首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A comprehensive analysis of duplication and gene conversion for 7394 Caenorhabditis elegans genes (about half the expected total for the genome) is presented. Of the genes examined, 40% are involved in duplicated gene pairs. Intrachromosomal or cis gene duplications occur approximately two times more often than expected. In general the closer the members of duplicated gene pairs are, the more likely it is that gene orientation is conserved. Gene conversion events are detectable between only 2% of the duplicated pairs. Even given the excesses of cis duplications, there is an excess of gene conversion events between cis duplicated pairs on every chromosome except the X chromosome. The relative rates of cis and trans gene conversion and the negative correlation between conversion frequency and DNA sequence divergence for unconverted regions of converted pairs are consistent with previous experimental studies in yeast. Three recent, regional duplications, each spanning three genes are described. All three have already undergone substantial deletions spanning hundreds of base pairs. The relative rates of duplication and deletion may contribute to the compactness of the C. elegans genome. Received: 30 July 1998 / Accepted: 12 October 1998  相似文献   

3.
We investigate the possibility that differences between synonymous substitution rates of organelle and bacterial genes differing only in copy number may be due to conversion bias. We find that the rather large observed difference in the synonymous rates between genes in the single copy and inverted-repeat regions of chloroplasts can be accounted for by a very small bias against new mutants. More generally, differences in the within-organelle fixation probability result in different apparent mutation rates as measured by the expected rate of appearance of cells homoplasmic for new mutants. Thus, differences in intracellular population parameters rather than molecular mechanisms can account for some variation in the apparent mutation rates of organelle genes, and possibly in other systems with variable numbers of gene copies. On the other hand, our analysis suggests that conversion bias is not a likely explanation for relatively low mutation rates observed near the replication origin of bacterial chromosomes.  相似文献   

4.
Widespread Gene Conversion in Centromere Cores   总被引:2,自引:0,他引:2  
Centromeres are the most dynamic regions of the genome, yet they are typified by little or no crossing over, making it difficult to explain the origin of this diversity. To address this question, we developed a novel CENH3 ChIP display method that maps kinetochore footprints over transposon-rich areas of centromere cores. A high level of polymorphism made it possible to map a total of 238 within-centromere markers using maize recombinant inbred lines. Over half of the markers were shown to interact directly with kinetochores (CENH3) by chromatin immunoprecipitation. Although classical crossing over is fully suppressed across CENH3 domains, two gene conversion events (i.e., non-crossover marker exchanges) were identified in a mapping population. A population genetic analysis of 53 diverse inbreds suggests that historical gene conversion is widespread in maize centromeres, occurring at a rate >1×10−5/marker/generation. We conclude that gene conversion accelerates centromere evolution by facilitating sequence exchange among chromosomes.  相似文献   

5.
Sterling Emerson 《Genetics》1966,53(3):475-485
  相似文献   

6.
Tetrad analysis of MATa/MAT alpha diploids of Saccharomyces cerevisiae generally yields 2 MATa:2MAT alpha meiotic products. About 1 to 1.8% of the tetrads yield aberrant segregations for this marker. Described here are experiments that determine whether the aberrant meiotic segregations at the mating-type locus are ascribable to gene conversions or to MAT switches, that is, to mating-type interconversions. Diploid strains incapable of switching MATa to MAT alpha, or the converse, nevertheless display changes of MATa to MAT alpha, or the reverse. These events must be attributed to gene conversion. Further, we suggest that MATa and MAT alpha alleles may represent nonhomologous sequences of DNA since they fail to display postmeiotic segregations.  相似文献   

7.
Gene Conversion in the Pasadena Strain of ASCOBOLUS IMMERSUS   总被引:1,自引:1,他引:0       下载免费PDF全文
Emerson S  Yu-Sun CC 《Genetics》1967,56(1):39-47
  相似文献   

8.
Using the genomic sequences of Drosophila melanogaster subgroup, the pattern of gene duplications was investigated with special attention to interlocus gene conversion. Our fine-scale analysis with careful visual inspections enabled accurate identification of a number of duplicated blocks (genomic regions). The orthologous parts of those duplicated blocks were also identified in the D. simulans and D. sechellia genomes, by which we were able to clearly classify the duplicated blocks into post- and pre-speciation blocks. We found 31 post-speciation duplicated genes, from which the rate of gene duplication (from one copy to two copies) is estimated to be 1.0×10−9 per single-copy gene per year. The role of interlocus gene conversion was observed in several respects in our data: (1) synonymous divergence between a duplicated pair is overall very low. Consequently, the gene duplication rate would be seriously overestimated by counting duplicated genes with low divergence; (2) the sizes of young duplicated blocks are generally large. We postulate that the degeneration of gene conversion around the edges could explain the shrinkage of “identifiable” duplicated regions; and (3) elevated paralogous divergence is observed around the edges in many duplicated blocks, supporting our gene conversion–degeneration model. Our analysis demonstrated that gene conversion between duplicated regions is a common and genome-wide phenomenon in the Drosophila genomes, and that its role should be especially significant in the early stages of duplicated genes. Based on a population genetic prediction, we applied a new genome-scan method to test for signatures of selection for neofunctionalization and found a strong signature in a pair of transporter genes.  相似文献   

