首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The volatile hydrodistilled compounds from aerial parts and rhizomes of the ethnopharmacologically highly valued plant species Geranium macrorrhizum L. were screened for their antimicrobial activity in disc‐diffusion and microdilution assays. The assays pointed out to a very high and selective activity of the oils against Bacillus subtilis with minimum inhibitory concentrations (MIC) of 0.4–1.0 μg/ml. This prompted us to perform detailed compositional analyses of the oils. GC and GC/MS analyses allowed the identification of 283 constituents. The oils consisted mainly of sesquiterpenoids, the main ones being germacrone (49.7% in the oil from aerial parts) and δ‐guaiene (49.2% in rhizome oil). Significant qualitative and quantitative compositional differences in the oils from the two plant parts were observed. Further antimicrobial testing enabled us to determine that germacrone, the major constituent of the oil from aerial parts, was not the sole agent responsible for the observed activity.  相似文献   

2.
The chemical composition of the Tamarix boveana volatile oils obtained from the whole aerial part, flowers, leaves and stems by steam distillation was analysed using gas chromatograph (GC)-flame ionization detectors (FID) and GC-MS. Sixty-two components were identified. Hexadecanoic acid (18.14%), docosane (13.34%), germacrene D (7.68%), fenchyl acetate (7.34%), Benzyl benzoate (4.11%) were found to be the major components in the whole aerial parts. This composition differed according to the tested part: 2.4 Nonadienal was the main compound in the flowers (12.13%) while germacrene D was the major component in leaves (31.43%) and hexadecanoic acid in the stems (13.94%). To evaluate in vitro antimicrobial activity, all volatile oils were tested against six Gram-positive and Gram-negative bacteria and four fungi. The T. boveana volatile oils exhibited an interesting antibacterial activity against all strains tested except Pseudomonas aeruginosa but no antifungal activity was detected.  相似文献   

3.
苍术挥发油的提取及其抑菌活性研究   总被引:9,自引:0,他引:9  
采用水蒸气蒸馏法、微波萃取法和索氏提取法3种方法提取苍术挥发油。平板法涂布研究了3种苍术挥发油对3种细菌和4种真菌的最低抑菌浓度(MIC),滤纸片固相扩散法研究了苍术挥发油对供试菌体的抑菌活性。结果表明,3种方法提取的苍术挥发油对金黄色葡萄球菌、大肠杆菌、枯草芽孢杆菌、酵母、青霉、黑曲霉、黄曲霉的MIC分别为:水蒸气蒸馏法为5.00、150.00、150.00、5.00、5.00、5.00、20.00 mL/L;索氏提取法的为10.00、150.00、200.00、20.00、5.00、60.00、40.00 mL/L;微波萃取法的为10.00、150.00、150.00、20.00、20.00、20.00、20.00 mL/L。3种苍术挥发油对供试细菌和真菌都具有相当强的抑菌活性,且浓度越高效果越好。抑菌实验表明3种方法提取的苍术挥发油对金黄色葡萄球菌、酵母、青霉、黑曲霉、黄曲霉的抑菌圈直径都比对大肠杆菌、枯草芽孢杆菌的抑菌圈直径大。不同提取方法得到的苍术挥发油对同一种菌的最低抑制浓度和抑菌效果不相同,同一种方法提取的苍术挥发油对不同菌的最低抑制浓度和抑菌效果也不相同。  相似文献   

4.
The chemical composition of the volatile oils obtained from the roots, leaves, flowers, and stems of Thapsia garganica of Tunisian origin was investigated by GC‐FID and GC/MS analyses. Sesquiterpene hydrocarbons and oxygenated monoterpenes were predominant in the oils of all plant parts. Bicyclogermacrene (21.59–35.09%) was the main component in the former compound class, whereas geranial (3.31–14.84%) and linalool (0.81–10.9%) were the most prominent ones in the latter compound class. Principal‐component (PCA) and hierarchical‐cluster (HCA) analyses revealed some common constituents, but also significant variability amongst the oils of the different plant parts. This organ‐specific oil composition was discussed in relation to their biological and ecological functions. For the evaluation of the intraspecific chemical variability in T. garganica, the composition of the flower volatile oils from four wild populations was investigated. Bicyclogermacrene, linalool, and geranial were predominant in the oils of three populations, whereas epicubenol, β‐sesquiphellandrene, and cadina‐1,4‐diene were the most prominent components of the oil of one population. PCA and HCA allowed the separation of the flower oils into three distinct groups, however, no relationship was found between the volatile‐oil composition and the geographical distribution and pedoclimatic conditions of the studied populations.  相似文献   

