首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Williams‐Beuren syndrome (WBS) is a neurodevelopmental disorder presenting with an elfin‐like face, supravalvular aortic stenosis, a specific cognitive‐behavioral profile, and infantile hypercalcemia. We encountered two WBS patients presenting with infantile spasms, which is extremely rare in WBS. Array comparative genomic hybridization (aCGH) and fluorescent in situ hybridization (FISH) analyses revealed atypical 5.7‐Mb and 4.1‐Mb deletions at 7q11.23 in the two patients, including the WBS critical region and expanding into the proximal side and the telomeric side, respectively. On the proximal side, AUTS2 and CALN1 may contribute to the phenotype. On the telomeric side, there are two candidate genes HIP1 and YWHAG. Because detailed information of them was unavailable, we investigated their functions using gene knockdowns of zebrafish. When zebrafish ywhag1 was knocked down, reduced brain size and increased diameter of the heart tube were observed, indicating that the infantile spasms and cardiomegaly seen in the patient with the telomeric deletion may be derived from haploinsufficiency of YWHAG. genesis 48:233–243, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
3.

Background

46,XY disorders of sex development (46,XY DSD) are genetically heterogeneous conditions. Recently, a few submicroscopic genomic rearrangements have been reported as novel genetic causes of 46,XY DSD.

Methodology/Principal Findings

To clarify the role of cryptic rearrangements in the development of 46,XY DSD, we performed array-based comparative genomic hybridization analysis for 24 genetic males with genital abnormalities. Heterozygous submicroscopic deletions were identified in three cases (cases 1–3). A ∼8.5 Mb terminal deletion at 9p24.1–24.3 was detected in case 1 that presented with complete female-type external genitalia and mental retardation; a ∼2.0 Mb interstitial deletion at 20p13 was identified in case 2 with ambiguous external genitalia and short stature; and a ∼18.0 Mb interstitial deletion at 2q31.1–32 was found in case 3 with ambiguous external genitalia, mental retardation and multiple anomalies. The genital abnormalities of case 1 could be ascribed to gonadal dysgenesis caused by haploinsufficiency of DMRT1, while those of case 3 were possibly associated with perturbed organogenesis due to a deletion of the HOXD cluster. The deletion in case 2 affected 36 genes, none of which have been previously implicated in sex development.

Conclusions/Significance

The results indicate that cryptic genomic rearrangements constitute an important part of the molecular bases of 46,XY DSD and that submicroscopic deletions can lead to various types of 46,XY DSD that occur as components of contiguous gene deletion syndromes. Most importantly, our data provide a novel candidate locus for 46,XY DSD at 20p13.  相似文献   

4.
Brachydactyly mental retardation syndrome (BDMR) is associated with a deletion involving chromosome 2q37. BDMR presents with a range of features, including intellectual disabilities, developmental delays, behavioral abnormalities, sleep disturbance, craniofacial and skeletal abnormalities (including brachydactyly type E), and autism spectrum disorder. To date, only large deletions of 2q37 have been reported, making delineation of a critical region and subsequent identification of candidate genes difficult. We present clinical and molecular analysis of six individuals with overlapping deletions involving 2q37.3 that refine the critical region, reducing the candidate genes from >20 to a single gene, histone deacetylase 4 (HDAC4). Driven by the distinct hand and foot anomalies and similar cognitive features, we identified other cases with clinical findings consistent with BDMR but without a 2q37 deletion, and sequencing of HDAC4 identified de novo mutations, including one intragenic deletion probably disrupting normal splicing and one intragenic insertion that results in a frameshift and premature stop codon. HDAC4 is a histone deacetylase that regulates genes important in bone, muscle, neurological, and cardiac development. Reportedly, Hdac4−/− mice have severe bone malformations resulting from premature ossification of developing bones. Data presented here show that deletion or mutation of HDAC4 results in reduced expression of RAI1, which causes Smith-Magenis syndrome when haploinsufficient, providing a link to the overlapping findings in these disorders. Considering the known molecular function of HDAC4 and the mouse knockout phenotype, taken together with deletion or mutation of HDAC4 in multiple subjects with BDMR, we conclude that haploinsufficiency of HDAC4 results in brachydactyly mental retardation syndrome.  相似文献   

