首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steroid transformation of hydrocortisone to prednisolone, combining the two techniques of immobilized whole cells and high steroid concentrations, was investigated and found to be a feasible process. Freeze-dried Corynebacterium simplex cells were immobilized in collagen, tanned with glutaraldehyde, and cast into a membrane. The reaction was studied at hydrocortisone concentrations ranging from 5 to 50 mg/ml. The following aspects of the system were examined: (1) the substrate concentration effect upon the reaction; (2) the effect of enzyme concentration; (3) the rate-concentration relationship; and (4) the product inhibition characteristics of the system. The optimal substrate concentration was found to be 15 mg/ml of a membrane concentration of 80 mg/ml. This reaction attained an 80% conversion in 48 hr. A liner relation was found between the initial reaction rate and membrane concentration. One can thus increase the net production of steroid per unit volume and time by increasing the membrane levels. A physical limit to this increase occurred at membrane concentrations greater than 125 mg/ml. The rate-concentration relationship was linear when graphed on a Line weaver-Burk plot: giving a Km′ and Vm′ value of 5.39 mg/ml and 0.556 mg/ml/hr, respectively. When the data were tested for competitive product inhibition, the curves fitted the experimental points fairly well and produced Km′ and Vm′ values of 4.52 mg/ml and 0.566 mg/ml/hr, respectively. Product inhibition experiments showed that the inhibition was not purely competitive. At low substrate concentrations, product inhibited the enzyme; at high substrate concentrations, the enzyme was first stimulated and then depressed by increasing levels of products. This behavior has been analyzed and shown to be possibly a result of the information of a tertiary intermediate produced during the reaction.  相似文献   

2.
The interaction of inorganic pyrophosphatase from E. coli with inorganic phosphate (P i) was studied in a wide concentration range of phosphate. The apoenzyme gives two inactive compounds with P i, a product of phosphorylation of the carboxylic group of the active site and a stable complex, which can be detected in the presence of the substrate. The phosphorylation occurs when P i is added on a millimole concentration scale, and micromole concentrations are sufficient for the formation of the complex. The formation of the phosphorylated enzyme was confirmed by its sensitivity to hydroxylamine and a change in the properties of the inactive enzyme upon its incubation in alkaline medium. The phosphorylation of pyrophosphatase and the formation of the inactive complex occur upon interaction of inorganic phosphate with different subsites of the enzyme active sites, which are connected by cooperative interactions.  相似文献   

3.
Kinetic characterization of spinach leaf sucrose-phosphate synthase   总被引:1,自引:14,他引:1       下载免费PDF全文
Amir J  Preiss J 《Plant physiology》1982,69(5):1027-1030
The spinach (Spinacia oleracea) leaf sucrose-phosphate synthase was partially purified via DEAE-cellulose chromatography, and its kinetic properties were studied. Fructose-6-phosphate saturation curves were sigmoidal, while UDPglucose saturation curves were hyperbolic. At subsaturating concentrations of fructose-6-phosphate, 1,5 anhydroglucitol-6-phosphate had a stimulatory effect on enzyme activity, suggesting multiple and interacting fructose-6-phosphate sites on sucrose-phosphate synthase. The concentrations required for 50% of maximal activity were 3.0 millimolar and 1.3 millimolar, respectively, for fructose-6-phosphate and UDPglucose. The enzyme was not stimulated by divalent cations. Inorganic phosphate proved to be a potent inhibitor, particularly at low concentrations of substrate. Phosphate inhibition was competitive with UDPglucose, and its Ki was determined to be 1.75 millimolar. Sucrose phosphate, the product of the reaction, was also shown to be a competitive inhibitor towards UDPglucose concentration and had Ki of 0.4 millimolar. The kinetic results suggest that spinach leaf sucrose-phospahte synthase is a regulatory enzyme and that its activity is modulated by the concentrations of phosphate, fructose-6-phosphate, and UDPglucose occurring in the cytoplasm of the leaf cell.  相似文献   