5.
Antimicrobial activity of six constituents of essential oil from Salvia   总被引:1,自引:0,他引:1  
The antimicrobial activity of three Salvia species, i.e. S. santolinifolia, S. hydrangea and S. mirzayanii, essential oils were investigated. The essential oils were obtained from the aerial parts of plants and analyzed by GC-MS. The main constituents of aforementioned species were alpha-pinene (72.4%), beta-pinene (6.6%) and limonene (5.3%); beta-caryophyllene (25.1%), 1,8-cineol (15.2%) and caryophyllene oxide (11.5%); alpha-terpinenyl acetate (22.6%), 1,8-cineol (21.2%) and linalool (8.9%), respectively. Bioassays exhibited that the property of the oil of S. myrzayanii was superior to others. The antimicrobial activity of essential oil from Salvia species may well be due to the presence of synergy between six tested compounds (linalool, 1,8-cineol, alpha-pinene, beta-pinene, beta-caryophyllene and limonene) and other constituents of the oils with various degrees of antimicrobial activity. Among these, linalool and 1,8-cineol had the highest antimicrobial activity.  相似文献   

6.
Fifty-one essential oils extracted from plants of known origin were tested for their antimicrobial activity against three bacteria, Pseudomonas aeruginosa , Staphylococcus aureus , Escherichia coli and four yeasts, Torulopsis utilis , Schizosaccharomyces pombe , Candida albicans and Saccharomyces cerevisiae using the drop diffusion method. All showed antimicrobial activity against at least one of the micro-organisms. Following this preliminary screening, 13 essential oils showing antimicrobial activity against at least five of the micro-organisms were tested in the range 50 μg ml−1 to 500 μg ml−1 using broth micro dilution techniques with dimethylsulphoxide (DMSO) as a dispersing solvent. The concentration of most of the oils required for total inhibition of growth was >500 μg ml−1. Further studies on the antimicrobial action of cinnamon oil in the range 10–150 μg ml−1 showed that 50-fold higher activity was found when no dispersing solvent was used.  相似文献   

7.
In this study, volatile oils of six Hawk tea varieties were studied for their chemical composition, antioxidant and antimicrobial activities to screen the most suitable botanical origins of Hawk tea. A total of 72 components were separated and identified from the six oils. The major constituents of the volatile oils were: α‐pinene, camphene, limonene, 1,8‐cineole, linalool, cis‐nerolidol, and germacrene B. Moreover, the volatile oils were evaluated for antioxidant potential and antimicrobial activities. The results showed that all volatile oils exhibited acceptable antioxidant and antimicrobial activities, which suggested that these volatile oils may serve as natural alternatives to synthetic antioxidants and preservatives to be applied in food and pharmaceutical industries. Principal component analysis results denoted that some major compounds may be closely related to the antioxidant and antimicrobial activities. It also showed that the volatile oils from Litsea coreana var. lanuginosa and Litsea pungens Hemsl . were characterized by positive values of first two principal components, indicating higher active chemical compounds and antioxidant and antimicrobial activities compared with other species. Thus, they were temporarily considered as good sources of Hawk tea.  相似文献   

8.
植物精油化学成分及其抗菌活性的研究进展   总被引:2,自引:0,他引:2  
植物精油是一类从植物中萃取的芳香味油状液体,是一类优良的天然抗菌材料。作为抗菌材料,植物精油具有以下优点:具有广谱高效的抗菌活性;具有熏蒸特性、气味芳香;取自天然植物,绿色环保;来源广,提取容易。植物精油因其多种优点,在抗菌领域具有巨大的潜在应用价值。本文从植物精油的分布及化学成分、抗细菌活性和抗真菌活性的研究,以及植物精油化学成分与抗菌活性之间的联系等方面对植物精油的抗菌性能进行评述,以期促进植物精油在抗菌领域的广泛应用,同时给从事植物精油抗菌研究的科研工作者提供参考。  相似文献   

