首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Identification of a putative cell adhesion domain of uvomorulin.   总被引:41,自引:4,他引:37       下载免费PDF全文
D Vestweber  R Kemler 《The EMBO journal》1985,4(13A):3393-3398
A rat monoclonal antibody (DECMA-1) selected against the murine cell adhesion molecule uvomorulin blocks both the aggregation of mouse embryonal carcinoma cells and the compaction of pre-implantation embryos. However, decompacted embryos eventually become recompacted in the presence of DECMA-1 and form blastocysts composed of both trophectoderm and inner cell mass. DECMA-1 also disrupts confluent monolayers of Madin-Darby canine kidney (MDCK) epithelial cells. DECMA-1 recognizes uvomorulin in extracts from mouse and dog tissues. Protease digestion of mouse and dog uvomorulin generated core fragments including one of 26 kd which reacted with DECMA-1. The same 26-kd fragment is recognized by anti-uvomorulin monoclonal antibodies which have been obtained from other laboratories and which dissociate MDCK cell monolayers and block the formation of the epithelial occluding barrier. This 26-kd fragment therefore seems to be involved in the adhesive function of uvomorulin.  相似文献   

2.
《The Journal of cell biology》1985,101(4):1307-1315
It has previously been shown that the monoclonal antibody anti-Arc-1 dissociates Madin-Darby canine kidney (MDCK) epithelial cells and changes their morphology in vitro (Imhof, B.A., H.P. Vollmers, S.L. Goodman, and W. Birchmeier, 1983, Cell, 35:667-675). In this article we demonstrate that the anti-Arc-1 antibody recognizes an uvomorulin-like molecule on MDCK cells, i.e., it immunoprecipitates an 84-kD protein fragment from a tryptic digest of cell surfaces in the presence of Ca2+ (as does anti-uvomorulin antiserum). Furthermore, anti-uvomorulin antiserum prevents the binding of anti-Arc-1 to MDCK cells. The distribution of the Arc-1 antigen is also quite similar to that of uvomorulin: it is enriched at the cell-cell contacts both of MDCK cells and of cells in various canine tissues. In the intestinal epithelium the antigen could be further localized in the region of the junctional complex. To study the mechanism of action of the dissociating antibody, MDCK cells grown on Nuclepore filters in Boyden chambers were exposed to anti-Arc-1 from either the upper or lower compartment. It could be shown that the antibody interfered with cell adhesion only from the basolateral but not from the apical cell surface. Antibody action was inhibited in the presence of colchicine but not cytochalasin B. Furthermore, cell dissociation was prevented when the cellular cAMP level was raised. These findings indicate that the anti-Arc-1 antibody acts on a target below the tight junctions (possibly on the antigen located in the junctional complex), and they confirm that cytoskeleton and metabolic factors are actively involved in the maintenance of junctional integrity.  相似文献   

3.
Analysis of epithelial cell surface polarity with monoclonal antibodies   总被引:3,自引:0,他引:3  
The hybridoma technique of K?hler and Milstein was utilized to isolate hybrid cell lines secreting monoclonal antibodies against cell surface proteins on the Madin-Darby canine kidney (MDCK) epithelial cell line. These antibodies were employed as high-affinity ligands to study the development and maintenance of epithelial cell polarity in MDCK cells and for the identification of nephron segment-specific proteins. Using standard procedures, we were able to immunoprecipitate glycoproteins with molecular weights of 25,000 ( 25K ), 35,000 ( 35K ), and 50,000 (50K). Immunofluorescence and immunoelectron microscopy of MDCK demonstrated that the 35K and 50K proteins could be localized on both the apical and basolateral membranes of subconfluent cells but primarily on the basolateral membranes of confluent cells. By determining the cell surface distribution of the 35K and 50K proteins on MDCK cells during growth into a confluent monolayer, and after the experimental disruption of tight junctions, evidence was obtained that the polarized distribution of these cell surface glycoproteins required the presence of tight junctions. We propose that confluent MDCK cells have a mechanism that is responsible for the establishment and maintenance of epithelial apical and basolateral membranes as distinct cell surface domains. These monoclonal antibodies were also used to localize the 25K and 35K glycoproteins in the kidney. The distribution of these proteins was mapped by immunofluorescence and immunoelectron microscopy and was determined to be on the basolateral membranes of epithelial cells in only certain tubular segments of the nephron. The possible functional implications of these distributions are discussed.  相似文献   

