首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Treatment of human embryonic kidney cells (HEK 293 cells) expressing the mouse glycine transporter 1 (GLYT1b) with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) decreased specific [3H]glycine uptake. This down-regulation resulted from a reduction of the maximal transport rate and was blocked by the PKC inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) and staurosporine. The inhibitory effect of PMA treatment was also observed after removing all five predicted phosphorylation sites for PKC in GLYT1b by site-directed mutagenesis. These data indicate that glycine transport by GLYT1b is modulated by PKC activation; however, this regulation may involve indirect phosphorylation mechanisms.  相似文献   

2.
Abstract: N -Methyl- d -aspartate (NMDA) receptors mediate increases in intracellular calcium that can be modulated by protein kinase C (PKC). As PKC modulation of NMDA receptors in neurons is complex, we studied the effects of PKC activation on recombinant NMDA receptor-mediated calcium rises in a nonneuronal mammalian cell line, human embryonic kidney 293 (HEK-293). Phorbol 12-myristate 13-acetate (PMA) pretreatment of HEK-293 cells enhanced or suppressed NMDA receptor-mediated calcium rises based on the NMDA receptor subunit composition. NR2A or NR2B, in combination with NR1011, conveyed enhancement whereas NR2C and NR2D conveyed suppression. The PKC inhibitor bisindolylmaleimide blocked each of these effects. The region on NR2A that conveyed enhancement localized to a discrete segment of the C terminus distal to the portion of NR2C that is homologous to NR2A. Calcium-45 accumulation, but not intracellular calcium store depletion, matched PMA effects on NMDA receptor-mediated calcium changes, suggesting that these effects were not due to effects on intracellular calcium stores. The suppression of intracellular calcium transients seen with NR2C was eliminated when combined with NR1 splice variants lacking C-terminal cassette 1. Thus, the intracellular calcium effects of PMA were distinguishable based on both the NR1 splice variant and the NR2 subunit type that were expressed. Such differential effects resemble the diversity of PKC effects on NMDA receptors in neurons.  相似文献   

3.
Modulation of Human Glutamate Transporter Activity by Phorbol Ester   总被引:1,自引:4,他引:1  
Abstract: Termination of synaptic glutamate transmission depends on rapid removal of glutamate by neuronal and glial high-affinity transporters. Molecular biological and pharmacological studies have demonstrated that at least five subtypes of Na+-dependent mammalian glutamate transporters exist. Our study demonstrates that Y-79 human retinoblastoma cells express a single Na+-dependent glutamate uptake system with a K m of 1.7 ± 0.42 µ M that is inhibited by dihydrokainate and dl - threo -β-hydroxyaspartate (IC50 = 0.29 ± 0.17 µ M and 2.0 ± 0.43 µ M , respectively). The protein kinase C activator phorbol 12-myristate 13-acetate caused a concentration-dependent inhibition of glutamate uptake (IC50 = 0.56 ± 0.05 n M ), but did not affect Na+-dependent glycine uptake significantly. This inhibition of glutamate uptake resulted from a fivefold decrease in the transporter's affinity for glutamate, without significantly altering the V max. 4α-Phorbol 12,13-didecanoate, a phorbol ester that does not activate protein kinase C, did not alter glutamate uptake significantly. The phorbol 12-myristate 13-acetate-induced inhibition of glutamate uptake was reversed by preincubation with staurosporine. The biophysical and pharmacological profile of the human glutamate transporter expressed by the Y-79 cell line indicates that it belongs to the dihydrokainate-sensitive EAAT2/GLT-1 subtype. This conclusion was confirmed by western blot analysis. Protein kinase C modulation of glutamate transporter activity may represent a mechanism to modulate extracellular glutamate and shape postsynaptic responses.  相似文献   