4.
Summary The kinetic and stability characteristics of crude extract nitrile hydratase fromBrevibacterium R-312 were studied for the hydration of 3-cyanopyridine to nicotinamide. The enzyme was substrate and product inhibited and had the following kinetic constants:K m =28 mM;K p =36 mM;K s =155 mM;V m =5.8 mol/min/mg protein (25°C). Itsmaximum temperature and pH (phosphate buffer) were 35°C and 8.0, respectively and it had half-lives of 50 days, 10 days and 1 day at 4°C, 10°C and 25°C, respectively. The crude extract also exhibited amidase activity on nicotinamide, but it became significant only at nicotinamide concentrations greater than 300 mM. Mathematical models for batch and fed-batch hydrations were developed to account for substrate and product inhibitions and for enzyme decay. They predicted to within 10% experimental results for initial substrate and final product concentrations up to 300 mM; the accuracies decreased at higher concentrations primarily because of the relatively rapid hydrolysis of nicotinamide.  相似文献   

5.
Kinetic behavior of penicillin acylase immobilized on acrylic carrier   总被引:1,自引:0,他引:1  
The usefulness of Lilly's kinetic equation to describe penicillin G hydrolysis performed by immobilized penicillin acylase onto the acrylic carrier has been shown. Based on the experimental results characteristic kinetic constants have been estimated. The effect of noncompetitive inhibition of 6-amino penicillanic acid has not been found. Five components of reaction resistance have been defined. These components were also estimated for the reaction of the native enzyme as well as the Boehringer preparation.List of Symbols C E g/m3 enzyme concentration - C P,C Q mol/m3 product concentrations - C S mol/m3 substrate concentration - C SO mol/m3 initial substrate concentration - K A mol/m3 constant which defines the affinity of a substrate to the enzyme - K iS mol/m3 substrate inhibitory constant - K iP mol/m3 PhAA inhibitory constant - K iQ mol/m3 6-APA inhibitory constant - k 3 mol/g/min constant rate of dissociation of the active complex - R(1) concentrational component of reaction resistance - R(2) resistance component derived from substrate affinity - R(3) resistance component due to the inhibition of the enzyme by substrate - R(4) resistance component due to the inhibition of the enzyme by PhAA - R(5) resistance component due to inhibition of the enzyme by 6-APA - r = dCs/dt mol/m3 min rate of reaction - t min reaction time - (i) relative resistance of reaction  相似文献   

6.
A titrimetric method for the assay of glycogen phosphorylase is presented in which a direct and continuous course of reaction is obtained over a wide range of enzyme concentrations (7.2–378.3 μg/ml). The method resulted in rates which were in agreement with those obtained using the inorganic phosphate method, and the expected value of the equilibrium concentration ratio of inorganic phosphate to glucose-1-phosphate was obtained. The method can be extended to higher concentrations, and it can be used to measure the rate in either direction. The Km and Vmax values of each substrate, glucose-1-phosphate and inorganic phosphate, were determined.  相似文献   

7.
A metal-salt precipitation method with p-nitrophenyl phosphate as substrate has been used to localize in the electron microscope acid phosphatase activity in isolated aleurone layers of barley (Hordeum vulgare L.), treated for 16 h in the presence or absence of gibberellic acid (GA3). The paper confirms results obtained earlier with an azo-dye precipitation method of enzyme localization. In addition the results show for the first time that in GA3-treated tissue enzyme activity is associated with the endoplasmic reticulum (ER), there being reaction product deposited in the ER cisternae. It is suggested that this activity represents new enzyme synthesized on ER in response to GA3 and probably destined for secretion.Abbreviation ER endoplasmic reticulum  相似文献   