4.
A monoclonal antibody identifying an antigen expressed by rat type II alveolar epithelial cells, but not by type I epithelial cells or other mature lung cells, was produced by immunization of mice with cells of the rat L2 cell line. The antigen recognized by the antibody was present on the microvillous luminal surface of type II epithelial cells. In adult rat lung, only type II epithelial cells bound the antibody. During fetal development the antigen was expressed by cuboidal epithelial cells lining the respiratory ducts of the first divisions of the tracheal bud, but not by epithelial cells lining the esophagus or trachea. The antigen continued to be expressed by cuboidal epithelial cells lining the larger respiratory ducts until approximately 19 days gestational age. Thereafter, expression was increasingly limited to selected single cells or clusters of two to four cuboidal cells in the smallest ducts. By the 21st postnatal day, the antigen was expressed only by type II alveolar epithelial cells. Type II alveolar epithelial cells isolated from adult lung and the L2 cell line in culture expressed the antigen on the cell surface. A protein of approximately 146,000 Mr was isolated by immunoadsorption of the antigen from non-ionic detergent extracts of type II cells and L2 cells. Preliminary studies of the binding of the antibody to other rat tissues indicate that the antibody binds to renal proximal tubular epithelial cells of the kidney and the luminal surface of the small bowel epithelial cells.  相似文献   

5.
Monoclonal antibodies as probes of epithelial membrane polarization   总被引:2,自引:0,他引:2       下载免费PDF全文
《The Journal of cell biology》1985,101(6):2173-2180
Monoclonal antibodies directed against antigens in the apical plasma membrane of the toad kidney epithelial cell line A6 were produced to probe the phenomena that underlie the genesis and maintenance of epithelial polarity. Two of these antibodies, 17D7 and 18C3, were selected for detailed study here. 17D7 is directed against a 23-kD peptide found on both the apical and basolateral surfaces of the A6 epithelium whereas 18C3 recognizes a lipid localized to the apical membrane only. This novel observation of an apically localized epithelial lipid species indicates the existence of a specific sorting and insertion process for this, and perhaps other, epithelial plasma membrane lipids. The antibody-antigen complexes formed by both these monoclonal antibodies are rapidly internalized by the A6 cells, but only the 18C3-antigen complex is recycled to the plasma membrane. In contrast to the apical localization of the free antigen, however, the 18C3-antigen complex is recycled to both the apical and basolateral surface of the epithelium, which indicates that monoclonal antibody binding interferes in some way with the normal sorting process for this apical lipid antigen.  相似文献   

6.
Here we describe a monoclonal antibody (MMC4) that recognizes a novel antigen on the apical surface of rat alveolar epithelial type II and Clara cells in the lung, proximal tubule epithelial cells in the kidney, and villus epithelial cells in the small intestine. Biochemical analysis showed that the MMC4 antigen was sensitive to heating and proteinase K digestion and that it is distributed in the detergent-rich phase after Triton X-114 phase separation. These data suggest that the MMC4 antigen is an integral membrane protein. Glycerol gradient sedimentation identified two forms of the MMC4 antigen: one with a sedimentation coefficient of 10.1 and one with a sedimentation coefficient of 1.66, suggesting that the antigen may be part of a multiprotein complex. During rat development (fetal day 16 to adult), the MMC4 antigen increased 12-fold in the lung and 200-fold in the kidney. In the intestine, the MMC4 antigen increased 150-fold by neonatal day 1 and then decreased to adult values. Our data demonstrate that the MMC4 antigen is unlike known type II cell- and Clara cell-associated proteins. The MMC4 monoclonal antibody will be useful as a marker of epithelial cell phenotype in development and injury studies.  相似文献   

7.
To study renalase''s expression and distribution in renal tissues and cells, renalase coded DNA vaccine was constructed, and anti-renalase monoclonal antibodies were produced using DNA immunization and hybridoma technique, followed by further investigation with immunological testing and western blotting to detect the expression and distribution of renalase among the renal tissue and cells. Anti-renalase monoclonal antibodies were successfully prepared by using DNA immunization technique. Further studies with anti-renalase monoclonal antibody showed that renalase expressed in glomeruli, tubule, mesangial cells, podocytes, renal tubule epithelial cells and its cells supernatant. Renalase is wildly expressed in kidney, including glomeruli, tubule, mesangial cells, podocytes and tubule epithelial cells, and may be secreted by tubule epithelial cells primarily.  相似文献   

