首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A representative survey was made of maize ears of the 1988 and 1989 crop in Austria to establish the influence of corn borer injuries onFusarium species involved in ear fusariosis andFusarium toxin production.TheFusarium species most frequently isolated from rot-damaged ears wereFsacchari var. subglutinans (about 50 %) andF. graminearum (about 30 %). There was a striking difference between theFusarium species of the Liseola and the Discolor section concerning their occurrence on corn borer-damaged ears. More than 80 % of the ears infected withF. sacchari var. subglutinans andF. verticillioides, but less than 15 % of the ears infected withF. graminearum, F. crookwellense andF. culmorum showed corn borer injuries.Toxin analyses of the infected ears corresponded to the known toxigenicity of the respectiveFusarium species. Ears infected withF. sacchari var. subglutinans contained moniliformin (up to 20 mg/kg), those infected withF. verticillioides fumonisin B1 and B2 (up to 15 mg/kg). In ears infected withF. graminearum, F. culmorum andF. crookwellense zearalenone (up to 40 mg/kg) and deoxynivalenol (up to 500 mg/kg) or nivalenol (up to 10 mg/kg), respectively, could be detected. Hence measures to combat the European corn borer will mainly reduce moniliformin and fumonisin contamination, but will affect zearalenone, deoxynivalenol and nivalenol contents of the ears to a much lesser extent.  相似文献   

2.
Maize cobs withFusarium ear rot were collected at 1986 season and five infected byFusarium graminearum were analyzed for presence of triohothecenes and zearalenone. Collected material was subsampled forFusarium damaged kernels and corresponding axial stems and healthy looking kernels. All investigated cobs contained deoxynivalenol (DON) (range 18.0–131.5 mg/kg) and zearalenone (ZEA) (range 0.38–2.17 mg/kg), in four cobs 15-acetyl-deoxynivalenol (15-AcDON) (range 5.2–6.2 mg/kg) was present and two cobs besides three all metabolites contained 3-acetyl-deoxynivalenol (3-AcD0N) (range 0.5–0.8 mg/kg).The average of individual toxins amount in axial stems: in mg/kg was equal to: DON — 110.36, ZEA — 4.57, 15-AcD0N — 16.66, and 3-AcD0N — 1.32.Fusarium damaged kernels contained in average the following amount (mg/kg) of: DON 77.00, ZEA 0.98, 15-AcD0N 3.78 and 3-AcD0N 0.06. Healthy looking kernels contained DON 1.96 mg/kg and ZEA 0.07 mg/kg only. Cooccurrence of 3-AcDON and 15-AcDON in two samples was an interesting finding. The amount of DON in total cob was highly correlated (r = 0.94) with percentage ofFusarium damaged kernels in given ear.  相似文献   

3.
Fusarium avanacoum infected wheat and triticale heads in Poland in each season between 1985 and 1989. The average number of heads infected byF avonacaum was 26 % for wheat and 46 % for triticale out of all examined heads withFusarium head blight symptoms.Fusarium-damaged wheat grain, naturally infected byF avenaceum, contained an average of 15.9±7.7 mg moniliformin/kg, healthy looking kernels from the same heads an average of 0.42±0.19 mg moniliformin/kg. Fusarfum-damaged kernels of triticale contained an average of 3.5 mg moniliformin/kg while healthy looking kernels from the same ears contained 0.25 mg/kg.  相似文献   

4.
Microdochium nivale (Fusarium nivale) was found to be frequently occuring in Poland pathogen of small grain cereals heads, causing symptoms similar to those observed after infection ofFusarium species. In consecutive years since 1985 till 1989 the following percentage of wheat and rye ears infected withM. Nivale and withFusarium head blight symptoms was found: 34%, 21%, 42%, 9%, 46% (wheat) and 57%, 43%, 65%, 4%, 47% (rye) heads.However, in naturally infected rye and wheat samples (kernels and chaff), we did not detect toxins usually present in samples infected with fungi of genusFusarium — such as deoxynivalenol and derivatives. TypicalFusarium trichothecene metabolites were also not present in cultures of 11M. nivale strains, growing 3–5 weeks on rice (45% water content) at 20°C. Cultures of two typical isolates on wheat grain (strain KF 1124) and on rice (KF 245) were found to be non toxic to broiler chickens when present in amount 20–40% in their diet. It can be concluded thatM. nivale (F. nivale) representatives in Poland did not produce toxic metabolites neither under laboratory condition nor after cereal ears infection under field conditions.  相似文献   