8.
Amidase, an amide hydrolase enzyme (E.C.3.5.1.4) with acyl transferase activity, was encapsulated in a reversed micellar system composed of the cationic surfactant tetradecyltrimethyl ammonium bromide (TTAB) in heptane/octanol (80/20%) and phosphate buffer at w0 11. The reaction used to study the effect of the reversed micellar system on the enzyme behaviour was a transamidation reaction. The effect of surfactant concentration, buffer molarity and pH on the enzyme kinetics was evaluated. Both initial velocities and product yield were measured. The results indicated that a high initial velocity of hydroxamic acid synthesis and also the highest yield (98%) were obtained using the lowest pH value. The effect of TTAB concentration was dependent on the buffer molarity used. The effect of buffer molarity on reversed micelle dimensions was analysed by light scattering. These results showed that the buffer molarity had a strong influence on the reversed micelle radius that correlated with enzyme activity.  相似文献   

9.
Stitt M 《Plant physiology》1989,89(2):628-633
The product inhibition of potato (Solanum tuberosum) tuber pyrophosphate:fructose-6-phosphate phosphotransferase by inorganic pyrophosphate and inorganic phosphate has been studied. The binding of substrates for the forward (glycolytic) and the reverse (gluconeogenic) reaction is random order, and occurs with only weak competition between the substrate pair fructose-6-phosphate and pyrophosphate, and between the substrate pair fructose-1,6-bisphosphate and phosphate. Pyrophosphate is a powerful inhibitor of the reverse reaction, acting competitively to fructose-1,6-biphosphate and noncompetitively to phosphate. At the concentrations needed for catalysis of the reverse reaction, phosphate inhibits the forward reaction in a largely noncompetitive mode with respect to both fructose-6-phosphate and pyrophosphate. At higher concentrations, phosphate inhibits both the forward and the reverse reaction by decreasing the affinity for fructose-2,6-bisphosphate and thus, for the other three substrates. These results allow a model to be proposed, which describes the interactions between the substrates at the catalytic site. They also suggest the enzyme may be regulated in vivo by changes of the relation between metabolites and phosphate and could act as a means of controlling the cytosolic pyrophosphate concentration.  相似文献   

10.
Octyl oleate is a useful organic compound with several applications in cosmetic, lubricant and pharmaceutical industry. At first, the enzymatic synthesis of n-octyl oleate by direct lipase-catalysed esterification of oleic acid and 1-octanol was investigated in a stirred batch reactor in solvent-free system. A systematic screening and optimisation of the reaction parameters were performed to gain insight into the kinetics mechanism. Particularly, enzyme concentration, reaction temperature, stirrer speed, water content, substrates concentration and molar ratio were optimised with respect to the final product concentration and reaction rate. The kinetics mechanism of the reaction was investigated. Finally, a comparison of the experimental results obtained in a solvent free-system with those using two different solvents, supercritical carbon dioxide (SC-CO2) and n-hexane, was proposed. It resulted that in SC-CO2 higher concentration of the desired product was attained, requiring lower enzyme concentrations to achieve comparable conversion of free fatty acid into fatty acid ester.  相似文献   

11.
The kinetics of microperoxidase-11 (MP-11) in the oxidation reaction of guaiacol (AH) by hydrogen peroxide was studied, taking into account the inactivation of enzyme during reaction by its suicide substrate, H2O2. Concentrations of substrates were so selected that: 1) the reaction was first-order in relation to benign substrate, AH and 2) high ratio of suicide substrate to the benign substrate, [H2O2]>>[AH]. Validation and reliability of the obtained kinetic equations were evaluated in various nonlinear and linear forms. Fitting of experimental data into the obtained integrated equation showed a close match between the kinetic model and the experimental results. Indeed, a similar mechanism to horseradish peroxidase was found for the suicide-peroxide inactivation of MP-11. Kinetic parameters of inactivation including the intact activity of MP-11, αi, and the apparent inactivation rate constant, ki, were obtained as 0.282 ± 0.006 min? 1 and 0.497 ± 0.013 min? 1 at [H2O2] = 1.0 mM, 27°C, phosphate buffer 5.0 mM, pH = 7.0. Results showed that inactivation of microperoxidase as a peroxidase model enzyme can occur even at low concentrations of hydrogen peroxide (0.4 mM).  相似文献   