8.
A functional assay has been developed to identify cell surface proteins involved in the formation of epithelial tight junctions. Transepithelial electrical resistance was used to measure the presence of intact tight junctions in monolayers of Madin-Darby canine kidney (MDCK) cells cultured on nitrocellulose filters. The strain I MDCK cells used have a transmonolayer resistance greater than 2,000 ohm . cm2. When the monolayers were incubated at 37 degrees C without Ca2+, the intercellular junctions opened and the transmonolayer resistance dropped to the value of a bare filter, i.e., less than 40 ohm . cm2. When Ca2+ was restored, the cell junctions resealed and the resistance recovered rapidly. Polyclonal antibodies raised against intact MDCK cells inhibited the Ca2+-dependent recovery of electrical resistance when applied to monolayers that had been opened by Ca2+ removal. Cross-linking of cell surface molecules was not required because monovalent Fab' fragments also inhibited. In contrast, a variety of other antibodies that recognize specific proteins on the MDCK cell surface failed to inhibit the recovery of resistance. Monoclonal antibodies have been raised and screened for their ability to inhibit resistance recovery. One such monoclonal antibody has been obtained that stained the lateral surface of MDCK cells. This antibody, rr1, recognized a 118-kD polypeptide in MDCK cell extracts and an 81-kD fragment released from the cell surface by trypsinization in the presence of Ca2+. Sequential immunoprecipitation with antibody rr1 and a monoclonal antibody to uvomorulin showed that this polypeptide is related to uvomorulin. The role of uvomorulin-like and liver cell adhesion molecule (L-CAM)-like polypeptides in the establishment of the epithelial occluding barrier is discussed.  相似文献   

9.
The Madin-Darby canine kidney (MDCK) cell line, derived from distal tubule/collecting duct, expresses differentiated properties of renal tubule epithelium in culture. We studied the expression of adrenergic receptors in MDCK to examine the role of catecholamines in the regulation of renal function. Radioligand-binding studies demonstrated, on the basis of receptor affinities of subtype-selective adrenergic agonists and antagonists, that MDCK cells have both alpha 1- and beta 2- adrenergic receptors. To determine whether these receptor types were expressed by the same cell, we developed a number of clonal MDCK cell lines. The clonal lines had stable but unique morphologies reflecting heterogeneity in the parent cell line. Some clones expressed only beta 2-adrenergic receptors and were nonmotile, whereas others expressed both alpha 1- and beta 2-receptors and demonstrated motility on the culture substrate at low cell densities. In one clone, alpha- and beta- receptor expression was stable for more than 50 passages. Catecholamine agonists increased phosphatidylinositol turnover by activating alpha- adrenergic receptors and cellular cyclic adenosine monophosphate accumulation by activating beta-adrenergic receptors. Guanine nucleotide decreased the affinity of isoproterenol for the beta 2- receptor but did not alter the affinity of epinephrine for the alpha 1- receptor. These results show that alpha 1- and beta 2-receptors can be expressed by a single renal tubular cell and that the two receptors behave as distinct entities in terms of cellular response and receptor regulation. Heterogeneity of adrenergic receptor expression in MDCK clones may reflect properties of different types of renal tubule cells.  相似文献   

10.
Mouse mammary epithelial cells, of the normal murine mammary gland (NMuMG) cell line, bear a heparan sulfate-rich proteoglycan (HSPG) on their surfaces. A hybridoma (281-2) secreting a monoclonal antibody that recognizes this HSPG was produced by fusion of SP-2/0 myeloma cells with spleen cells from rats immunized with NMuMG cells. The 281-2 monoclonal antibody is directed against the core protein of the cell surface HSPG, as demonstrated by (a) recognition of the isolated proteoglycan but not its glycosaminoglycan chains, (b) co-localization of 281-2-specific antigen and radioactive cell surface HSPG on gradient polyacrylamide gel electrophoresis and on isopycnic centrifugation, and (c) abolition of immunofluorescent staining of the NMuMG cell surface by the intact, but not the protease-digested ectodomain of the cell surface HSPG. The antibody is specific for cell surface HSPG and does not recognize the HSPG that accumulates extracellularly beneath the basal cell surface. Therefore, the 281-2 antibody may be used to isolate the cell surface HSPG and to explore its distribution in tissues.  相似文献   