9.
Mechanisms of Gene Conversion in Saccharomyces Cerevisiae   总被引:5,自引:4,他引:1       下载免费PDF全文
In red-white sectored colonies of Saccharomyces cerevisiae, derived from mitotic cells grown to stationary phase and irradiated with a light dose of x-rays, all of the segregational products of gene conversion and crossing over can be ascertained. Approximately 80% of convertants are induced in G1, the remaining 20% in G2. Crossing over, in the amount of 20%, is found among G1 convertants but most of the crossovers are delayed until G2. About 20% of all sectored colonies had more than one genotype in one or the other sector, thus confirming the hypothesis that conversion also occurs in G2. The principal primary event in G2 conversion is a single DNA heteroduplex. It is suggested that the close contact that this implies carries over to G2 when crossing over and a second round of conversion occurs.  相似文献   

10.
Coincident Gene Conversion during Mitosis in Saccharomyces   总被引:9,自引:5,他引:4       下载免费PDF全文
During mitosis, gene conversion events at the TRP5 locus on chromosome VII are coupled with conversion events at LEU1 , a locus 18 cM away, 1200 times more frequently than would be expected for two independent acts of recombination. Such coincident conversion events that occur over relatively long distances could be due to several mechanisms. We discuss these possibilities and describe an experiment that indicates that a portion of coincident events is due to extensive heteroduplexes. The phenomenon of coincident gene conversion is discussed in relation to our earlier evidence that spontaneous recombination between homologues occurs prereplicationally in mitosis.  相似文献   

11.
12.
Gene Conversion between Unlinked Sequences in the Germline of Mice   总被引:7,自引:0,他引:7       下载免费PDF全文
J. R. Murti  M. Bumbulis    J. C. Schimenti 《Genetics》1994,137(3):837-843
Gene conversion between homologous sequences on non-homologous chromosomes (ectopic gene conversion) is remarkably frequent in fungi. It is thought to be a consequence of genome-wide homology scanning required to form synapses between homologous chromosomes. This activity provides a mechanism for concerted evolution of dispersed genes. Technical obstacles associated with mammalian systems have hitherto precluded investigations into ectopic gene conversion in the mammals. Here, we describe a binary transgenic mouse system to detect ectopic gene conversion in mice. Conversion events are visualized by histochemical staining of spermatids, and corroborated by polymerase chain reaction amplification of transgenes in spermatozoa. The results show that conversion between unlinked, hemizygous lacZ transgenes is frequent in the male germline, ranging from 0.1 to 0.7% of spermatids. Genomic location may affect the susceptibility to recombination, since the frequency varied between lines. The results suggest that homologous genes can undergo concerted evolution despite being genomically dispersed. However, mechanisms may exist to modulate this activity, enabling the divergence of duplicated genes.  相似文献   