5.
Deletions involving the Y chromosome’s AZFc region are the most common known genetic cause of severe spermatogenic failure (SSF). Six recurrent interstitial deletions affecting the region have been reported, but their population genetics are largely unexplored. We assessed the deletions’ prevalence in 20,884 men in five populations and found four of the six deletions (presented here in descending order of prevalence): gr/gr, b2/b3, b1/b3, and b2/b4. One of every 27 men carried one of these four deletions. The 1.6 Mb gr/gr deletion, found in one of every 41 men, almost doubles the risk of SSF and accounts for ∼2% of SSF, although <2% of men with the deletion are affected. The 1.8 Mb b2/b3 deletion, found in one of every 90 men, does not appear to be a risk factor for SSF. The 1.6 Mb b1/b3 deletion, found in one of every 994 men, appears to increase the risk of SSF by a factor of 2.5, although <2% of men with the deletion are affected, and it accounts for only 0.15% of SSF. The 3.5 Mb b2/b4 deletion, found in one of every 2,320 men, increases the risk of SSF 145 times and accounts for ∼6% of SSF; the observed prevalence should approximate the rate at which the deletion arises anew in each generation. We conclude that a single rare variant of major effect (the b2/b4 deletion) and a single common variant of modest effect (the gr/gr deletion) are largely responsible for the AZFc region’s contribution to SSF in the population.  相似文献   

6.
Microarray-based comparative genomic hybridization (array-CGH) led to the discovery of genetic abnormalities among patients with complex phenotype and normal karyotype. Also several apparently normal individuals have been found to be carriers of cryptic imbalances, hence the importance to perform parental investigations after the identification of a deletion/duplication in a proband. Here, we report the molecular cytogenetic characterization of two individuals in which the microdeletions/duplications present in their parents could have predisposed and facilitated the formation of de novo pathogenic different copy number variations (CNVs). In family 1, a 4-year-old girl had a de novo pathogenic 10.5 Mb duplication at 15q21.2q22.2, while her mother showed a 2.262 Mb deletion at 15q13.2q13.3; in family 2, a 9-year-old boy had a de novo 1.417 Mb deletion at 22q11.21 and a second paternal deletion of 247 Kb at 22q11.23 on the same chromosome 22. Chromosome 22 at band q11.2 and chromosome 15 at band q11q13 are considered unstable regions. We could hypothesize that 15q13.2q13.3 and 22q11.21 deletions in the two respective parents might have increased the risk of rearrangements in their children. This study highlights the difficulty to make genetic counseling and predict the phenotypic consequences in these situations.  相似文献   

7.
Previous studies have shown that copy-number variants (CNVs) contribute to the risk of complex developmental phenotypes. However, the contribution of global CNV burden to the risk of sporadic congenital heart disease (CHD) remains incompletely defined. We generated genome-wide CNV data by using Illumina 660W-Quad SNP arrays in 2,256 individuals with CHD, 283 trio CHD-affected families, and 1,538 controls. We found association of rare genic deletions with CHD risk (odds ratio [OR] = 1.8, p = 0.0008). Rare deletions in study participants with CHD had higher gene content (p = 0.001) with higher haploinsufficiency scores (p = 0.03) than they did in controls, and they were enriched with Wnt-signaling genes (p = 1 × 10−5). Recurrent 15q11.2 deletions were associated with CHD risk (OR = 8.2, p = 0.02). Rare de novo CNVs were observed in ∼5% of CHD trios; 10 out of 11 occurred on the paternally transmitted chromosome (p = 0.01). Some of the rare de novo CNVs spanned genes known to be involved in heart development (e.g., HAND2 and GJA5). Rare genic deletions contribute ∼4% of the population-attributable risk of sporadic CHD. Second to previously described CNVs at 1q21.1, deletions at 15q11.2 and those implicating Wnt signaling are the most significant contributors to the risk of sporadic CHD. Rare de novo CNVs identified in CHD trios exhibit paternal origin bias.  相似文献   