5.
Forty-eight durum wheat samples from 5 locations in Austria were examined forFusarium infection andFusarium toxin content.F.gramlnearum andF.avenaceum were by far the prevailingFusarium species In durum wheat kernels, followed byEpoae, F.culmorum, andF.equlsetl. Ion-paired HPLC analyses of the samples showed moniliformin contents of kernels up to 0.88 mg/kg. All moniliformin contaminated samples also contained high levels of deoxynivalenol (up to 8.2 mg/kg) and lower levels of zearalenone (<0.33 mg/kg). The levels of zearalenone in naturally contaminated durum wheat samples did not correspond to the high yields of zearalenone found in cultures of the fusaria isolated from the durum wheat kernels. These conflicting results as well as some toxicologlcal aspects of the carry over ofFusarium toxins from durum wheat kernels into pasta are discussed.  相似文献   

6.
Toxicity toA. salina, of the Fusarium metabolites: deoxynivalenol (DON), its acetylated derivatives (3- and 15-AcDON), zearalenone (ZON), neosolaniol (NEO), nivalenol (NIV), T-2, HT-2 toxins, has been examined and compared with toxicity of extracts of barley kernels (8 cultivars and 4 lines) inoculated withFusarium culmorum, F. graminearum andF. sporotrichioides respectively. Estimated LC50 values were expressed as relative toxicity (RT) in mg DON/kg for samples inoculated withF. culmorum, F. graminearum or in mg T-2/kg forF. sporotrichioides inoculations. Toxicity of extracts of the same genotype/line kernels was compared among different pathogens used for inoculation and differences in Fusarium head blight susceptibility of different genotypes/lines inoculated with the sameFusarium strain were found. Significant correlation between toxicity of extracts (LC50, RT) and toxic metabolites concentration was found ( $\bar r = 0.82$ ; P = 0.01). Bioassays withA. Salina offer a fast, easy and inexpensive method to examine cereal genotypes susceptibility to Fusarium head blight and mycotoxins accumulation in kernels.  相似文献   

7.
Three wheat samples collected in 1987 in Central Poland and naturally infected withFusarium spp were analyzed for the presence ofFusarium spp andFusarium toxins. Heads were separated into three fractions: kernels with visibleFusarium damage, healthy looking kernels, and chaff + rachis. The samples contained deoxynivalenol (2.0 – 40.0μg/g), nivalenol (O.O1μg/g), 4,7-dideoxynivalenol (0.10 – 0.15μg/g). 15-acetyldeoxynivalenol (0.10–2.00 μg/g), 3-acetyldeoxynivalenol (O/1Oμg/g), and zearalenone (0.01–2.00μg/g). This is the first report about 15 - acetyldeoxynivalenol in European wheat and the co-occurrence of 3 - acetyldeoxynivalenol and 15-acetyldeoxynivalenol in the same sample of contaminated cereals.  相似文献   

8.
Maize kernel samples were collected in 1996 from smallholder farm storages in the districts of Bomet, Bungoma, Kakamega, Kericho, Kisii, Nandi, Siaya, Trans Nzoia, and Vihiga in the tropical highlands of western Kenya. Two-thirds of the samples were good-quality maize, and one-third were poor-quality maize with a high incidence of visibly diseased kernels. One hundred fifty-three maize samples were assessed for Fusarium infection by culturing kernels on a selective medium. The isolates obtained were identified to the species level based on morphology and on formation of the sexual stage in Gibberella fujikuroi mating population tests. Fusarium moniliforme (G. fujikuroi mating population A) was isolated most frequently, but F. subglutinans (G. fujikuroi mating population E), F. graminearum, F. oxysporum, F. solani, and other Fusarium species were also isolated. The high incidence of kernel infection with the fumonisin-producing species F. moniliforme indicated a potential for fumonisin contamination of Kenyan maize. However, analysis of 197 maize kernel samples by high-performance liquid chromatography found little fumonisin B1 in most of the samples. Forty-seven percent of the samples contained fumonisin B1 at levels above the detection limit (100 ng/g), but only 5% were above 1,000 ng/g, a proposed level of concern for human consumption. The four most-contaminated samples, with fumonisin B1 levels ranging from 3,600 to 11,600 ng/g, were from poor-quality maize collected in the Kisii district. Many samples with a high incidence of visibly diseased kernels contained little or no fumonisin B1, despite the presence of F. moniliforme. This result may be attributable to the inability of F. moniliforme isolates present in Kenyan maize to produce fumonisins, to the presence of other ear rot fungi, and/or to environmental conditions unfavorable for fumonisin production.  相似文献   