13.
Interlocus gene conversion can homogenize DNA sequences of duplicated regions with high homology. Such nonvertical events sometimes cause a misleading evolutionary interpretation of data when the effect of gene conversion is ignored. To avoid this problem, it is crucial to test the data for the presence of gene conversion. Here, we performed extensive simulations to compare four major methods to detect gene conversion. One might expect that the power increases with increase of the gene conversion rate. However, we found this is true for only two methods. For the other two, limited power is expected when gene conversion is too frequent. We suggest using multiple methods to minimize the chance of missing the footprint of gene conversion.INTERLOCUS (ectopic or nonallelic) gene conversion occurs between paralogous regions such that their DNA sequences are shuffled and homogenized (Petes and Hill 1988; Harris et al. 1993; Goldman and Lichten 1996). As a consequence, the DNA sequences of paralogous genes become similar (i.e., concerted evolution, Ohta 1980; Dover 1982; Arnheim 1983). This homogenizing effect of gene conversion sometimes causes problems in the inference of the evolutionary history of duplicated genes or multigene family. Common misleading inferences include an underestimation of the age of duplicated genes (Gao and Innan 2004; Teshima and Innan 2004). This is largely because the concept of the molecular clock is automatically incorporated in most software of phylogenetic analyses, and those software are frequently applied to multigene families without careful consideration of the potential effect of gene conversion.To understand the evolutionary roles of gene duplication, it is crucial to date each duplication event. To do this, we first need to know precisely the action of gene conversion among the gene family of interest. There have been a number of methods for detecting gene conversion, but their power has not been fully explored. Here, we systematically compare their performance by simulations to provide a guideline on which method works best under what condition. Our simulations show that some methods have a serious problem that causes a misleading interpretation: they do not detect any evidence for gene conversion when the gene conversion rate is too high. Thus, as is always true, lack of evidence is no evidence for absence, and we must be very careful about this effect when analyzing data with those tests, as is demonstrated below.There seem to be four major ideas behind the methods for detecting gene conversion, which are summarized below. A number of methods have been developed to detect interlocus gene conversion, and they belong to one of these four broad categories.
  1. Incompatibility between an estimated gene tree and the true duplication history: Figure 1A illustrates a simple situation of a pair of duplicated genes, X and Y, that arose before the speciation event of species A and B. The upper tree of Figure 1A shows a tree representing the true history. When a gene tree is estimated from their DNA sequences, it should be consistent with the true tree when genes X and Y have accumulated mutations independently. Gene conversion potentially violates this relationship. When genes X and Y are subject to frequent gene conversion, the two paralogous genes in each species should be more closely related, resulting in a gene tree illustrated in the bottom tree in Figure 1A. Thus, incongruence between the real tree and an inferred gene tree can provide strong evidence for gene conversion (unless there is no lineage sorting or misinference of the gene tree).Open in a separate windowFigure 1.—Summary of the simulations in the two-species two-locus model. (A) Illustration of the model. (B–E) The power of the four approaches. The average gene conversion tract length (1/q) is assumed to be 100 bp. See Figure S1 for the results with 1/q = 1000 bp.It should be noted that a single gene conversion event usually transfers a short fragment. Consequently, it occasionally happens that incongruence is detected only in a part of the duplicated region. Thus, searching local regions of incongruence has been a well-recognized method for detecting nonvertical evolutionary events such as recombination, gene conversion, and horizontal gene transfer (Farris 1971; Brown et al. 1972), and some computational methods based on this idea have been developed (Balding et al. 1992).
  2. Incompatibility of gene trees in different subregions: The idea of (i) can work even without knowing the real history. As mentioned above, incompatibility in the tree shape between different subregions can be evidence for local gene conversion because those subregions should have different histories of gene conversion (Sneath et al. 1975; Stephens 1985). A number of statistical algorithms incorporate this idea (e.g., Jakobsen et al. 1997; McGuire et al. 1997; Weiller 1998).
  3. GENECONV: A local gene conversion also leaves its trace in the alignment of sequences. GENECONV is a software developed by Sawyer (1989) to detect such signatures (http://www.math.wustl.edu/∼sawyer/geneconv/). GENECONV looks at an alignment of multiple sequences in a pairwise manner and searches unusually long regions of high identity between the focal pair conditional on the pattern of variable sites in the other sequences, which are candidates of recent gene conversion (a similar idea is also seen in Sneath et al. 1975). The statistical significance is determined by random shuffling of variable sites in the alignment.
  4. Shared polymorphism: Suppose polymorphism data are available in both of the duplicated genes. Then, with gene conversion, there could be polymorphisms shared by the two genes, which can be evidence for gene conversion (Innan 2003a). It should be noted that parallel mutations can create shared polymorphism even without gene conversion, but the chance should be very low when the point mutation rate is usually very low. Polymorphism data usually have tremendous amounts of information on very recent events and can be a powerful means to detect gene conversion (e.g., Stephens 1985; Betrán et al. 1997; Innan 2002).
In this study, we investigate and compare the performance of the methods based on these four ideas with simple settings. It should be noted that because our primary focus is on interlocus gene conversion, we ignore methods that can be used for detecting only allelic gene conversion, such as Fearnhead and Donnelly (2001), Hudson (2001), and Gay et al. (2007).  相似文献   

14.
Zhang L 《Biochemical genetics》2008,46(5-6):293-311
This work examines the molecular evolution of a brain-expressed X-linked gene family in the mammalian genomes of human, chimp, macaque, mouse, rat, dog, and cow. The gene structures are well conserved across family members and among the mammals in that all five members have three exons with the first two exons untranslated. Furthermore, the five members are arranged tandemly on chromosome X with Bex5, Bex1, Bex2 on the negative strand and Bex4, Bex3 on the positive strand, and this physical arrangement remains conserved among species. Sequence analyses indicate that gene conversion has been frequent and ongoing among Bex1-4, occurring in multiple species independently. All gene conversions in different species between Bex1 and Bex4, and between Bex2 and Bex3, appear to be limited to the upstream regions of the third exon, whereas the gene conversions occurred independently in different species between Bex1 and Bex2 and cover only the third exon. Bex5 appears to have little exchange of genetic information with other members, possibly due to its distance from other members. The GC content decreases from 5′-UTR, intron 1, intron 2, coding region, to 3′-UTR, reflecting faithfully the frequency of gene conversion in different regions of the Bex genes. Sequence analyses also suggest that both relaxed selective constraint and positive selection have acted on the Bex members after duplication. In particular, Bex3 shows strong evidence of positive selection and seems to have evolved a new gene function after gene duplication.  相似文献   