4.
The endogenous phosphorylation of serotonin binding protein (SBP), a soluble protein found in central and peripheral serotonergic neurons, inhibits the binding of 5-hydroxytryptamine (5-HT, serotonin). A protein kinase activity that copurifies with SBP (SBP-kinase) was partially characterized and compared with calcium/calmodulin-dependent protein kinase II (CAM-PK II). SBP itself is not the enzyme since heating destroyed the protein kinase activity without affecting the capacity of the protein to bind [3H]5-HT. SBP-kinase and CAM-PK II kinase shared the following characteristics: (1) size of the subunits; (2) autophosphorylation in a Ca2+-dependent manner; and (3) affinity for Ca2+. In addition, both forms of protein kinase phosphorylated microtubule-associated proteins well and did not phosphorylate myosin, phosphorylase b, and casein. Phorbol esters or diacylglycerol had no effect on either of the protein kinases. However, substantial differences between SBP-kinase and CAM-PK II were observed: (1) CAM enhanced CAM-PK II activity, but had no effect on SBP-kinase; (2) synapsin I was an excellent substrate for CAM-PK II, but not for SBP-kinase; (3) 5-HT inhibited both the autophosphorylation of SBP-kinase and the phosphorylation of SBP, but had no effect on CAM-PK II. These data indicate that SBP-kinase is different from CAM-PK II. Phosphopeptide maps of SBP and SBP-kinase generated by digestion with S. aureus V8 protease are consistent with the conclusion that these proteins are distinct molecular entities. It is suggested that phosphorylation of SBP may regulate the transport of 5-HT within neurons.  相似文献   

5.
Effect of Brain Ischemia on Protein Kinase C   总被引:7,自引:0,他引:7  
We examined the influence of brain ischemia on the activity and subcellular distribution of protein kinase C (PKC). Two different models of ischemic brain injury were used: postdecapitative ischemia in rat forebrain and transient (6-min) cerebral ischemia in gerbil hippocampus. In the rat forebrain model, at 5 and 15 min postdecapitation there was a steady decrease of total PKC activity to 60% of control values. This decrease occurred without changes in the proportion of the particulate to the soluble enzyme pools. Isolated rat brain membranes also exhibited a concomitant decrease of [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding with an apparent increase of the ligand affinity to the postischemic membranes. On the other hand, the ischemic gerbil hippocampus model displayed a 40% decrease of total PKC activity, which was accompanied by a relative increase of PKC activity in its membrane-bound form. This resulted in an increase in the membrane/total activity ratio, indicating a possible enzyme translocation from cytosol to the membranes after ischemia. Moreover, after 1 day of recovery, a statistically significant enhancement of membrane-bound PKC activity resulted in a further increase of its relative activity up to 162% of control values. In vitro experiments using a synaptoneurosomal particulate fraction were performed to clarify the mechanism of the rapid PKC inhibition observed in cerebral tissue after ischemia. These experiments showed a progressive, Ca(2+)-dependent, antiprotease-insensitive down-regulation of PKC during incubation. This down-regulation was significantly enhanced by prior phorbol (PDBu) treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Abstract: Neurotransmission at excitatory glutamatergic synapses is terminated by the reuptake of the neurotransmitter by high-affinity transporters, which keep the extracellular glutamate concentration below excitotoxic levels. The amino acid sequence of the recently isolated and cloned brain-specific glutamate/aspartate transporter (GLAST-1) of the rat reveals three consensus sequences of putative phosphorylation sites for protein kinase C (PKC). The PKC activator phorbol 12-myristate 13-acetate (PMA) decreased glutamate transport activity in Xenopus oocytes and human embryonic kidney cells (HEK293) expressing the cloned GLAST-1 cDNA, within 20 min, to 25% of the initial transport activity. This down-regulation was blocked by the PKC inhibitor staurosporine. GLAST-1 transport activity remains unimpaired by phorbol 12-monomyristate. Removal of all putative PKC sites of wild-type GLAST-1 by site-directed mutagenesis did not abolish inhibition of glutamate transport. [32P]Phosphate-labeled wild-type and mutant transport proteins devoid of all predicted PKC sites were detected by immunoprecipitation after stimulation with PMA. Immunoprecipitation of [35S]methionine-labeled transporter molecules indicates a similar stability of phosphorylated and nonphosphorylated GLAST-1 protein. Immunofluorescence staining did not differentiate surface staining of HEK293 cells expressing GLAST-1 with and without PMA treatment. These data suggest that the neurotransmitter transporter activity of GLAST-1 is inhibited by phosphorylation at a non-PKC consensus site.  相似文献   

7.
蛋白激酶C在血小板聚集中的作用   总被引:4,自引:0,他引:4  
利用 ̄(32)P-NaH2PO4标记猪血小板,以蛋白激酶C的40kD底物为蛋白激活的标志.用血小板激动剂在聚集浓度范围内处理血小板,结果表明,除了不能使猪血小板聚集的肾上腺素外,凝血酶等激动剂都使血小板40kD底物蛋白磷酸化明显增加,同时38kD,26kD蛋白质磷酸化也明显增加,且40kD底物磷酸化与血小板聚集有平行增加关系.蛋白激酶C在血小板聚集中可能起着重要的调节作用。  相似文献   