9.
Magnolia sirindhorniae Noot. & Chalermglin produces fragrant flowers. The volatile oil secretary cells, quantity and quality as well as antioxidant and antimicrobial activities of the oils extracted from buds and flowers, have been investigated. The distribution of essential oil secretory cell in bud and flower revealed that the density and size of the oil cells were significantly higher in flowers compared to buds. In different floral parts, carpel has a higher oil cell density followed by gynophore and tepal. The histochemical analysis revealed the essential oil is synthesized in oil secretory cells. The volatile oil yield was 0.25 % in the buds and 0.50 % in flowers. GC/FID and GC/MS analysis identified 33 compounds contributing 83.2–83.5 % of the total essential oil composition. Linalool is the main constituent contributing 58.9 % and 51.0 % in the buds and flowers oils, respectively. The essential oil extracted from the flowers showed higher antimicrobial efficacy against Klebsiella pneumoniae and Staphylococcus aureus. Similarly, the essential oil isolated from the flowers depicts higher free radical scavenging, and antioxidant activity compared to buds’ oil.  相似文献   

10.
The chemical composition of the essential oils obtained from the seeds of bush onion (Afrostyrax lepidophyllus) and tropical garlic tree (Scorodophloeus zenkeri), plants used as spices in the traditional African cuisine, was determined by GC‐FID and GC/MS analyses. Moreover, in vitro biological properties of the oils, namely, the cytotoxic, antioxidant, and antimicrobial activities, were investigated by the MTT, the DPPH. and ABTS.+ scavenging, and the agar disc‐diffusion methods, respectively. Both oils were composed mainly by S‐containing compounds, accounting for 91.0–96.1% of the total oil compositions, which provided them the typical garlic‐ and onion‐like odors of spices. The predominant compound in both oils, 2,4,5,7‐tetrathiaoctane ( 1 ; 51.5–52.9%), was isolated by preparative TLC and structurally elucidated by 1H‐ and 13C‐NMR data. The oils exhibited a strong inhibitory effect on the growth of human cancer cells, namely, T98G (human glioblastoma multiforme cell line), MDA‐MB 231 (human breast adenocarcinoma cell line), A375 (human malignant melanoma cell line), and HCT116 (human colon carcinoma cell line) cells, and a good DPPH.‐ and ABTS.+‐scavenging activity, while the antimicrobial effects were negligible. The volatile compositions of A. lepidophyllus and S. zenkeri oils supported their use as odorous spices. The significant inhibition activities detected make these oils worthy of further investigation as promising chemopreventive agents to be exploited in the African pharmaceutical market.  相似文献   

11.
The chemical compositions and antimicrobial activities of essential oils from the leaves, stems, capitula, and cypselas of Chromolaena laevigata were evaluated at two different phenological stages, flowering and fruiting. Thirty‐eight compounds were identified in the crude oils by GC/MS. The sesquiterpene laevigatin was the major constituent of the leaf, capitulum, and cypsela oils, while the sesquiterpene spathulenol was the main component in the stem oils. The antimicrobial activities of the oils were evaluated against Candida albicans, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Stem oil obtained from Chromolaena laevigata during the fruiting stage generally showed the highest activity with minimum inhibitory concentration (MIC) values of 62.5 μg/ml against Candida albicans and S. aureus, and 500 μg/ml against P. aeruginosa and E. coli. Pure laevigatin exhibited MIC values of 500 and 125 μg/ml against C. albicans and S. aureus, respectively, indicating that this constituent could be responsible, at least in part, for the antimicrobial activities detected in the crude oils. More studies concerning the biological activities of isolated derivatives are required to improve our knowledge of the antimicrobial potential of volatile compounds present in native plants.  相似文献   

12.
马缨丹叶片水提物与挥发油的生物活性及化学成分研究   总被引:13,自引:0,他引:13  
刘少群  贾正晖 《广西植物》2002,22(2):185-188
研究了马缨丹 ( Lantana camara L.)叶片水提物和挥发油水溶液的化感作用。结果表明 ,马缨丹叶片水溶物浓度在 0 .2 5 g FW m L- 1时 ,对所有受试植物的幼苗生长均有一定的抑制作用 ,浓度降至 0 .1 0 g FWm L- 1时 ,其抑制作用显著降低 ;马缨丹叶片挥发油水溶液在浓度为 1 0 0、2 0 0、30 0 μg m L- 1时 ,对受试植物均有很强的抑制作用 ,且具有明显的浓度效应。采用 GC/MS分析了马缨丹叶片挥发油的化学成分 ,鉴定了 1 9种化感物质 ,其中α-子丁香烯和β-子丁香烯为主要物质 ,分别占挥发油含量的 1 6 .2 9%、2 2 .2 9%。  相似文献   