8.
Epilepsy is the most common neurological disorder in dogs, with an incidence ranging from 0.5% to up to 20% in particular breeds. Canine epilepsy can be etiologically defined as idiopathic or symptomatic. Epileptic seizures may be classified as focal with or without secondary generalization, or as primary generalized. Nine genes have been identified for symptomatic (storage diseases) and one for idiopathic epilepsy in different breeds. However, the genetic background of common canine epilepsies remains unknown. We have studied the clinical and genetic background of epilepsy in Belgian Shepherds. We collected 159 cases and 148 controls and confirmed the presence of epilepsy through epilepsy questionnaires and clinical examinations. The MRI was normal while interictal EEG revealed abnormalities and variable foci in the clinically examined affected dogs. A genome-wide association study using Affymetrix 50K SNP arrays in 40 cases and 44 controls mapped the epilepsy locus on CFA37, which was replicated in an independent cohort (81 cases and 88 controls; combined p = 9.70×10−10, OR = 3.3). Fine mapping study defined a ∼1 Mb region including 12 genes of which none are known epilepsy genes or encode ion channels. Exonic sequencing was performed for two candidate genes, KLF7 and ADAM23. No variation was found in KLF7 but a highly-associated non-synonymous variant, G1203A (R387H) was present in the ADAM23 gene (p = 3.7×10−8, OR = 3.9 for homozygosity). Homozygosity for a two-SNP haplotype within the ADAM23 gene conferred the highest risk for epilepsy (p = 6.28×10−11, OR = 7.4). ADAM23 interacts with known epilepsy proteins LGI1 and LGI2. However, our data suggests that the ADAM23 variant is a polymorphism and we have initiated a targeted re-sequencing study across the locus to identify the causative mutation. It would establish the affected breed as a novel therapeutic model, help to develop a DNA test for breeding purposes and introduce a novel candidate gene for human idiopathic epilepsies.  相似文献   

9.
Evolutionary conservation of substructure architecture between yeast iso-1-cytochrome c and the well-characterized horse cytochrome c is studied with limited proteolysis, the alkaline conformational transition and global unfolding with guanidine-HCl. Mass spectral analysis of limited proteolysis cleavage products for iso-1-cytochrome c show that its least stable substructure is the same as horse cytochrome c. The limited proteolysis data yield a free energy of 3.8 ± 0.4 kcal mol−1 to unfold the least stable substructure compared with 5.05 ± 0.30 kcal mol−1 for global unfolding of iso-1-cytochrome c. Thus, substructure stabilities of iso-1-cytochrome c span only ∼1.2 kcal mol−1 compared with ∼8 kcal mol−1 for horse cytochrome c. Consistent with the less cooperative folding thus expected for the horse protein, the guanidine-HCl m-values are ∼3 kcal mol−1M−1 versus ∼4.5 kcal mol−1M−1 for horse versus yeast cytochrome c. The tight free energy spacing of the yeast cytochrome c substructures suggests that its folding has more branch points than for horse cytochrome c. Studies on a variant of iso-1-cytochrome c with an H26N mutation indicate that the least and most stable substructures unfold sequentially and the two least stable substructures unfold independently as for horse cytochrome c. Thus, important aspects of the substructure architecture of horse cytochrome c, albeit compressed energetically, are preserved evolutionally in yeast iso-1-cytochrome c.  相似文献   