8.
Human neuronal brain cultures established from 12- and 14-week-old fetuses synthesize and secrete urokinase-type plasminogen activator (uPA) and limited amounts of tissue-type plasminogen activator (tPA). These cells also produce and secrete the endothelial cell-type PA inhibitor (PAI-1), which forms sodium dodecyl sulfate-stable tPA/PAI-1 complexes in the culture medium. Immunocytochemistry shows a predominant localization of uPA, tPA, and PAI-1 in neuronal cells, with only a very weak positivity detectable in the few glial cells present in these cultures. The protein kinase C (PKC) activator 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulates the synthesis of both uPA and PAI-1, resulting in a final increase in the plasmin-generating capacity of neuronal cell cultures. No significant effect is observed, however, when cells are treated with the TPA analogue 4 alpha-phorbol 12,13-didecanoate, which is inactive as a PKC inducer, or with the neurotrophic polypeptide basic fibroblast growth factor. These data represent the first characterization of the plasmin-generating system in human fetal brain neurons and suggest a role for PKC in the modulation of uPA and PAI-1 synthesis.  相似文献   

9.
Abstract: Murine neuroblastoma cells, N1E-115, were induced to differentiate into neuron-like cells by serum deprivation for 18 h. As previous studies have shown that the suppression of protein kinase C (PKC) activity by selective inhibitors or neutralizing antibodies induces neuroblastoma cells to differentiate, we tested the hypothesis that serum deprivation may cause a rapid loss in membrane PKC activity that occurs well before the morphological changes that are characteristic of cell differentiation. A significant reduction in particulate (membrane) PKC activity was indeed observed within 3 h of serum withdrawal when enzyme activity was measured in intact native membranes by the recently described in vitro "direct" assay. This rapid reduction in enzyme activity was confirmed by the decreased phosphorylation of the MARCKS protein, an endogenous PKC-selective substrate, in intact cells. The decrease in membrane PKC activity occurred without any loss in the amount of membrane-associated enzyme, suggesting that some factor(s) resident in neuroblastoma membranes was suppressing PKC activity. Indeed, results indicate the presence of an endogenous inhibitor of PKC tightly associated with neuroblastoma membranes. This inhibitory activity increased in the membranes of cells subjected to serum deprivation, raising the possibility that it was likely responsible for the decline in membrane PKC activity in differentiating N1E-115 cells. Preliminary characterization indicated that the inhibitory activity is a protein and is localized mainly in the membrane fraction. Thus, these results demonstrate directly that endogenous inhibitor can regulate membrane-associated PKC activity in cells and thereby modulate PKC-related neuronal functions.  相似文献   

10.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in supernatant and particulate fractions of primary cultures of rat astrocytes and its translocation by a phorbol ester were studied. We observed that 91% of protein kinase C activity in astrocytes was in the supernatant fraction, as measured by lysine-rich histone phosphorylation assay. Attempts to uncover latent activity in the particulate fraction were unsuccessful. Approximately 75% of the supernatant protein kinase C activity could be translocated to the particulate fraction by prior treatment (30-60 min) of the cultures with 100 nM 12-O-tetradecanoyl-phorbol 13-acetate (TPA), but not with 4 alpha-phorbol, an inactive phorbol ester. Investigation of endogenous substrates for protein kinase C showed that TPA treatment brought about an increase in phosphorylation in membrane proteins and a decrease in phosphorylation of supernatant proteins. These findings indicate that the distribution of protein kinase C in astrocytes differs substantially from that in whole brain tissue, where approximately two-thirds of the protein kinase C activity is associated with the particulate fraction. Because protein kinase C is concentrated in the cytosol of astrocytes and most of this activity can be translocated to membranes, astrocytes may be particularly well-suited to respond to signals that activate phosphoinositide-linked receptors in brain.  相似文献   

11.
Characterization of Protein Kinase C in Photoreceptor Outer Segments   总被引:1,自引:0,他引:1  
Abstract: Protein kinase C (PKC) has been implicated in regulating several proteins involved in phototransduction. This contribution characterizes the biochemical and immunological properties of PKC isozyme(s) in the photoreceptor outer segment. Activity measurements revealed that at least 85% of the PKC in this specialized compartment belongs to the subfamily of Ca2+-regulated (conventional) PKCs. Of the known Ca2+-dependent PKCs, only PKCα was immunodetected by western blot analysis of rod outer segment proteins. However, the ratio of immunoreactivity to enzyme activity for rod outer segment PKC was no more than 40% of that for brain PKC, using antibodies against conventional PKCs. Therefore, at least half the Ca2+/lipid-stimulated activity in rod outer segment preparations cannot be accounted for by the known isozymes, suggesting the presence of a previously uncharacterized isozyme. Despite extensive tests using a variety of antibodies against different domains of PKCα, PKCα could not be detected in rod outer segments by immunofluorescence of retinal sections. In summary, our data reveal that most of the PKC in photoreceptor outer segments is of the conventional type and that most, if not all, of this conventional PKC activity comes from a novel isozyme(s).  相似文献   

