首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Autosomal recessive mutations in the cytolinker protein plectin account for the multisystem disorders epidermolysis bullosa simplex (EBS) associated with muscular dystrophy (EBS-MD), pyloric atresia (EBS-PA), and congenital myasthenia (EBS-CMS). In contrast, a dominant missense mutation leads to the disease EBS-Ogna, manifesting exclusively as skin fragility. We have exploited this trait to study the molecular basis of hemidesmosome failure in EBS-Ogna and to reveal the contribution of plectin to hemidesmosome homeostasis. We generated EBS-Ogna knock-in mice mimicking the human phenotype and show that blistering reflects insufficient protein levels of the hemidesmosome-associated plectin isoform 1a. We found that plectin 1a, in contrast to plectin 1c, the major isoform expressed in epidermal keratinocytes, is proteolytically degraded, supporting the notion that degradation of hemidesmosome-anchored plectin is spatially controlled. Using recombinant proteins, we show that the mutation renders plectin's 190-nm-long coiled-coil rod domain more vulnerable to cleavage by calpains and other proteases activated in the epidermis but not in skeletal muscle. Accordingly, treatment of cultured EBS-Ogna keratinocytes as well as of EBS-Ogna mouse skin with calpain inhibitors resulted in increased plectin 1a protein expression levels. Moreover, we report that plectin's rod domain forms dimeric structures that can further associate laterally into remarkably stable (paracrystalline) polymers. We propose focal self-association of plectin molecules as a novel mechanism contributing to hemidesmosome homeostasis and stabilization.  相似文献   

3.
Duguez S  Bartoli M  Richard I 《The FEBS journal》2006,273(15):3427-3436
Calpain 3 is a 94-kDa calcium-dependent cysteine protease mainly expressed in skeletal muscle. In this tissue, it localizes at several regions of the sarcomere through binding to the giant protein, titin. Loss-of-function mutations in the calpain 3 gene have been associated with limb-girdle muscular dystrophy type 2A (LGMD2A), a common form of muscular dystrophy found world wide. Recently, significant progress has been made in understanding the mode of regulation and the possible function of calpain 3 in muscle. It is now well accepted that it has an unusual zymogenic activation and that cytoskeletal proteins are one class of its substrates. Through the absence of cleavage of these substrates, calpain 3 deficiency leads to abnormal sarcomeres, impairment of muscle contractile capacity, and death of the muscle fibers. These data indicate a role for calpain 3 as a chef d'orchestre in sarcomere remodeling and suggest a new category of LGMD2 pathological mechanisms.  相似文献   

4.
5.
Telethonin protein expression in neuromuscular disorders   总被引:4,自引:0,他引:4  
Telethonin is a 19-kDa sarcomeric protein, localized to the Z-disc of skeletal and cardiac muscles. Mutations in the telethonin gene cause limb-girdle muscular dystrophy type 2G (LGMD2G).We investigated the sarcomeric integrity of muscle fibers in LGMD2G patients, through double immunofluorescence analysis for telethonin with three sarcomeric proteins: titin, alpha-actinin-2, and myotilin and observed the typical cross striation pattern, suggesting that the Z-line of the sarcomere is apparently preserved, despite the absence of telethonin. Ultrastructural analysis confirmed the integrity of the sarcomeric architecture. The possible interaction of telethonin with other proteins responsible for several forms of neuromuscular disorders was also analyzed. Telethonin was clearly present in the rods in nemaline myopathy (NM) muscle fibers, confirming its localization to the Z-line of the sarcomere. Muscle from patients with absent telethonin showed normal expression for the proteins dystrophin, sarcoglycans, dysferlin, and calpain-3. Additionally, telethonin showed normal localization in muscle biopsies from patients with LGMD2A, LGMD2B, sarcoglycanopathies, and Duchenne muscular dystrophy (DMD). Therefore, the primary deficiency of calpain-3, dysferlin, sarcoglycans, and dystrophin do not seem to alter telethonin expression.  相似文献   