9.
The correlation between the amount of deoxynivalenol (DON) and the percentage ofFusarium damaged kernels (FDK) in samples of wheat and triticale was studied.Samples of naturally infected wheat grain, collected in 1986, 1987 and 1988 and of triticale collected in 1986 were used.Additionally, artificial inoculated wheat samples (10 genotypes inoculated with 3F. Culmorum strains of weak, medium and severe pathogenicity and samples of 10 triticale genotypes inoculated withF. culmorum. andF. graminearun) were studied. Using statistical methods (the variance analysis, method of least significant difference (LSD), orthogonal contrast (OC) and minimum within groups sum of squares criterion (MSSC)), the samples were divided into two groups with respect to the attribute DON/FDK.To the first group belong samples of wheat and triticale, of which the heads were artificially inoculated with severely pathogenic strainsF. culmorum. In the samples of this group the amount of DON in kernels damaged withFusarium increased by 0,46 mg/kg per 1% of FDK.In the second group, consisting of naturally infected samples and samples from artificially inoculated heads the amount of DON increased 0,30 mg DON/kg per 1% of FDK.The equation for the calculation of approximated amount of DON in farm and commercial lots of wheat and triticale after examination of percentage of FDK is given.  相似文献   

10.
Fusarium head blight (FHB) caused by several Fusarium species is one of the most serious diseases affecting wheat throughout the world. The efficiency of microbiological assays and real-time PCR to quantify major FHB pathogens in wheat ears after inoculation with F. graminearum, F. culmorum, F. avenaceum and F. poae under greenhouse and field conditions were evaluated. The frequency of infected kernel, content of fungal biomass, disease severity and kernel weight were determined. To measure the fungal biomass an improved DNA extraction method and a Sybr® Green real-time PCR were developed. The Sybr® Green real-time PCR proved to be highly specific for individual detection of the species in a matrix including fungal and plant DNA. The effect of Fusarium infection on visible FHB severity, frequency of infected kernels and thousand-kernel mass (TKM) significantly depended on the Fusarium species/isolate. F. graminearum resulted in highest disease level, frequency of infected kernels, content of fungal biomass, and TKM reduction followed by F. culmorum, F. avenaceum and F. poae, respectively. The comparison of frequency and intensity of kernel colonization proved differences in aggressiveness and development of the fungi in the kernels. Only for F. graminearum, the most aggressive isolate, application of microbiological and real-time PCR assays gave similar results. For the other species, the intensity of kernel colonization was lower than expected from the frequency of infection.  相似文献   

11.
Four corn (Zea mays L.) hybrids were grown in 1977 and 1978 and inoculated with Aspergillus flavus Link 20 or 40 days after silking. Inoculation methods included needle, knife, and multiple-puncture injury to the kernels. The level of aflatoxin contamination, insect damage to the ear, and the percentage of ears having visible greenish A. flavus Link-type mold were determined. Differences among hybrids were not significant for any of the three characteristics measured, although aflatoxin levels of the early-maturing, loose-husked hybrids were approximately twice as high as those of two later-maturing, tight-husked types. Differences among treatments for insect damage rating were not statistically significant. Delaying inoculation until 40 days after silking significantly reduced the aflatoxin contamination level of samples harvested at maturity. Fewer than one-half the ears inoculated at 40 days after silking (35.3%) exhibited visible signs of infection compared with ears inoculated 20 days after silking (82.9%). The needle inoculations were less effective in eliciting aflatoxin production (163 μg/kg and 45.1% visibly infected ears) than were knife (202 μg/kg and 61.8% visibly infected ears) and multiple puncture (305 μg/kg and 70.4% visibly infected ears) methods of inoculation.  相似文献   

12.
Fusarium sporotrichioides was found to be the predominant fungus in approximately 2 % of corn ears damaged byFusarium species, before harvest during 1984 and 1985 in Poland. Concentrations of up to 1,714.9 mg/kg of total type-A trichothecenes (T-2 Toxin, HT-2 Toxin, Neosolaniol, T-2 Triol, and T-2 Tetraol) were found in hand-selected, heavily damaged kernels obtained fromF. sporotrichioides-molded ears.  相似文献   