12.
The influences of total magnesium ion concentration at different total ATP concentrations, and of total ATP concentration, for different total magnesium ion concentrations, on the enzymatic rate of the isolated chloroplast F1 ATPase, have been followed by a chromatographic method consisting in the separation and determination of ADP. From the various series of curves, it is concluded that the experimental results (position of the maxima,K m values) are better fitted by a mechanism involving the activation of the enzyme by magnesium ion and hydrolysis of free ATP, rather than by the classical mechanism, for which the enzyme hydrolyzes the MgATP complex and is inhibited by Mg2+. Although the equations giving the reaction rate are similar in the two cases, the calculated values ofK m are widely different. The value obtained from the classical mechanism does not agree withK D , the dissociation constant of the enzyme-substrate complex, measured by the Hummel and Dreyer method. Moreover, when the total ATP concentration tends toward the total magnesium ion concentration, the nucleotide binding to the enzyme tends toward zero, although it should be maximum if MgATP were the true substrate. Finally, the inhibitory effect of Na+ is more easily explained as a competition between this ion and the activating Mg2+, than by the classical mechanism.  相似文献   

13.
A mathematical model for the hydrolysis reaction of p‐nitro phenol laurate catalyzed by a lipase immobilized in a membrane was developed. In an earlier study this model reaction was found to show very different reaction rates when it was performed in aqueous micellar solution with free enzyme and with membrane immobilized enzyme. It was assumed that a local accumulation of substrate in the membrane is responsible for the observed rate enhancement. The conversion of p‐nitro phenol ester within the membrane was modeled by considering a combination of the convective flow through poly(vinyl alcohol) membrane pores, concentration polarization of substrate containing micelles at the membrane surface and the kinetics of the reaction with free enzymes. It was demonstrated that the model offered a comprehensive understanding of the interaction of the involved phenomena. The modeling results are in good agreement with the experimental data from 10 runs with different enzyme and substrate concentrations. The substrate concentration at the membrane surface increased by up to a factor of 3 compared to the feed concentration. This effect explains the observed rate enhancement. Moreover, the model was used to determine the unknown parameters, i.e., the intrinsic retention and the mass transfer coefficient, by fitting the model to the experimental data. The model may also be used to calculate the optimum operating conditions and design parameters of such a reactor.  相似文献   

14.
The glycerol-3-phosphate dehydrogenase (NAD-dependent) reaction was studied in a chloroplast-enriched fraction fromDunaliella tertiolecta. The reaction has widely separated pH optima for each direction. Reduction of dihydroxyacetone phosphate proceeded with Michaelis-Menten kinetics but sigmoidal double reciprocal plots were obtained with glycerol phosphate as variable substrate. NADP served as an alternative substrate but it was somewhat less effective than NAD. The reaction was inhibited by inorganic orthophosphate and by adenine nucleotides in a manner indicative of anion inhibition. Inhibition by inorganic phosphate was competitive with DHAP and possibly also with NADH. The enzyme was activated by Na+ at concentrations below 200 m and inhibited at higher concentrations, the region of maximum activation being affected by substrate concentration. Inhibition by Na+, present as a counterion of the substrate, was evidently responsible for apparent substrate inhibition by glycerol phosphate. Several important differences were apparent between the reaction in the unfractionated chloroplast-enriched fraction and the properties of a partly purified enzyme described by Haus and Wegmann (1984a, b).In toto, the results suggest that the regulatory potential of the reaction is probably more relevant to homeostatic control of glycerol content under steady state conditions than to controlling response to water stress.Abbreviations DHAP Dihydroxyacetone phosphate - CHES 2-(N-cyclohexylamino)ethanesulphonic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid  相似文献   

