein that is usually inherited by the posterior daughter cell in wild-type animals and ensures the correct specification of the germline (Mello et al. 1996; Seydoux et al. 1996). This decreased stability is dependent on mex-5/6 function as PIE-1 levels are restored, albeit with symmetrical distribution, in mex-6(RNAi); mex-5(RNAi); par-1(b274) embryos (Schubert et al. 2000; Cuenca et al. 2003; Derenzo et al. 2003). Second, embryos lacking par-1 function exhibit decreased amounts of P granules in the one-cell embryo, while these markers are present in mex-6(pk440); mex-5(zu199); par-1(RNAi) embryos of comparable age (Cheeks et al. 2004). Third, in par-1(RNAi) one-cell embryos the posterior cortical domain occupied by the polarity protein PAR-2 is extended anteriorly, when compared to wild-type embryos (Cuenca et al. 2003). This anterior extension is rescued in embryos deficient for both par-1 and mex-5/6 (Cuenca et al. 2003). Taken together, these results indicate that par-1 acts in the embryo—at least in part—by regulating the localization and/or activity of the proteins MEX-5 and MEX-6. However, it remains unclear whether other proteins can modulate PAR-1 function to affect MEX-5/6 activity.To gain insight into the mechanisms of par-1 function in the embryo, we sought to identify genes that act together with par-1 during embryonic development. We performed an RNAi-based screen for genetic interactors of the temperature-sensitive allele par-1(zu310), using the embryonic lethal phenotype of this mutant as a readout. This method has proven successful in previous screens to identify genes involved in early embryonic processes (Labbé et al. 2006; O''Rourke et al. 2007). We were able to identify six genes that, upon disruption of their function, suppress the embryonic lethal phenotype of par-1 mutant embryos. One of these genes is mpk-1, the C. elegans homolog of the highly conserved MAP kinase ERK. Closer analysis subsequently showed that reduction of function of mpk-1 not only increases viability of par-1 mutant embryos, but also reverts several polarity phenotypes associated with loss of function of par-1. Our data indicate that mpk-1 antagonizes par-1 activity to regulate polarization and asymmetric cell divisions in the early embryo.  相似文献   

14.
We present an efficient computational architecture designed using supervised machine learning model to predict amyloid fibril forming protein segments, named AmylPepPred. The proposed prediction model is based on bio-physio-chemical properties of primary sequences and auto-correlation function of their amino acid indices. AmylPepPred provides a user friendly web interface for the researchers to easily observe the fibril forming and non-fibril forming hexmers in a given protein sequence. We expect that this stratagem will be highly encouraging in discovering fibril forming regions in proteins thereby benefit in finding therapeutic agents that specifically aim these sequences for the inhibition and cure of amyloid illnesses.

Availability

AmylPepPred is available freely for academic use at www.zoommicro.in/amylpeppred  相似文献   

15.
Understanding the molecular basis of common traits is a primary challenge of modern genetics. One model holds that rare mutations in many genetic backgrounds may often phenocopy one another, together explaining the prevalence of the resulting trait in the population. For the vast majority of phenotypes, the role of rare variants and the evolutionary forces that underlie them are unknown. In this work, we use a population of Saccharomyces paradoxus yeast as a model system for the study of common trait variation. We observed an unusual, flocculation and invasive-growth phenotype in one-third of S. paradoxus strains, which were otherwise unrelated. In crosses with each strain in turn, these morphologies segregated as a recessive Mendelian phenotype, mapping either to IRA1 or to IRA2, yeast homologs of the hypermutable human neurofibromatosis gene NF1. The causal IRA1 and IRA2 haplotypes were of distinct evolutionary origin and, in addition to their morphological effects, associated with hundreds of stress-resistance and growth traits, both beneficial and disadvantageous, across S. paradoxus. Single-gene molecular genetic analyses confirmed variant IRA1 and IRA2 haplotypes as causal for these growth characteristics, many of which were independent of morphology. Our data make clear that common growth and morphology traits in yeast result from a suite of variants in master regulators, which function as a mutation-driven switch between phenotypic states.  相似文献   

16.
17.
The kinetochore is the macromolecular protein complex that mediates chromosome segregation. The Dsn1 component is crucial for kinetochore assembly and is phosphorylated by the Aurora B kinase. We found that Aurora B phosphorylation of Dsn1 promotes the interaction between outer and inner kinetochore proteins in budding yeast.  相似文献   