12.
Calcium-dependent phospholipid-sensitive protein kinase [protein kinase C (PKC)] was partially purified from the carp (Cyprinus carpio) retina through DE 52 ion exchange and Cellulofine gel filtration chromatography. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) activated PKC in the nanomolar range. A major 38-kDa protein in the retinal supernatants (105,000 g) was phosphorylated in vitro by PKC during a short period (3 min). Other phosphoproteins also appeared during a further prolonged period (greater than 15 min). Rod-bipolar and dopamine (DA) interplexiform cells in the fish retina were immunoreactive to a monoclonal antibody to PKC (alpha/beta-subtype). The PKC antibody recognized a 78-kDa native PKC enzyme by means of an immunoblotting method. Subsequently, the effects of two kinds of PKC activators were investigated on [3H]DA release from retinal cell fractions containing DA cells that had been preloaded with [3H]DA. A phorbol ester (TPA) induced a calcium- and dose-dependent [3H]DA release during a short period (2 min), with the minimal effective dose being approximately 1 nM. Other phorbols having no tumor-promoting activity, such as 4 beta-phorbol and 4 alpha-phorbol 12,13-didecanoate, were ineffective on [3H]DA release. A synthetic diacylglycerol [1-oleoyl-2-acetylglycerol (OAG)], which is an endogenous PKC activator, was also able to induce a significant release of [3H]DA. Furthermore, TPA was found to release endogenous DA from isolated fish retina by a highly sensitive HPLC with electrochemical detection method. The OAG- or TPA-induced [3H]DA or DA release was completely blocked by inhibitors of PKC, such as 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7) and staurosporine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Abstract: The diadenosine polyphosphates, diadenosine tetraphosphate and diadenosine pentaphosphate (Ap5A), can activate an ionotropic dinucleotide receptor that induces Ca2+ transients into synaptosomes prepared from rat brain. This receptor, also termed the P4 purinoceptor, is sensitive only to adenine dinucleotides and is insensitive to ATP. Studies on the modulatory role of protein kinase A (PKA), protein kinase C (PKC), and protein phosphatases on the response of diadenosine polyphosphate receptors were performed by measuring the changes in the intracellular Ca2+ levels with fura-2. Activation and inhibition of PKA were carried out by means of forskolin and the PKA inhibitory peptide (PKA-IP), respectively. The Ap5A response was inhibited by forksolin to 35% of control values, but PKA-IP induced an increase of 37%. The effect of PKC activation was similar to that observed for PKA. PKC stimulation with phorbol 12,13-dibutyrate produced an inhibition of 67%, whereas the PKC inhibitors staurosporine and PKC inhibitory peptide enhanced the responses elicited by Ap5A to 40% in both cases. Protein phosphatase inhibitors diminished the responses elicited by Ap5A to 17% in the case of okadaic acid, to 50% for microcystin, and to 45% in the case of cyclosporin A. Thus, the activity of dinucleotide receptors in rat brain synaptosomes appears to be modulated by phosphorylation/dephosphorylation. These processes could be of physiological significance in the control of transmitter release from neurons that are postsynaptic to nerves that release diadenosine polyphosphates.  相似文献   

14.
The neuron-specific, calmodulin-binding protein B-50 (also known as GAP-43, F1, or neuromodulin) is an endogenous substrate of protein kinase C (PKC). PKC exclusively phosphorylates Ser residues in B-50. As potential phosphorylation sites for PKC, Ser41, Ser110, and Ser122 were indicated, of which Ser41 is contained in the sequence ASF, which matches with the sequence of a synthetic PKC substrate. N-terminally 35S-labeled B-50, produced from cDNA, was subjected to digestion with Staphylococcus aureus V8 protease (SAP). Consecutively, 35S-labeled 28- and 15-kDa fragments were formed, similar to those after digestion of 32P-labeled B-50. In a previous study, we showed that the 32P-labeled 15-kDa SAP fragment contains all 32P radioactivity. The present data indicate that it contains the N-terminus of B-50 as well. The 15-kDa fragment, with a calculated length ranging from amino acid residue 1 to 65, contains only one potential PKC phosphorylation site, at Ser41. Mutagenesis of Ser41 into Thr or Ala resulted in recombinant B-50 products with mobilities on two-dimensional electrophoresis similar to those of the nonmutated recombinant B-50 and the rat brain B-50. Only [Ser41]B-50 was phosphorylated by PKC, whereas [Thr41]- or [Ala41]B-50 did not show any phosphorylation at the positions indicated on the immunoblots. This leads us to the conclusion that Ser41 is the sole phosphorylation site for PKC in vitro.  相似文献   