15.
Molecular Aspects of Genetic Exchange and Gene Conversion   总被引:25,自引:1,他引:24       下载免费PDF全文
Robin Holliday 《Genetics》1974,78(1):273-287
  相似文献   

16.
C. R. Preston  W. R. Engels 《Genetics》1996,144(4):1611-1622
A P-element insertion flanked by 13 restriction fragment length polymorphism (RFLP) marker sites was used to examine male recombination and gene conversion at an autosomal site. The great majority of crossovers on chromosome arm 2R occurred within the 4-kb region containing the P element and RFLP sites. Of the 128 recombinants analyzed, approximately two-thirds carried duplications or deletions flanking the P element. These rearrangements are described in more detail in the accompanying report. In a parallel experiment, we examined 91 gene conversion tracts resulting from excision of the same autosomal P element. We found the average tract length was 1463 bp, which is essentially the same as found previously at the white locus. The distribution of conversion tract endpoints was indistinguishable from the distribution of crossover points among the nonrearranged male recombinants. Most recombination events can be explained by the ``hybrid element insertion' model, but, for those lacking a duplication or deletion, a second step involving double-strand gap repair must be postulated to explain the distribution of crossover points.  相似文献   

17.
Meiotic Gene Conversion in Yeast Tetrads and the Theory of Recombination   总被引:25,自引:12,他引:13       下载免费PDF全文
S. Fogel  D. D. Hurst 《Genetics》1967,57(2):455-481
  相似文献   

18.
Gene Conversion, Linkage, and the Evolution of Multigene Families   总被引:2,自引:1,他引:1       下载免费PDF全文
T. Nagylaki 《Genetics》1988,120(1):291-301
The evolution of the probabilities of genetic identity within and between the loci of a multigene family is investigated. Unbiased gene conversion, equal crossing over, random genetic drift, and mutation to new alleles are incorporated. Generations are discrete and nonoverlapping; the diploid, monoecious population mates at random. The linkage map is arbitrary, and the location dependence of the probabilities of identity is formulated exactly. The greatest of the rates of gene conversion, random drift, and mutation is epsilon much less than 1. For interchromosomal conversion, the equilibrium probabilities of identity are within order epsilon [i.e., O(epsilon)] of those in a simple model that has no location dependence and, at equilibrium, no linkage disequilibrium. At equilibrium, the linkage disequilibria are of O(epsilon); they are evaluated explicitly with an error of O(epsilon 2); they may be negative if symmetric heteroduplexes occur. The ultimate rate and pattern of convergence to equilibrium are within O(epsilon 2) and O(epsilon), respectively, of that of the same simple model. If linkage is loose (i.e., all the crossover rates greatly exceed epsilon, though they may still be much less than 1/2), the linkage disequilibria are reduced to O(epsilon) in a time of O(-ln epsilon). If intrachromosomal conversion is incorporated, the same results hold for loose linkage, except that, if the crossover rates are much less than 1/2, then the linkage disequilibria generally exceed those for pure interchromosomal conversion.  相似文献   

19.
Gene Conversion of Deletions in the HIS4 Region of Yeast   总被引:26,自引:4,他引:22       下载免费PDF全文
G. R. Fink  C. A. Styles 《Genetics》1974,77(2):231-244
  相似文献   

20.
We have investigated the order of the four genes cyc1, rad7, SUP4, and cdc8 which form a tightly linked cluster on the right arm of chromosome X in the yeast Saccharomyces cerevisiae. Crossing over and coconversion data from tetrad analysis established the gene order to be centromere-cyc1-rad7-SUP4. Also cdc8 appeared to be distal to SUP4 on the basis of crossovers that were associated with conversion of SUP4. The frequencies of recombination and the occurrence of coconversions suggest that these four genes are contiguous or at least nearly so. Gene-conversion frequencies for several cyc1 alleles were studied, including cyc1-1, a deletion of the whole gene that extends into the rad7 locus. The cyc1-1 deletion was found to be capable of conversion, though at a frequency some fivefold less than the other alleles studied, and both 3:1 and 1:3 events were detected. In general 1:3 and 3:1 conversion events were equally frequent at all loci studied, and approximately 50% of conversions were accompanied by reciprocal recombination for flanking markers. The orientation of the cyc1 gene could not be clearly deduced from the behavior of the distal marker SUP4 in wild-type recombinants that arose from diploids heteroallelic for cyc1 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号