6.
Plectin (M(r) > 500,000) is a versatile and widely expressed cytolinker protein. In striated muscle it is predominantly found at the Z-disc level where it colocalizes with the intermediate filament protein desmin. Both proteins show altered labeling patterns in tissues of muscular dystrophy patients. Moreover, mutations in the plectin gene lead to the autosomal recessive human disorder epidermolysis bullosa simplex with muscular dystrophy, and defects in the desmin gene have been shown to cause familiar cardiac and skeletal myopathy. Since intermediate filaments (IFs) in striated muscle tissue have been found to be intimately associated with mitochondria, we investigated whether plectin is involved in this association. Using postembedding immunogold labeling of Lowicryl sections and immunogold labeling of ultrathin cryosections, we show that plectin is associated with desmin IFs linking myofibrils to mitochondria at the level of the Z-disc and along the entire length of the sarcomere. The localization of plectin label at the mitochondrial membrane itself was consistent with a putative linker function of plectin between desmin IFs and the mitochondrial surface. In mitochondrion-rich muscle fibers, both plectin and desmin were part of an ordered arrangement of mitochondrial side branches, which wound around myofibrils adjacent to the Z-discs and were anchored into a filamentous network transversing from one fibril to the other. The association of mitochondria with plectin and IFs was seen also in tissues without regular distribution patterns of mitochondria, such as heart muscle and neonatal skeletal muscle tissues. These data were supplemented with in vitro binding assays showing direct interaction of plectin with desmin via its carboxy-terminal IF-binding domain. As a cytolinker protein associated with mitochondria and desmin IFs, plectin could play an important role in the positioning and shape formation, in particular branching, of mitochondrial organelles in striated muscle tissues.  相似文献   

7.
Autosomal recessive muscular dystrophy is genetically heterogeneous. One form of this disorder, limb-girdle muscular dystrophy type 2C (LGMD 2C), is prevalent in northern Africa and has been shown to be associated with a single mutation in the gene encoding the dystrophin-associated protein gamma-sarcoglycan. The previous mutation analysis of gamma-sarcoglycan required the availability of muscle biopsies. To establish a mutation assay for genomic DNA, the intron-exon structure of the gamma-sarcoglycan gene was determined, and primers were designed to amplify each of the exons encoding gamma-sarcoglycan. We studied a group of Brazilian muscular dystrophy patients for mutations in the gamma-sarcoglycan gene. These patients were selected on the basis of autosomal inheritance and/or the presence of normal dystrophin and/or deficiency of alpha-sarcoglycan immunostaining. Four of 19 patients surveyed had a single, homozygous mutation in the gamma-sarcoglycan gene. The mutation identified in these patients, all of African-Brazilian descent, is identical to that seen in the North African population, suggesting that even patients of remote African descent may carry this mutation. The phenotype in these patients varied considerably. Of four families with an identical mutation, three have a severe Duchenne-like muscular dystrophy. However, one family has much milder symptoms, suggesting that other loci may be present that modify the severity of the clinical course resulting from gamma-sarcoglycan gene mutations.  相似文献   

8.
Limb girdle muscular dystrophy type 2H (LGMD2H) is an inherited autosomal recessive disease of skeletal muscle caused by a mutation in the TRIM32 gene. Currently its pathogenesis is entirely unclear. Typically the regeneration process of adult skeletal muscle during growth or following injury is controlled by a tissue specific stem cell population termed satellite cells. Given that TRIM32 regulates the fate of mammalian neural progenitor cells through controlling their differentiation, we asked whether TRIM32 could also be essential for the regulation of myogenic stem cells. Here we demonstrate for the first time that TRIM32 is expressed in the skeletal muscle stem cell lineage of adult mice, and that in the absence of TRIM32, myogenic differentiation is disrupted. Moreover, we show that the ubiquitin ligase TRIM32 controls this process through the regulation of c-Myc, a similar mechanism to that previously observed in neural progenitors. Importantly we show that loss of TRIM32 function induces a LGMD2H-like phenotype and strongly affects muscle regeneration in vivo. Our studies implicate that the loss of TRIM32 results in dysfunctional muscle stem cells which could contribute to the development of LGMD2H.  相似文献   