15.
Abstract: A single dose of 0.25 ng of tetanus toxin (TeTx), equivalent to ∼5 minimal lethal doses, injected intracerebrally to 1-day-old rats, caused translocation, i.e., activation, of Ca2+-phosphatidylserine-dependent protein kinase C (PKC) from the cytosolic to the membrane compartment within 1 h. Six hours after treatment with the toxin, a 40–50% reduction in the total brain PKC (cytosolic plus membrane) activity was noticed. GT1b (2 μg per brain) ganglioside, a putative receptor for TeTx, completely prevented enzyme translocation when injected intracerebrally 30 min before toxin administration and abolished down-regulation after 6 h from the time of toxin injection. GM1 (2 μg per brain), a ganglioside of lesser affinity for TeTx, produced by itself a 20–30% reduction of the total PKC activity and did not reverse TeTx-induced PKC down-regulation after 6 h. 12- O -Tetradecanoylphorbol 13-acetate (TPA) phorbol ester, administered at a concentration of 5 × 10−5 M , caused activation and down-regulation of the enzyme, although with several orders of magnitude lesser potency. GT1b prevented the TPA-induced down-regulation.  相似文献   

16.
Abstract: Tetanus toxin (TeTx) has been recently demonstrated to be a Zn2+-dependent endopeptidase that cleaves synaptobrevin, a protein in part responsible for neurotransmitter release. Nevertheless, certain aspects of TeTx action, for example, the causal relationship between TeTx and protein kinase C (PKC; EC 2.7.1.37) activity cannot be explained by this cleavage alone. In the present study, primary neurons from fetal rat brain, synaptosomes, and whole slices have been used to examine this issue. Low doses of TeTx (≤ 10?8M) caused PKC activity translocation in a manner similar to that produced by 12-O-tetradecanoylphorbol 13-acetate (TPA). TPA (≤ 10?7M) caused sustained PKC activity translocation, whereas TeTx produced translocation followed by relocation, depending on the dose and time of exposure. Immunoidentification with a monoclonal antibody recognizing both α and β isoforms revealed that TeTx induced moderate losses of PKC in the cytosolic fraction, without a comparable increase in the particulate fraction. Although moderate losses of activity were also noticed in the cytosolic fraction, the inconsistency with respect to activity translocation may be explained by translocation of additional PKC isoforms that are not identified by the antibody. Comparable levels of water-soluble inositol phosphate-labeled intermediates were obtained after treatment of cerebral cells and/or cortical brain slices with TeTx. Significant increases of 19 and 114% in the water-soluble myo-[2-3H]inositol-labeled inositol phosphate metabolites were found in cerebral cell culture and brain slices, respectively, after treatment with 10?8M TeTx. TeTx (10?8M) increased to the same degree the water-soluble inositol phosphate levels as did serotonin (10?5M) or carbachol (10?6M). It is suggested that part of the signaling cascade of TeTx consists of a component involving inositol phospholipid hydrolysis, which is associated with PKC activity translocation.  相似文献   

17.
佛波酯引起蛋白激酶C下降调节的专一性   总被引:8,自引:0,他引:8  
探讨了佛波酯(PMA)对蛋白激酶的下降调节是否有激酶专一性及亚型专一性.用组蛋白H1作为蛋白激酶C(PKC)和蛋白激酶A(PKA)的受体底物,加入PKC和PKA的特异性激活剂区分PKC和PKA,用聚谷酪(41)为酪氨酸蛋白激酶(TPK)的专一性受体底物,以32P-ATP为32P共同供体底物测定三种蛋白激酶的活力,并用免疫组化法测定PKC亚型.结果发现PMA对人7721肝癌细胞只引起PKC而不引起PKA和TPK的下降调节,PKC的非特异性抑制剂槲皮素和特异性抑制剂D-鞘氨醇能大部分取消PMA对PKC的下降调节,但TPK抑制剂genestein则没有阻断下降调节的作用.用HL-60细胞还证明PMA只对含量丰富的PKCα和PKCβⅡ亚型而不对含量很少的PKCβⅠ亚型发生下降调节.上述结果说明PMA对蛋白激酶的下降调节有激酶和亚型专一性.  相似文献   