10.
Since divergence ∼50 Ma ago from their terrestrial ancestors, cetaceans underwent a series of adaptations such as a ∼10–20 fold increase in myoglobin (Mb) concentration in skeletal muscle, critical for increasing oxygen storage capacity and prolonging dive time. Whereas the O2-binding affinity of Mbs is not significantly different among mammals (with typical oxygenation constants of ∼0.8–1.2 µM−1), folding stabilities of cetacean Mbs are ∼2–4 kcal/mol higher than for terrestrial Mbs. Using ancestral sequence reconstruction, maximum likelihood and Bayesian tests to describe the evolution of cetacean Mbs, and experimentally calibrated computation of stability effects of mutations, we observe accelerated evolution in cetaceans and identify seven positively selected sites in Mb. Overall, these sites contribute to Mb stabilization with a conditional probability of 0.8. We observe a correlation between Mb folding stability and protein abundance, suggesting that a selection pressure for stability acts proportionally to higher expression. We also identify a major divergence event leading to the common ancestor of whales, during which major stabilization occurred. Most of the positively selected sites that occur later act against other destabilizing mutations to maintain stability across the clade, except for the shallow divers, where late stability relaxation occurs, probably due to the shorter aerobic dive limits of these species. The three main positively selected sites 66, 5, and 35 undergo changes that favor hydrophobic folding, structural integrity, and intra-helical hydrogen bonds.  相似文献   

11.
The human chromosome 22q11.2 region is susceptible to rearrangements during meiosis leading to velo-cardio-facial/DiGeorge/22q11.2 deletion syndrome (22q11DS) characterized by conotruncal heart defects (CTDs) and other congenital anomalies. The majority of individuals have a 3 Mb deletion whose proximal region contains the presumed disease-associated gene TBX1 (T-box 1). Although a small subset have proximal nested deletions including TBX1, individuals with distal deletions that exclude TBX1 have also been identified. The deletions are flanked by low-copy repeats (LCR22A, B, C, D). We describe cardiac phenotypes in 25 individuals with atypical distal nested deletions within the 3 Mb region that do not include TBX1 including 20 with LCR22B to LCR22D deletions and 5 with nested LCR22C to LCR22D deletions. Together with previous reports, 12 of 37 (32%) with LCR22B–D deletions and 5 of 34 (15%) individuals with LCR22C–D deletions had CTDs including tetralogy of Fallot. In the absence of TBX1, we hypothesized that CRKL (Crk-like), mapping to the LCR22C–D region, might contribute to the cardiac phenotype in these individuals. We created an allelic series in mice of Crkl, including a hypomorphic allele, to test for gene expression effects on phenotype. We found that the spectrum of heart defects depends on Crkl expression, occurring with analogous malformations to that in human individuals, suggesting that haploinsufficiency of CRKL could be responsible for the etiology of CTDs in individuals with nested distal deletions and might act as a genetic modifier of individuals with the typical 3 Mb deletion.  相似文献   

12.
Genomic rearrangements involving the peripheral myelin protein gene (PMP22) in human chromosome 17p12 are associated with neuropathy: duplications cause Charcot-Marie-Tooth disease type 1A (CMT1A), whereas deletions lead to hereditary neuropathy with liability to pressure palsies (HNPP). Our previous studies showed that >99% of these rearrangements are recurrent and mediated by nonallelic homologous recombination (NAHR). Rare copy number variations (CNVs) generated by nonrecurrent rearrangements also exist in 17p12, but their underlying mechanisms are not well understood. We investigated 21 subjects with rare CNVs associated with CMT1A or HNPP by oligonucleotide-based comparative genomic hybridization microarrays and breakpoint sequence analyses, and we identified 17 unique CNVs, including two genomic deletions, ten genomic duplications, two complex rearrangements, and three small exonic deletions. Each of these CNVs includes either the entire PMP22 gene, or exon(s) only, or ultraconserved potential regulatory sequences upstream of PMP22, further supporting the contention that PMP22 is the critical gene mediating the neuropathy phenotypes associated with 17p12 rearrangements. Breakpoint sequence analysis reveals that, different from the predominant NAHR mechanism in recurrent rearrangement, various molecular mechanisms, including nonhomologous end joining, Alu-Alu-mediated recombination, and replication-based mechanisms (e.g., FoSTeS and/or MMBIR), can generate nonrecurrent 17p12 rearrangements associated with neuropathy. We document a multitude of ways in which gene function can be altered by CNVs. Given the characteristics, including small size, structural complexity, and location outside of coding regions, of selected rare CNVs, their identification remains a challenge for genome analysis. Rare CNVs may potentially represent an important portion of “missing heritability” for human diseases.  相似文献   