18.
19.
20.
The introduction of affordable, consumer-oriented 3-D printers is a milestone in the current “maker movement,” which has been heralded as the next industrial revolution. Combined with free and open sharing of detailed design blueprints and accessible development tools, rapid prototypes of complex products can now be assembled in one’s own garage—a game-changer reminiscent of the early days of personal computing. At the same time, 3-D printing has also allowed the scientific and engineering community to build the “little things” that help a lab get up and running much faster and easier than ever before.Applications of 3-D printing technologies (Fig. 1A, Box 1) have become as diverse as the types of materials that can be used for printing. Replacement parts at the International Space Station may be printed in orbit from durable plastics or metals, while back on Earth the food industry is starting to explore the same basic technology to fold strings of chocolate into custom-shaped confectionary. Also, consumer-oriented laser-cutting technology makes it very easy to cut raw materials such as sheets of plywood, acrylic, or aluminum into complex shapes within seconds. The range of possibilities comes to light when those mechanical parts are combined with off-the-shelf electronics, low-cost microcontrollers like Arduino boards [1], and single-board computers such as a Beagleboard [2] or a Raspberry Pi [3]. After an initial investment of typically less than a thousand dollars (e.g., to set-up a 3-D printer), the only other materials needed to build virtually anything include a few hundred grams of plastic (approximately US$30/kg), cables, and basic electronic components [4,5].Open in a separate windowFig 1Examples of open 3-D printed laboratory tools. A 1, Components for laboratory tools, such as the base for a micromanipulator [18] shown here, can be rapidly prototyped using 3-D printing. A 2, The printed parts can be easily combined with an off-the-shelf continuous rotation servo-motor (bottom) to motorize the main axis. B 1, A 3-D printable micropipette [8], designed in OpenSCAD [19], shown in full (left) and cross-section (right). B 2, The pipette consists of the printed parts (blue), two biro fillings with the spring, an off-the-shelf piece of tubing to fit the tip, and one screw used as a spacer. B 3, Assembly is complete with a laboratory glove or balloon spanned between the two main printed parts and sealed with tape to create an airtight bottom chamber continuous with the pipette tip. Accuracy is ±2–10 μl depending on printer precision, and total capacity of the system is easily adjusted using two variables listed in the source code, or accessed via the “Customizer” plugin on the thingiverse link [8]. See also the first table.

Box 1. Glossary

Open source

A collective license that defines terms of free availability and redistribution of published source material. Terms include free and unrestricted distribution, as well as full access to source code/blueprints/circuit board designs and derived works. For details, see http://opensource.org.

Maker movement

Technology-oriented extension of the traditional “Do-it-Yourself (DIY)” movement, typically denoting specific pursuits in electronics, CNC (computer numerical control) tools such as mills and laser cutters, as well as 3-D printing and related technologies.

3-D printing

Technology to generate three-dimensional objects from raw materials based on computer models. Most consumer-oriented 3-D printers print in plastic by locally melting a strand of raw material at the tip (“hot-end”) and “drawing” a 3-D object in layers. Plastic materials include Acrylnitrile butadiene styrene (ABS) and Polylactic acid (PLA). Many variations of 3-D printers exist, including those based on laser-polymerization or fusion of resins or powdered raw materials (e.g., metal or ceramic printers).

Arduino boards

Inexpensive and consumer-oriented microcontroller boards built around simple processors. These boards offer a variety of interfaces (serial ports, I2C and CAN bus, etc.), μs-timers, and multiple general-purpose input-output (GPIO) pins suitable for running simple, time-precise programs to control custom-built electronics.

Single board computers

Inexpensive single-board computers capable of running a mature operating system with graphical-user interface, such as Linux. Like microcontroller boards, they offer a variety of hardware interfaces and GPIO pins to control custom-built electronics.It therefore comes as no surprise that these technologies are also routinely used by research scientists and, especially, educators aiming to customize existing lab equipment or even build sophisticated lab equipment from scratch for a mere fraction of what commercial alternatives cost [6]. Designs for such “Open Labware” include simple mechanical adaptors [7], micropipettes (Fig. 1B) [8], and an egg-whisk–based centrifuge [9] as well as more sophisticated equipment such as an extracellular amplifier for neurophysiological experiments [10], a thermocycler for PCR [11], or a two-photon microscope [12]. At the same time, conceptually related approaches are also being pursued in chemistry [1315] and material sciences [16,17]. See also
AreaProjectSource
MicroscopySmartphone Microscope http://www.instructables.com/id/10-Smartphone-to-digital-microscope-conversion
iPad Microscope http://www.thingiverse.com/thing:31632
Raspberry Pi Microscope http://www.thingiverse.com/thing:385308
Foldscope http://www.foldscope.com/
Molecular BiologyThermocycler (PCR) http://openpcr.org/
Water bath http://blog.labfab.cc/?p=47
Centrifuge http://www.thingiverse.com/thing:151406
Dremelfuge http://www.thingiverse.com/thing:1483
Colorometer http://www.thingiverse.com/thing:73910
Micropipette http://www.thingiverse.com/thing:255519
Gel Comb http://www.thingiverse.com/thing:352873
Hot Plate http://www.instructables.com/id/Programmable-Temperature-Controller-Hot-Plate/
Magnetic Stirrer http://www.instructables.com/id/How-to-Build-a-Magnetic-Stirrer/
ElectrophysiologyWaveform Generator http://www.instructables.com/id/Arduino-Waveform-Generator/
Open EEG https://www.olimex.com/Products/EEG/OpenEEG/
Mobile ECG http://mobilecg.hu/
Extracellular amplifier https://backyardbrains.com/products/spikerBox
Micromanipulator http://www.thingiverse.com/thing:239105
Open Ephys http://open-ephys.org/
OtherSyringe pump http://www.thingiverse.com/thing:210756
Translational Stage http://www.thingiverse.com/thing:144838
Vacuum pump http://www.instructables.com/id/The-simplest-vacuum-pump-in-the-world/
Skinner Box http://www.kscottz.com/open-skinner-box-pycon-2014/
Open in a separate windowSee also S1 Data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号