13.
通过溶剂萃取法提取白木香内生真菌A14(Aspergillus sp.)的挥发油,采用滤纸片琼脂扩散法分别测定了其对3种人体病原菌的体外抑菌活性。结果表明:A14挥发油对金黄色葡萄球菌(Staphylococcus aureus)、耐甲氧西林金黄色葡萄球菌(Methicillin-resistant S.aureus,MRSA)和白色念珠菌(Candida albicans)均表现出一定抑制作用。应用GC-MS技术,分析鉴定了内生真菌A14挥发油的14个化学成分,显示蜂蜜曲菌素是其中的主要成分,占挥发油峰面积的93.41%。  相似文献   

14.
Artemisia afra is one of the most widely used medicinal plants in African traditional medicine and is commonly administered in polyherbal combinations to treat respiratory infections. Focussing on plant volatiles, the aim of this study was to provide scientific evidence for the antimicrobial activity of A. afra (principle plant) in combination with essential oils from three medicinal aromatic plants; Agathosma betulina, Eucalyptus globulus and Osmitopsis asteriscoides. In vitro minimum inhibitory concentration (MIC) assays were undertaken on four pathogens (Enterococcus faecalis ATCC 29212, Moraxella catarrhalis ATCC 23246, Klebsiella pneumoniae NCTC 9633 and Cryptococcus neoformans ATCC 90112) to determine antimicrobial efficacy of the oils and their combinations. The fractional inhibitory concentration (FIC) and isobolograms were used to interpret pharmacodynamic interactions such as synergy, antagonism or additive profiles. The antimicrobial activity of the individual oils mostly displayed moderate activity. Predominantly, additive interactions were noted. The most prominent synergistic interaction (FIC value of 0.5) was observed when A. afra was combined with O. asteriscoides in the 8:2 ratio (eight parts A. afra with two parts O. asteriscoides) against C. neoformans. No antagonistic interactions were evident.  相似文献   

15.
The herbicidal effect of volatile oils from leaves of Eucalyptus citriodora against the noxious weed Parthenium hysterophorus was tested. In a laboratory bioassay, seed germination and seedling length, chlorophyll content and respiratory activity of Parthenium decreased with increased concentration of eucalypt oils from 0.2 to 5.0 nL mL‐1. Germination was completely inhibited at 5.0 nL mL‐1 eucalyptus oils. Further, for 4‐week‐old plants of Parthenium sprayed with different concentrations of volatile oils, visible damage increased and chlorophyll content and respiratory activity decreased with increased concentration from 0 to 100 μL mL‐1, the week after spraying. At concentrations up to 50 μL mL‐1, plants showed some recovery over time but plants sprayed with 75 and 100 μL mL‐1 died 2 weeks after treatment. Plants sprayed with 50 μL mL‐1 and higher concentrations of eucalypt oils were desiccated and wilted in appearance. At concentrations of 5–75 μL mL‐1, eucalypt oils caused a rapid electrolyte leakage from the Parthenium plants thereby indicating an effect on membrane integrity. It is concluded that volatile oils from E. citriodora possess weed‐suppressing ability and could be used as a potential bioherbicide for future weed management programmes.  相似文献   

16.
本文采用水蒸汽蒸馏法提取了贮存0、1、2年的北艾和蕲艾精油,采用GC-MS检测精油化学成分,选取10种常见细菌,检测了其抗菌谱和最小杀菌浓度。结果发现:0、1年份北艾精油中小分子挥发性物质较多,随着贮存年份的增加,大分子挥发性物质随之增加;侧柏酮为蕲艾的特有成分。0年份艾叶精油的抑菌活性较高,对沙门菌、枯草芽孢杆菌、沙门菌耐药菌、绿脓杆菌均具有抑制作用。综上,不同贮存年份和品种的艾叶精油在化学成分、抗菌谱和抑菌活性方面均存在差异,综合考虑精油含量和抑菌活性,以0年份的北艾为原料提取精油最佳。  相似文献   