13.
Wheat ears were inoculated with conidia of Fusarium spp. at different growth stages between ear emergence and harvest and moist conditions were maintained for up to 7 days subsequently by mist irrigation. Of the fungi tested (Fusarium culmorum, F. avenaceum, F. tricinctum, F. sporotrichioides and Microdochium nivale), only F. culmorum produced ear blight symptoms and grain samples were found subsequently to contain deoxynivalenol. Most ear infection and deoxynivalenol formation occurred following inoculation at about mid-anthesis. Small amounts of deoxynivalenol were formed and some F. culmorum was isolated even in the absence of ear blight symptoms. An overnight wet period was sufficient to initiate infection and deoxynivalenol formation but both were increased by extending the wet period up to at least 3 days. Recovery of Fusarium spp. from harvested grain was usually possible whether or not symptoms developed. F. culmorum usually persisted and often increased to moderately high levels after storage for 7 wk in a range of moisture conditions.  相似文献   

14.
Fusarium proliferatum, F. subglutinans, and F. verticillioides are known causes of ear and kernel rot in maize worldwide. In Mexico, only F. verticillioides and F. subglutinans, have been reported previously as causal agents of this disease. However, Fusarium isolates with different morphological characteristics to the species that are known to cause this disease were obtained in the Highland-Valley region of this country from symptomatic and symptomless ears of native and commercial maize genotypes. Moreover, while the morphological studies were not sufficient to identify the correct taxonomic position at the species level, analyses based in the Internal Transcribed Spacer region and the Nuclear Large Subunit Ribosomal partial sequences allowed for the identification of F. subglutinans, F. solani, and F. verticillioides, as well as four species (F. chlamydosporum, F. napiforme, F. poae, and F. pseudonygamai) that had not previously been reported to be associated with ear rot. In addition, F. napiforme and F. solani were absent from symptomless kernels. Phylogenetic analysis showed genetic changes in F. napiforme, and F. pseudonygamai isolates because they were not true clones, and probably constitute separate sibling species. The results of this study suggest that the biodiversity of Fusarium species involved in ear rot in Mexico is greater than that reported previously in other places in the world. This new knowledge will permit a better understanding of the relationship between all the species involved in ear rot disease and their relationship with maize.  相似文献   

15.
Aims: To quantify and to compare the occurrence of Fusarium species in maize kernels and stalk pieces, to analyse mycotoxins in kernels and maize crop residues, to evaluate two approaches to obtain kernel samples and to compare two methods for mycotoxin analyses. Methods and Results: The occurrence of Fusarium species in maize kernels and stalk pieces from a three‐year maize hybrid trial and 12 kernel samples from grower’s fields was assessed. Nine to 16 different Fusarium species were detected in maize kernels and stalks. In kernels, F. graminearum, F. verticillioides and F. proliferatum were the most prevalent species whereas in stalks, they were F. equiseti, F. proliferatum and F. verticillioides. In 2006, 68% of the kernel samples exceeded the recommended limit for pig feed for deoxynivalenol (DON) and 42% for zearalenone (ZON), respectively. Similarly, 75% of the samples from grower’s fields exceeded the limits for DON and 50% for ZON. In maize crop residues, toxin concentrations ranged from 2·6 to 15·3 mg kg?1 for DON and from 0·7 to 7·4 mg kg?1 for ZON. Both approaches to obtain maize kernel samples were valid, and a strong correlation between mycotoxin analysis using ELISA and LC‐MS/MS was found. Conclusions: The contamination of maize kernels, stalk pieces and remaining crop residues with various mycotoxins could pose a risk not only to animal health but also to the environment. With the hand‐picked sample, the entire Fusarium complex can be estimated, whereas combine harvested samples are more representative for the mycotoxin contents in harvested goods. Significance and Impact of the Study: This is the first multi‐year study investigating mycotoxin contamination in maize kernels as well as in crop residues. The results indicate a high need to identify cropping factors influencing the infection of maize by Fusarium species to establish recommendations for growers.  相似文献   