15.
A low molecular weight acid phosphatase was purified to homogeneity from chicken heart with a specific activity of 42 U/mg and a recovery of about 1%. Nearly 800 fold purification was achieved. The molecular weight was estimated to be 18 kDa by SDS-polyacrylamide gel electrophoresis. Para-nitrophenyl phosphate, phenyl phosphate and flavin mononucleotide were efficiently hydrolysed by the enzyme and found to be good substrates. Fluoride and tartrate had no inhibitory effect while phosphate, vanadate and molybdate strongly inhibited the enzyme. The acid phosphatase was stimulated in the presence of glycerol, ethylene glycol, methanol, ethanol and acetone, which reflected the phosphotransferase activity. When phosphate acceptors such as ethylene glycol concentrations were increased, the ratio of phosphate transfer to hydrolysis was also increased, demonstrating the presence of a transphosphorylation reaction where an acceptor can compete with water in the rate limiting step involving hydrolysis of a covalent phospho enzyme intermediate. Partition experiments carried out with two substrates, para-nitrophenyl phosphate and phenyl phosphate, revealed a constant product ratio of 1.7 for phosphotransfer to ethylene glycol versus hydrolysis, strongly supporting the existence of common covalent phospho enzyme intermediate. A constant ratio of K cat/K m, 4.3×104, found at different ethylene glycol concentrations, also supported the idea that the rate limiting step was the hydrolysis of the phospho enzyme intermediate.  相似文献   

16.
In this study, an amidohydrolase activity of amidase in whole cells of Rhodococcus sp. MTB5 has been used for the biotransformation of aromatic, monoheterocyclic and diheterocyclic amides to corresponding carboxylic acids. Benzoic acid, nicotinic acid and pyrazinoic acid are carboxylic acids which have wide industrial applications. The amidase of this strain is found to be inducible in nature. The biocatalytic conditions for amidase present in the whole cells of MTB5 were optimized against benzamide. The enzyme exhibited optimum activity in 50?mM potassium phosphate buffer pH 7.0. The optimum temperature and substrate concentrations for this enzyme were 50?°C and 50?mM, respectively. The enzyme was quite stable for more than 6?h at 30?°C. It showed substrate specificity against different amides, including aliphatic, aromatic and heterocyclic amides. Under optimized reaction conditions, the amidase is capable of converting 50?mM each of benzamide, nicotinamide and pyrazinamide to corresponding acids within 100, 160 and 120?min, respectively, using 5?mg dry cell mass (DCM) per mL of reaction mixture. The respective percent conversion of these amides was 95.02%, 98.00% and 98.44% achieved by whole cells. The amidase in whole cells can withstand as high as 383?mM concentration of product in a reaction mixture and above which it undergoes product feedback inhibition. The results of this study suggest that Rhodococcus sp. MTB5 amidase has the potential for large-scale production of carboxylic acids of industrial value.  相似文献   

17.
We earlier proved the involvement of an autocatalytic step in the oxidation of H2 by HynSL hydrogenase from Thiocapsa roseopersicina, and demonstrated that two enzyme forms interact in this step. Using a modified thin-layer reaction chamber which permits quantitative analysis of the concentration of the reaction product (reduced benzyl viologen) in the reaction volume during the oxidation of H2, we now show that the steady-state concentration of the product displays a strong enzyme concentration dependence. This experimental fact can be explained only if the previously detected autocatalytic step occurs inside the catalytic enzyme-cycle and not in the enzyme activation process. Consequently, both interacting enzyme forms should participate in the catalytic cycle of the enzyme. As far as we are aware, this is the first experimental observation of such a phenomenon resulting in an apparent inhibition of the enzyme. It is additionally concluded that the interaction of the two enzyme forms should result in a conformational change in the enzyme–substrate form. This scheme is very similar to that of prion reactions. Since merely a few molecules are involved at some point of the reaction, this process is entirely stochastic in nature. We have therefore developed a stochastic calculation method, calculations with which lent support to the conclusion drawn from the experiment.  相似文献   