18.
Protein kinase C (PKC) activity (phosphorylation increased by addition of Ca2+/phosphatidylserine or Ca2+/phosphatidylserine/phorbol ester) was found in both a synaptic plasma membrane (SPM) and a postsynaptic density (PSD) fraction. The SPM fraction had as endogenous substrates 87K-, 60K-, 50K-, and 20K-Mr proteins, whereas the PSD fraction had only the 20K-Mr protein. The PKC activity was also detected using histone III-S as a substrate, in SPM but much less in PSD. Phosphorylations of histone and the endogenous substrates of PKC, assayed in the absence of Ca2+, were enhanced in the SPM prepared after treatment of brain homogenate with phorbol 12-myristate 13-acetate (TPA), but very little enhancement was found in PSD after such treatment. The SPM PKC activity (both for endogenous substrate proteins and for histone), which was enhanced by TPA treatment of brain homogenate, was inhibited by calcium (IC50, 3 x 10(-7) M). The phosphorylations of the 20K-Mr protein in PSD, and in SPM prepared with and without TPA treatment, were all inhibited by H-7. The 20K-Mr protein in the PSD fraction is also phosphorylated by a PSD Ca2+/calmodulin-dependent protein kinase II. The evidence indicates that both SPM and PSD fractions contain a PKC activity. Detergent treatment of SPM, to produce a purified PSD fraction, results in a PSD fraction that has lost most of the endogenous substrates, lost the TPA-induced enhanced activity assayed in the absence of Ca2+, and lost the inhibitory effect of low Ca2+ concentration.  相似文献   

19.
This study was undertaken to examine the role of phospholipase A2 and protein kinase C in the potentiation of beta-adrenoceptor-mediated cyclic AMP formation by alpha-adrenoceptors in rat cerebral cortical slices. Inhibition of arachidonic acid metabolism by a range of cyclooxygenase and lipoxygenase inhibitors had no effect on the potentiation of isoprenaline-stimulated cyclic AMP. Conversely, stimulation of leukotriene formation had no effect on the response to isoprenaline. The phospholipase A2 activator, melittin, stimulated cyclic AMP and potentiated the effect of isoprenaline, but these responses were not influenced by cyclooxygenase or lipoxygenase inhibitors. Indomethacin was also ineffective against the potentiation of vasoactive intestinal peptide-stimulated cyclic AMP by noradrenaline. Phorbol ester potentiated the cyclic AMP response to isoprenaline, and this potentiation was antagonized by three different putative protein kinase C inhibitors. However, the same inhibitors did not affect the alpha-adrenoceptor-stimulated enhancement of the response to isoprenaline. We have found no evidence, therefore, to support the suggestion that arachidonic acid and its metabolites and/or protein kinase C mediate the alpha-adrenoceptor modulation of beta-adrenoceptor function.  相似文献   

20.
Abstract: The injection of phorbol esters into the eyes of dark-adapted teleost fish can mimic light effects in the retina and induces corresponding synaptic plasticity of horizontal cells (HCs). It is therefore very likely that protein kinase C (PKC) mediates light-induced synaptic plasticity. In the present study, we investigated the distribution of PKC, the phorbol ester receptor, in isolated HCs and in the whole retina by using tritiated phorbol 12,13-dibutyrate ([3H]PDBu). The binding characteristics analyzed for HC homogenates and retinal homogenates revealed that [3H]PDBu binding is time dependent, specific, saturable, and reversible. Binding sites in HCs displayed a dissociation constant of 11.5 n M and a total number of 2.8 pmol/mg of protein. Autoradiography revealed that [3H]PDBu labeling is present in all retinal layers, including HCs, where it is associated with the somata. Furthermore, the treatment with PDBu strongly affected the endogenous phosphorylation of several membrane, cytosolic, and HC proteins and led to PKC activation as measured by H1 histone phosphorylation. In HCs, the treatment with PDBu in particular affected the amount of 32P incorporated into a group of phosphoproteins (68, 56/58, 47, 28, and 15 kDa) that were recently shown to be affected by light adaptation. These proteins might therefore be considered as important components of the observed morphological and physiological synaptic plasticity of HCs in the course of light adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号