11.
In the rat sciatic nerve, the relationship between Schwann cells, axons, the extracellular matrix and perineurial sheath cells undergoes extensive modification between embryo day 15 and the onset of myelination during the first postnatal day. Little is known about molecular changes in Schwann cells in this important prenatal period. In the present paper, we use immunofluorescence to study the prenatal development and postnatal regulation of the antigen(s) recognized by the 04 monoclonal antibody and a well-characterized rat monoclonal antibody to sulfatide, A007. We show that, in a series of immunochemical tests, the 04 antibody recognizes only sulfatide in neonatal and adult rat nerves. Both antibodies first bind to Schwann cells in the sciatic nerve at embryo day 16-17, and all Schwann cells bind both antibodies at birth. In the adult nerve, both nonmyelin-forming and myelin-forming cells are labelled with the antibodies. Schwann cells dissociated from embryo day 15 nerves and cultured in the absence of axons develop neither 04 nor A007 binding on schedule, and 04-positive and A007-positive Schwann cells from postnatal nerves lose the ability to bind these antibodies during the first few days in culture. Schwann cells in the distal stump of transected nerves also sharply down-regulate cell surface binding of 04. High numbers of 04-positive or A007-positive Schwann cells reappear in cultures treated with agents that mimic or elevate intracellular cAMP. We conclude that two anti-sulfatide antibodies 04 and A007, recognize an antigen, probably sulfatide, that appears very early in Schwann cell development (one to two days prior to galactocerebroside) but is nevertheless subject to upregulation by axonal contact or elevation of intracellular cAMP.  相似文献   

12.
The antigen recognized by a mouse monoclonal antibody (mAb S27) raised against a human renal cancer cell line has been identified as the adenosine deaminase binding protein. mAb S27 immunoprecipitates binding protein purified from a soluble fraction of human kidney. It also recognizes the mature 120,000-dalton membrane form of binding protein from [35S]methionine-labeled human fibroblasts, HepG2 cells, and the renal cancer cell line against which the antibody was raised. A rabbit polyclonal antibody raised against purified kidney binding protein completely precipitates mAb S27-reactive material from labeled membrane extracts. mAb S27 does not precipitate the initially synthesized 110,000 molecular weight precursor of binding protein in fibroblasts and recognizes only a small portion of binding protein precursor in labeled HepG2 cells suggesting that the antigenic determinant recognized by mAb S27 may be a post-translational modification present on the mature form of binding protein or that mAb S27 recognizes molecules in a certain conformation. Glycopeptides derived from purified soluble kidney binding protein or exogenously added adenosine deaminase do not inhibit the immunoprecipitation of binding protein by mAb S27, indicating that the mature oligosaccharide chains of binding protein are not the determinant recognized by mAb S27 and that bound adenosine deaminase does not mask the antigenic sites on binding protein. The fact that monoclonal antibody S27, previously shown (Ueda, R., Ogata, S., Morissey, D. M., Finstad, C. L., Szkudlavek, J., Whitmore, W. F., Oettgen, H. F., Lloyd, K. O., and Old, L. J. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 5122-5126) to detect a cell surface antigen on cultured renal cancer cells, is directed against the adenosine deaminase binding protein confirms and extends the earlier observation (Andy, R.J., and Kornfeld, R. (1982) J. Biol. Chem. 257, 7922-7925) that binding protein is located on the cell surface.  相似文献   

13.
Monoclonal antibodies against the cell surface were produced by immunizing mice with endometrial scrapings prepared from 6-day pregnant rabbits. Spleen cells from an immune mouse were fused with myeloma cells and cultured by standard hybridoma technology methods. Hybridoma supernatants were screened for reaction with the apical epithelial surface by immunohistochemistry on frozen sections of uterus from 6-day pregnant rabbits, and positive colonies were cloned by limiting dilution. Ascites fluid was produced in mice from hybridoma clones that gave a consistent pattern of apical epithelial surface staining through 6 sub-clonings. Antibodies in the ascites fluid were tested by immunohistochemistry on frozen sections of uterus, oviduct, lung, liver and kidney from nonpregnant or 6-day pregnant rabbits. At a dilution of 1:5000, the antibodies recognized an antigen that was specific to the apical surface of luminal but not glandular epithelium of the 6-day pregnant uterus and could not be detected in the nonpregnant uterine epithelium. At higher concentrations of antibody (1:100 to 1:1000), crossreaction was seen with antigens in stromal and myometrial cells of pregnant and nonpregnant uterus. At a dilution of 1:5000, the antibody also crossreacted with some components of lung, liver and kidney but without discriminating between the two reproductive states. In the oviduct, staining of the surface epithelium was specific to the pregnant state. We conclude that this monoclonal antibody has a high affinity for a luminal epithelial cell surface antigen in the reproductive tract of the pregnant rabbit and shows multiple organ reactivity with other tissues that is not affected by pregnancy. This antigen will provide a useful cell surface marker of epithelial differentiation in the progestational reproductive tract.  相似文献   