17.
The essential oils of Daucus carota L. (Apiaceae) seeds sampled from ten wild populations spread over northern Tunisia were characterized by GC‐FID and GC/MS analyses. In total, 36 compounds were identified in the D. carota seed essential oils, with a predominance of sesquiterpene hydrocarbons in most samples (22.63–89.93% of the total oil composition). The main volatile compounds identified were β‐bisabolene (mean content of 39.33%), sabinene (8.53%), geranyl acetate (7.12%), and elemicin (6.26%). The volatile composition varied significantly across the populations, even for oils of populations harvested in similar areas. The chemometric principal component analysis and the hierarchical clustering identified four groups, each corresponding to a composition‐specific chemotype. The in vitro antimicrobial activity of the isolated essential oils was preliminarily evaluated, using the disk‐diffusion method, against one Gram‐positive (Staphylococcus aureus) and two Gram‐negative bacteria (Escherichia coli and Salmonella typhimurium), as well as against a pathogenic yeast (Candida albicans). All tested essential oils exhibited interesting antibacterial and antifungal activities against the assayed microorganisms.  相似文献   

18.
What makes Allium species effective against pathogenic microbes?   总被引:1,自引:0,他引:1  
The antimicrobial activity of garlic (Allium sativum L.) has been known since ancient times. The first citation dates back to the Egyptian period of fifteenth century BC when garlic was reported to be used in folk medicine as a remedy for microbial infections. Scientific investigations on garlic started in 1858 with the work of Pasteur who first noted antibacterial properties of garlic extracts. From that date to the discovery of antibiotics, garlic has been used against amoebic dysentery and epidemic diseases such as typhus, cholera, diphtheria, and tuberculosis. But what makes garlic and Allium species effective against pathogenic microbes? The volatile allicin and other thiosulfinates, giving pungency to Allium plants, are well-studied antimicrobial agents. The thiosulfinates can decompose to form additional sulfur constituents, including diallyl, methyl allyl, and dipropyl mono-, di-, tri- e tetra-sulfides, and (E)- and (Z)-ajoene without losing antimicrobial activity. Besides these compounds, onion and garlic are characterized by polar compounds of steroidal and phenolic origin, often glycosilated, not pungent and more stable during cooking, showing also antimicrobial activity. Recently, there has been increasing scientific attention given to such compounds. Nitrogen organic compounds, like alkaloids and polypeptides, have also been isolated from these plants and have shown antimicrobial activity. In this paper, the literature about the major volatile and non-volatile organic compounds of garlic and other Allium plants has been reviewed. Particular attention is given to the compounds possessing antimicrobial activity and to the correlation between the observed activity and the chemical structure of the tested compounds.  相似文献   

19.
The aim of this study was to evaluate the chemical, antioxidant, and antimicrobial activity of the essential oils as well as the anatomy of the aerial parts from Baccharis aracatubaensis, Baccharis burchellii, and Baccharis organensis owing to the therapeutic potential of Baccharis. The volatile constituents were analyzed using GC/MS, the antioxidant activity was evaluated by oxygen radical absorbance capacity (ORACFL) and DPPH assays, and the antimicrobial activity by a microdilution technique. Of the 56 compounds identified, only seven (β‐caryophyllene, γ‐muurolene, bicyclogermacrene, β‐germacrene, spathulenol, τ‐muurolol, and α‐cadinol) were common in the three specimens studied. Of these, γ‐muurolene was found abundantly in B. aracatubaensis, while bicyclogermacrene was abundant in B. burchellii and B. organensis. The essential oils exhibited antioxidant activity in the ORACFL (>500.0 μmol TE g?1) and DPPH assays. However, they did not exhibit any antimicrobial activity. Secretory ducts and flagelliform glandular trichomes were observed in the anatomical study of all the Baccharis species studied.  相似文献   

20.
The chemical composition of the volatile fractions obtained by steam distillation from the capitula (C) and the aerial parts of Rhaponticum acaule DC were analysed by GC-MS. From the 57 identified constituents, representing 95.5% and 96.3% of the two oils, respectively, methyl eugenol, epi-13 manool, beta-ionone, beta-bisabolol, 1-octadecanol, phytol and farnesyl acetate were found to be the main components. Furthermore, the oils were tested against six Gram-positive and Gram-negative bacteria and four phytopathogenic fungi. It was found that oils from both parts of R. acaule, and especially that of C, exhibited interesting antibacterial activity, but no antifungal activity was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号