13.
P0 constitutes 50–60% of protein in peripheral nerve myelin and is essential for its structure and stability. Mutations within the P0 gene (MPZ) underlie a variety of hereditary neuropathies. MpzS63C transgenic mice encode a P0 with a serine to cysteine substitution at position 34 in the extracellular domain of mature P0 (P0S34C), associated with the hypomyelinating Déjérine-Sottas syndrome in human. S63C mice develop a dysmyelinating neuropathy, with packing defects in peripheral myelin. Here, we used x-ray diffraction to examine time-dependent packing defects in unfixed myelin. At ∼7 h post-dissection, WT and S63C(+/+) myelin showed native periods (175 Å) with the latter developing at most a few percent swollen myelin, whereas up to ∼50% of S63C(+/−) (mutant P0 on heterozygous P0 null background) or P0(+/−) myelin swelled to periods of ∼205 Å. In the same time frame, S63C(−/−) myelin was stable, remaining swollen at ∼210 Å. Surprisingly, treatment of whole S63C(−/−) nerves with a reducing agent completely reverted swollen arrays to native spacing and also normalized the swollen arrays that had formed in S63C(+/−) myelin, the genotype most closely related to the human disorder. Western blot revealed P0-positive bands at ∼27 and ∼50 kDa, and MALDI-TOF mass spectrometry showed these bands consisted of Ser34-containing peptides or P0 dimers having oxidized Cys34 residues. We propose that P0S34C forms ectopic disulfide bonds in trans between apposed Cys34 side chains that retard wrapping during myelin formation causing hypomyelination. Moreover, the new bonds create a packing defect by stabilizing swollen membrane arrays that leads to demyelination.  相似文献   

14.
Li J  Yang D  He Y  Wang M  Wen Z  Liu L  Yao J  Matsuda K  Nakamura Y  Yu J  Jiang X  Sun S  Liu Q  Jiang X  Song Q  Chen M  Yang H  Tang F  Hu X  Wang J  Chang Y  He X  Chen Y  Lin J 《PloS one》2011,6(8):e24221

Background

Human leukocyte antigen DP (HLA-DP) locus has been reported to be associated with hepatitis B virus (HBV) infection in populations of Japan and Thailand. We aimed to examine whether the association can be replicated in Han Chinese populations.

Methodology/Principal Findings

Two HLA-DP variants rs2395309 and rs9277535 (the most strongly associated SNPs from each HLA-DP locus) were genotyped in three independent Han cohorts consisting of 2 805 cases and 1 796 controls. By using logistic regression analysis, these two SNPs in the HLA-DPA1 and HLA-DPB1 genes were significantly associated with HBV infection in Han Chinese populations (P = 0.021∼3.36×10−8 at rs2395309; P = 8.37×10−3∼2.68×10−10 at rs9277535). In addition, the genotype distributions of both sites (rs2395309 and rs9277535) were clearly different between southern and northern Chinese population (P = 8.95×10−5 at rs2395309; P = 1.64×10−9 at rs9277535). By using asymptomatic HBV carrier as control group, our study showed that there were no associations of two HLA-DP variants with HBV progression (P = 0.305∼0.822 and 0.163∼0.881 in southern Chinese population, respectively; P = 0.097∼0.697 and 0.198∼0.615 in northern Chinese population, respectively).