9.
The recently described human anion channel Anoctamin (ANO) protein family comprises at least ten members, many of which have been shown to correspond to calcium-activated chloride channels. To date, the only reported human mutations in this family of genes are dominant mutations in ANO5 (TMEM16E, GDD1) in the rare skeletal disorder gnathodiaphyseal dysplasia. We have identified recessive mutations in ANO5 that result in a proximal limb-girdle muscular dystrophy (LGMD2L) in three French Canadian families and in a distal non-dysferlin Miyoshi myopathy (MMD3) in Dutch and Finnish families. These mutations consist of a splice site, one base pair duplication shared by French Canadian and Dutch cases, and two missense mutations. The splice site and the duplication mutations introduce premature-termination codons and consequently trigger nonsense-mediated mRNA decay, suggesting an underlining loss-of-function mechanism. The LGMD2L phenotype is characterized by proximal weakness, with prominent asymmetrical quadriceps femoris and biceps brachii atrophy. The MMD3 phenotype is associated with distal weakness, of calf muscles in particular. With the use of electron microscopy, multifocal sarcolemmal lesions were observed in both phenotypes. The phenotypic heterogeneity associated with ANO5 mutations is reminiscent of that observed with Dysferlin (DYSF) mutations that can cause both LGMD2B and Miyoshi myopathy (MMD1). In one MMD3-affected individual, defective membrane repair was documented on fibroblasts by membrane-resealing ability assays, as observed in dysferlinopathies. Though the function of the ANO5 protein is still unknown, its putative calcium-activated chloride channel function may lead to important insights into the role of deficient skeletal muscle membrane repair in muscular dystrophies.  相似文献   

10.
11.
Limb-girdle muscular dystrophy type 2E (LGMD 2E) is caused by mutations in the beta-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscle. beta-sarcoglycan-deficient (Sgcb-null) mice developed severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. The sarcoglycan-sarcospan and dystroglycan complexes were disrupted in skeletal, cardiac, and smooth muscle membranes. epsilon-sarcoglycan was also reduced in membrane preparations of striated and smooth muscle. Loss of the sarcoglycan-sarcospan complex in vascular smooth muscle resulted in vascular irregularities in heart, diaphragm, and kidneys. Further biochemical characterization suggested the presence of a distinct epsilon-sarcoglycan complex in skeletal muscle that was disrupted in Sgcb-null mice. Thus, perturbation of vascular function together with disruption of the epsilon-sarcoglycan-containing complex represents a novel mechanism in the pathogenesis of LGMD 2E.  相似文献   

12.
Plectin is a multifunctional cytoskeletal linker protein with an intermediate filament-binding site and sequence elements with high homology to actin-binding domains. Mutations of the human plectin gene as well as the targeted inactivation of its murine analog cause a generalized blistering skin disorder and muscular dystrophy, thus implying its essential role in cells that are exposed to mechanical stress. In the present study we report the characterization of two new domain-specific plectin antibodies as well as ultrastructural localization of plectin in normal human skeletal muscle. Using immunogold electron microscopy, we localized plectin at three prominent sites: 1) Plectin is found at regularly spaced intervals along the cytoplasmic face of the plasma membrane. 2) It is distinctly localized at filamentous bridges between Z-lines of peripheral myofibrils and the sarcolemma and 3) at structures forming the intermyofibrillar scaffold. At the latter two locations, plectin and desmin were found to colocalize. Our ultrastructural analysis suggests that plectin may have a central role in the structural and functional organization of the intermediate filament cytoskeleton in mature human skeletal muscle.  相似文献   