18.
l-Glycerol 3-phosphate dehydrogenase has been isolated and partially purified from the endosperm of developing castor beans. The enzyme is entirely cytosolic and is not found in the plastid fraction. No activity was found in germinating castor beans. The pH optimum for the reduction of dihydroxyacetone phosphate is 8.1 and is 9.6 for the reverse reaction. The molecular weight determined by gel filtration chromatography is between 71,000 and 83,000. Both substrates show substrate inhibition at concentrations about 13 μm for NADH and 400 μm for dihydroxyacetone phosphate. Substrate interaction kinetics gave limiting Km values of 2.7 and 35.5 μm for NADH and dihydroxyacetone phosphate, respectively. Substrate interaction and product inhibition kinetics were consistent with an ordered sequential mechanism with NADH being the first substrate to bind and NAD+ being the last product to dissociate.  相似文献   

19.
Summary The effect of a deficiency of inorganic phosphate on the growth rate and on the invertase and phosphatase activities inSaccharomyces carlsbergensis was studied in a chemostat culture using a synthetic medium in which ethanol was the sole carbon source.The kinetic relationship between the growth rate and both the rates of phosphate uptake and the ethanol consumption agreed well with the threshold model but not the multicative model. The invertase activity of the yeast increased as the dilution rate decreased. As the phosphate concentration in the feed was reduced, the enzyme synthesis increased remarkably. Acid phosphatase activity was repressed completely above a critical molecular ratio, 0.015, of monopotassium phosphate to ethanol in the feed medium. As the phosphate concentration in the feed decreased, the maximum specific enzyme activity increased and the corresponding optimum dilution rate decreased. These experimental changes in enzyme synthesis were expressed mathematically using the modified operon models for enzyme regulation in terms of two fractions of limited inorganic phosphate; one which affects growth and the other which is incorporated in excess by the cells.Nomenclature A ethanol concentration in the culture (mM) - a, b, c, d exponents in the operon model - D dilution rate (h–1) - E enzyme concentration in the culture (enzyme unit l–1) - Ka, Kb, Kc, Kd, k equilibrium constants used in the operon model, see Toda (1976b) - o operator gene - P inorganic phosphate concentration in the culture (mM) - Pi limited inorganic phosphate concentration in the cells (mmole inorganic phosphate/g dry weight of cell) - Q specific enzyme activity, no units: (E/X)/(E/X)max - Qc, Qd as defined in Eq. 12 - R repressor - r regulator gene - X cell concentration in the culture (dry cell weight l–1) Greek Letters molecular ratio of inorganic phosphate to ethanol in the feed medium (mole/mole) - specific growth rate (h–1) - A specific uptake rate of ethanol (mmole/g cell·h) - P specific uptake rate of inorganic phosphate (mmole/g cell·h) Suffix crit critical value - f feed - max maximum - min minimum - t total - 1, 2 number of species Superfix eff effective for cell growth - exc excess - str structural  相似文献   

20.
Summary Cyclic fed-batch plus batch polygalacturonase production by Aureobasidium pullulans in slurry fermentation systems using raw orange peel as substrate was studied in a 3-dm3 stirred fermentor by setting the main operating variables (T=297°K; pH0=3.2; OP0=3% w/v; n=700 rpm) to optimal values determined previously. In this way, it was possible to stabilize enzyme excretion at 130–140 VU cm–3. The time course of this fermentation process in terms of cell growth, substrate consumption and enzyme synthesis was reconstructed with a mean standard error less than 10%, by applying an unstructured model set up in a batch run and further refined in a series of cyclic fed-batch plus batch operations. In particular, the enzyme formation rate was related to the effect of reducing sugars as inhibitors at higher concentrations and as activators at lower levels by using an exponential equation. Moreover, the consumption rate of reducing sugars was found to be linearly related to the cell growth rate, its specific date being of pseudo-first order with respect to the reducing sugar concentration.Offprint requests to: M. Moresi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号