Conclusions

Our results confirmed that two SNPs (rs2395309 and rs9277535) in the HLA-DP loci were strongly associated with HBV infection in southern and northern Han Chinese populations, but not with HBV progression.  相似文献   

15.
Angelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11–q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11–q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m−/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m−/p+), but not paternal (m+/p−), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal communication behaviors in human AS patients. Thus, mutant mice with a maternal deletion from Ube3a to Gabrb3 provide an AS mouse model that is molecularly more similar to the contiguous gene deletion form of AS in humans than mice with Ube3a mutation alone. These mice will be valuable for future comparative studies to mice with maternal deficiency of Ube3a alone.  相似文献   

16.
17.
18.
Williams-Beuren syndrome is a segmental aneusomy syndrome with manifestations affecting the vascular, connective tissue, endocrine and central nervous systems. Most patients show a similar heterozygous approximately 1.5 Mb deletion at 7q11.23 that contains a number of reported genes. Deletion mapping in the few atypical patients with smaller deletions suggested that additive effects of haploinsufficiency for two or more genes might be necessary for the phenotype. Vascular stenoses are caused by haploinsufficiency at the elastin gene, while the genes responsible for the cognitive deficits are likely located at the telomeric edge of the deletion, including CYLN2 and GTF2I. Large region-specific segmental duplications predispose to misalignment and inter- or intrachromosomal unequal crossing-over causing the deletions. Atypical alleles at 7q11.23 such as inversions and deletions/insertions of large repeats, also generated through aberrant recombination between the local segmental duplications, are found in approximately 35% of transmitting parents. Genomic instability at 7q11.23 is directly related to the genomic structure of the region.  相似文献   

19.
Adult height is a classic polygenic trait of high heritability (h 2 ∼0.8). More than 180 single nucleotide polymorphisms (SNPs), identified mostly in populations of European descent, are associated with height. These variants convey modest effects and explain ∼10% of the variance in height. Discovery efforts in other populations, while limited, have revealed loci for height not previously implicated in individuals of European ancestry. Here, we performed a meta-analysis of genome-wide association (GWA) results for adult height in 20,427 individuals of African ancestry with replication in up to 16,436 African Americans. We found two novel height loci (Xp22-rs12393627, P = 3.4×10−12 and 2p14-rs4315565, P = 1.2×10−8). As a group, height associations discovered in European-ancestry samples replicate in individuals of African ancestry (P = 1.7×10−4 for overall replication). Fine-mapping of the European height loci in African-ancestry individuals showed an enrichment of SNPs that are associated with expression of nearby genes when compared to the index European height SNPs (P<0.01). Our results highlight the utility of genetic studies in non-European populations to understand the etiology of complex human diseases and traits.  相似文献   

20.
Osteoporosis is a common disease characterized by low bone mass, decreased bone quality and increased predisposition to fracture. Genetic factors have been implicated in its etiology; however, the specific genes related to susceptibility to osteoporosis are not entirely known. To detect susceptibility genes for osteoporosis, we conducted a genome-wide association study in Japanese using ∼270,000 SNPs in 1,747 subjects (190 cases and 1,557 controls) followed by multiple levels of replication of the association using a total of ∼5,000 subjects (2,092 cases and 3,114 controls). Through these staged association studies followed by resequencing and linkage disequilibrium mapping, we identified a single nucleotide polymorphism (SNP), rs7605378 associated with osteoporosis. (combined P = 1.51×10−8, odds ratio = 1.25). This SNP is in a previously unknown gene on chromosome 2q33.1, FONG. FONG is predicted to encode a 147 amino-acid protein with a formiminotransferase domain in its N-terminal (FTCD_N domain) and is ubiquitously expressed in various tissues including bone. Our findings would give a new insight into osteoporosis etiology and pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号