13.
14.
TCAP encoded telethonin is a 19 kDa protein, which plays an important role in anchoring titin in Z disc of the sarcomere, and is known to cause LGMD2G, a rare muscle disorder characterised by proximal and distal lower limb weakness, calf hypertrophy and loss of ambulation. A total of 300 individuals with ARLGMD were recruited for this study. Among these we identified 8 clinically well characterised LGMD2G cases from 7 unrelated Dravidian families. Clinical examination revealed predominantly proximo - distal form of weakness, scapular winging, muscle atrophy, calf hypertrophy and foot drop, immunoblot showed either complete absence or severe reduction of telethonin. Genetic analysis revealed a novel nonsense homozygous mutation c.32C>A, p.(Ser11*) in three patients of a consanguineous family and an 8 bp homozygous duplication c.26_33dupAGGTGTCG, p.(Arg12fs31*) in another patient. Both mutations possibly lead to truncated protein or nonsense mediated decay. We could not find any functionally significant TCAP mutation in the remaining 6 samples, except for two other polymorphisms, c.453A>C, p.( = ) and c.-178G>T, which were found in cases and controls. This is the first report from India to demonstrate TCAP association with LGMD2G.  相似文献   

15.
16.
We report the results of our investigations of a large, inbred, aboriginal Canadian kindred with nine muscular dystrophy patients. The ancestry of all but two of the carrier parents could be traced to a founder couple, seven generations back. Seven patients presented with proximal myopathy consistent with limb girdle-type muscular dystrophy (LGMD), whereas two patients manifested predominantly distal wasting and weakness consistent with Miyoshi myopathy (distal autosomal recessive muscular dystrophy) (MM). Age at onset of symptoms, degree of creatine kinase elevation, and muscle histology were similar in both phenotypes. Segregation of LGMD/MM is consistent with autosomal recessive inheritance, and the putative locus is significantly linked (LOD scores >3.0) to six marker loci that span the region of the LGMD2B locus on chromosome 2p. Our initial hypothesis that the affected patients would all be homozygous by descent for microsatellite markers surrounding the disease locus was rejected. Rather, two different core haplotypes, encompassing a 4-cM region spanned by D2S291-D2S145-D2S286, segregated with the disease, indicating that there are two mutant alleles of independent origin in this kindred. There was no association, however, between the two different haplotypes and clinical variability; they do not distinguish between the LGMD and MM phenotypes. Thus, we conclude that LGMD and MM in our population are caused by the same mutation in LGMD2B and that additional factors, both genetic and nongenetic, must contribute to the clinical phenotype.  相似文献   

17.
Limb-girdle muscular dystrophy type 2H (LGMD2H) is a mild autosomal recessive myopathy that was first described in the Manitoba Hutterite population. Previous studies in our laboratory mapped the causative gene for this disease to a 6.5-Mb region in chromosomal region 9q31-33, flanked by D9S302 and D9S1850. We have now used additional families and a panel of 26 microsatellite markers to construct haplotypes. Twelve recombination events that reduced the size of the candidate region to 560 kb were identified or inferred. This region is flanked by D9S1126 and D9S737 and contains at least four genes. Exons of these genes were sequenced in one affected individual, and four sequence variations were identified. The families included in our study and 100 control individuals were tested for these variations. On the basis of our results, the mutation in the tripartite-motif-containing gene (TRIM32) that replaces aspartate with asparagine at position 487 appears to be the causative mutation of LGMD2H. All affected individuals were found to be homozygous for D487N, and this mutation was not found in any of the controls. This mutation occurs in an NHL (named after the proteins NCL1, HT2A, and LIN-41) domain at a position that is highly conserved. NHL domains are known to be involved in protein-protein interactions. Although the function of TRIM32 is unknown, current knowledge of the domain structure of this protein suggests that it may be an E3-ubiquitin ligase. If proven, this represents a new pathogenic mechanism leading to muscular dystrophy.  相似文献   