16.
Fusarium species infecting heads of Triticale and mycotoxins presence in infected kernels and chaff were studied during two seasons. The most important species observed on infected heads were in 1986F. avenaceum (39%),F. nivale (21%),F. culmorum (20%),F. graminearum (14%), and others (6%). In 1987 after long and snowy winterF. nivale dominated (64%), followed byF. avenaceum (24%),F. culmorum (6%), andF. graminearum (5%). The mycotoxins deoxynivalenol (DON) and 3-acetyl DON were present in all 11 subsamples of kernels from heads infected byF. culmorum and/orF. Graminearum (1.6–16.4 mg and 0.7–2.4mg/kg, respectively). Chaff from the same subsamples contained 9.9–33.2mg/kg of DON and 5.2–16.0mg/kg of 3-AcDON. Kernels with visibleFusarium-damage contained 2.4–31.2 mg/kg of DON and 1.2–6.0 mg/kg of 3-AcDON. Remaining part of kernels without symptoms of visibleFusarium-damage contained only DON in an amount of 0.9–5.9 mg/kg.  相似文献   

17.
Twenty-five samples of maize kernels collected at harvest time from geographically different corn fields in Peru, were examined for the occurrence of toxigenicFusarium species. The most frequently recovered species wereF. subglutinans (48%),F. moniliforme (46%), andF. equiseti (5%). OtherFusarium species isolated (up to 1%) includedF. graminearum, F. acuminatum, F. solani, F. oxysporum, andF. culmorum. Assays ofFusarium culture extracts usingArtemia salina larvae, showedF. subglutinans as one of the most toxigenic species, and its toxicity was mostly correlated to the capability to produce beauvericin (BEA). All eight tested isolates ofF. subglutinans grown on autoclaved corn kernels produced BEA (from 50 to 250 mg/Kg) as well as moniliformin (M) (from 70 to 270 mg/Kg). This is the first report on BEA and M production by maize isolates ofF. subglutinans from South America.  相似文献   

18.
A total of 27Fusarium culmorum isolates from Germany and 41F. graminearum isolates from Kenya were investigated for aggressiveness and mycotoxin production on wheat ears. In addition, ergosterol content of the kernels from ears inoculated withF. graminearum was determined and theF. culmorum isolates were tested for mycotoxin productionin vitro. For both pathogens, isolates markedly differed in aggressiveness. 59% and 37% of theF. culmorum isolates produced NIV and DON, respectively,in vivo andin vitro. The DON-producing isolates also produced 3-acDONin vitro. The more aggressive isolates produced mainly DON while the less aggressive isolates produced mainly NIV. 12% and 85% of theF. graminearum isolates produced NIV and DON, respectively. The highly aggressive isolates produced higher amounts of DON, aggressiveness being highly correlated to DON content in the kernels. NIV-producing isolates were less aggressive. Ergosterol content of kernels was moderately correlated to aggressiveness but highly correlated to DON content. Disease severity was associated with kernel weight reduction.  相似文献   

19.
Fusarium fungal contaminants and related mycotoxins were investigated in eight maize feed samples submitted to the Iowa State University Veterinary Diagnostic Laboratory. Fusarium moniliforme, F. proliferatum, and F. subglutinans were isolated from seven, eight, and five samples, respectively. These strains belonged to mating populations A, D, and E of the teleomorph Gibberella fujikuroi. Fusaproliferin was detected at concentrations of 0.1 to 30 μg/g in four samples, and beauvericin was detected (0.1 to 3.0 μg/g) in five samples. Fumonisins were detected in all eight samples (1.1 to 14 μg/g). Ten of 11 strains of F. proliferatum and all 12 strains of F. subglutinans isolated from the samples produced fusaproliferin in culture on whole maize kernels (4 to 350 and 100 to 1,000 μg/g, respectively). Nine F. proliferatum strains also produced beauvericin in culture (85 to 350 μg/g), but none of the F. subglutinans strains produced beauvericin. Fumonisin B1 was produced by all nine F. moniliforme strains (50 to 2,000 μg/g) and by 10 of the F. proliferatum strains (1,000 to 2,000 μg/g). This is the first report of the natural occurrence of fusaproliferin outside Italy and of the natural occurrence of beauvericin in North America.  相似文献   

20.
G. Lim 《Mycopathologia》1974,52(3-4):231-237
Soil fusaria from various areas in and around Surrey were estimated on medium selective forFusarium. 4 species ofFusarium, F. episphaeria. F. oxysporum, F. roseum andF. solani were detected.F. roseum was the most widely distributed species and present in highest numbers. Among 3 cultivars of this species obtained, non-pathogenic clones of “Culmorum” was always present. The other 3 species ofFusarium were less widely distributed and occurred in lower numbers, withF. solani being the most restricted in distribution and present in very small populations. NoFusarium was recorded for soils from natural field vegetation (except grass areas) and forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号