18.
Mitochondrial myopathy and sideroblastic anemia (MLASA) is a rare, autosomal recessive oxidative phosphorylation disorder specific to skeletal muscle and bone marrow. Linkage analysis and homozygosity testing of two families with MLASA localized the candidate region to 1.2 Mb on 12q24.33. Sequence analysis of each of the six known genes in this region, as well as four putative genes with expression in bone marrow or muscle, identified a homozygous missense mutation in the pseudouridine synthase 1 gene (PUS1) in all patients with MLASA from these families. The mutation is the only amino acid coding change in these 10 genes that is not a known polymorphism, and it is not found in 934 controls. The amino acid change affects a highly conserved amino acid, and appears to be in the catalytic center of the protein, PUS1p. PUS1 is widely expressed, and quantitative expression analysis of RNAs from liver, brain, heart, bone marrow, and skeletal muscle showed elevated levels of expression in skeletal muscle and brain. We propose deficient pseudouridylation of mitochondrial tRNAs as an etiology of MLASA. Identification of the pathophysiologic pathways of the mutation in these families may shed light on the tissue specificity of oxidative phosphorylation disorders.  相似文献   

19.
Apoptosis of skeletal muscle fibers is a well-known event occurring in patients suffering from muscular dystrophies. In this study, we hypothesized that functional polymorphisms in genes involved in the mitochondrial apoptotic pathway might modulate the apoptotic capacity underlying the muscle loss and contributing to intrafamilial and interfamilial variable phenotypes in LGMD2C (Limb Girdle Muscular Dystrophy type 2C) patients sharing the same c.521delT mutation in SGCG gene. Detection of apoptosis was confirmed on muscle biopsies taken from LGMD2C patients using the TUNEL method. We genotyped then ten potentially functional SNPs in TP53, BCL-2 and BAX genes involved in the mitochondrial apoptotic pathway. Potential genotype-dependent Bcl-2 and p53 protein expressed in skeletal muscle was investigated using western blot and ELISA assays. The result showed that muscle cells carrying the TP53-R72R and TP53-16?bp del/del genotypes displayed an increased p53 level which could be more effective in inducing apoptosis by activation of the pro-apoptotic gene expression. In addition, the BCL2-938 AA genotype was associated with increased Bcl-2 protein expression in muscle from LGMD2C patients compared to -938CC genotype, while there was no evidence of significant difference in the BAX haplotype. Our findings suggest that increased Bcl-2 protein expression may counteract pro-apoptotic pathways and thus reduce the muscle loss. To the best of our knowledge, this is a pioneer study evaluating the role of apoptotic BCL-2 and TP53 genes in contributing to the phenotypic manifestation of c.521delT mutation in LGMD2C patients. Larger studies are needed to validate these findings.  相似文献   

20.
Myopathies are a clinically and etiologically heterogeneous group of disorders that can range from limb girdle muscular dystrophy (LGMD) to syndromic forms with associated features including intellectual disability. Here, we report the identification of mutations in transport protein particle complex 11 (TRAPPC11) in three individuals of a consanguineous Syrian family presenting with LGMD and in five individuals of Hutterite descent presenting with myopathy, infantile hyperkinetic movements, ataxia, and intellectual disability. By using a combination of whole-exome or genome sequencing with homozygosity mapping, we identified the homozygous c.2938G>A (p.Gly980Arg) missense mutation within the gryzun domain of TRAPPC11 in the Syrian LGMD family and the homozygous c.1287+5G>A splice-site mutation resulting in a 58 amino acid in-frame deletion (p.Ala372_Ser429del) in the foie gras domain of TRAPPC11 in the Hutterite families. TRAPPC11 encodes a component of the multiprotein TRAPP complex involved in membrane trafficking. We demonstrate that both mutations impair the binding ability of TRAPPC11 to other TRAPP complex components and disrupt the Golgi apparatus architecture. Marker trafficking experiments for the p.Ala372_Ser429del deletion indicated normal ER-to-Golgi trafficking but dramatically delayed exit from the Golgi to the cell surface. Moreover, we observed alterations of the lysosomal membrane glycoproteins lysosome-associated membrane protein 1 (LAMP1) and LAMP2 as a consequence of TRAPPC11 dysfunction supporting a defect in the transport of secretory proteins as the underlying pathomechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号