14.
The development of surface polarity has been studied in the epithelial Madin-Darby canine kidney (MDCK) cell line by examining two basolateral markers: a monoclonal antibody against a 58-kd protein and [35S]methionine uptake. The surface distribution of these markers was followed after plating the cells on coverslips or nitrocellulose filters. In subconfluent monolayers the apical surface of many cells was stained with the anti-58-kd antibody. Clearing of the apical surface occurred first after confluency had been reached in cells grown on coverslips. Similarly, in cells grown on filters the basolateral 58-kd protein disappeared from the apical surface concomitantly with the development of a measurable electrical resistance over the cell monolayer. The uptake of [35S]methionine was measured from both sides of filter-grown cells and began to polarize early after seeding, reaching a value of greater than 98% basolateral in the fully polarized monolayer. These results emphasize that the development of surface polarity in MDCK cells is a gradual process, and that extensive cell-cell contacts seem to be required for complete surface polarization.  相似文献   

15.
We describe a monoclonal antibody, WT-31, that reacted with all human T lymphocytes. Electrophoretic analysis of the material reacting with WT-31 revealed that it precipitated predominantly an 80-kD disulfide-linked heterodimer from the cell surface-labeled T leukemic cell line HPB-ALL. This heterodimer was identical to the one precipitated with a recently described monoclonal reagent, T40/25, which recognizes a clonotypic structure on HPB-ALL. The target antigen of WT-31 comodulated with T3 after incubation of T cells with excess anti-T3 antibody, indicating that the WT-31 target antigen is associated with T3. We also found that anti-T3 reagents, but not the clonotypic reagent T40/25, blocked binding of FITC-labeled WT-31 to HPB-ALL cells. This indicates that the T cell receptor epitope recognized by WT-31 is located close to the epitopes recognized by the anti-T3 reagents anti-Leu-4 and SPV-T3b but distal from the clonotypic T40/25 epitope. Functional studies showed that WT-31 reacts similar to anti-T3 antibodies. It is mitogenic for resting T cells, blocks cytolysis mediated by alloantigen-specific CTL clones, and induces antigen-nonspecific cytolysis by CTL clones against Daudi target cells. WT-31 did not inhibit the formation of conjugates, but it blocked cytolysis just before or during the Ca2++-dependent programming for lysis. We conclude that WT-31 is an antibody that recognizes a common determinant on the T cell receptor for antigen. The present results support the notion that the two chains of the T cell receptor (alpha and beta) form a functional protein ensemble with the three invariable T3 polypeptide chains (T3-gamma-, delta-, epsilon).  相似文献   

16.
Summary We raised monoclonal antibodies against a membrane fraction ofXenopus neurulae in order to detect tissue-specific cell-surface markers. Here we describe a monoclonal antibody that recognizes an epithelial membrane-associated antigen (EMA) in immunohistological stainings. The tissue-specific and membrane-associated antigen detected in immunohistological stainings could serve as useful marker in epithelium differentiation and membrane organization of the early embryo. In tadpoles and adults EMA was found in specific epithelial tissues derived from different germ layers such as kidney, skin, gut, pancreas, epiphysis and choroid plexus. In the cleaving embryo this antibody stained newly formed membranes between blastomeres from the two-cell stage onwards. Cytoplasmic staining in large oocytes and early embryos was also observed. The possibility that the cytoplasmic signal represents a maternal store of membrane material is discussed.  相似文献   

17.
S-antigen (arrestin) is a cytosolic protein which regulates phototransduction in retinal rods. A protein immunologically related to S-antigen was identified in fractions from soluble extract of bovine kidney enriched by gel filtration or by immunoaffinity chromatography using a polyclonal antibody to retinal S-antigen. On immunoblots, this protein was recognized by a panel of monoclonal antibodies (mAbs S2D2, S1A3 and S9E2) directed against different S-antigen epitopes and displayed the same apparent molecular mass (48 kDa) as retinal S-antigen. All three mAbs revealed a specific immunoreactivity by indirect immunocytochemical technique on rat kidney sections. The three mAbs recognized some but not all glomerular cells, identified as epithelial cells by immunoelectron microscopy using the mAb S9E2. Both mAbs S2D2 and S1A3 gave a diffuse cytoplasmic staining in all tubule cells. Proximal tubule cells exhibited a weak immunoreactivity, whereas distal and collecting tubule cells were strongly labeled. In contrast, the mAb S9E2 immunoreaction was restricted to a cell subpopulation from distal and collecting tubules corresponding to intercalated cells identified by immunoelectron microscopy. With the mAb S9E2, the labeling of proximal tubule cells was localized in the apical region of the cytoplasm. These results suggest that two or more 48-kDa proteins immunologically cross-reactive with retinal S-antigen are present in kidney. The observed pattern of distribution is in keeping with the hypothesis that such proteins could play a role in the regulation of G-protein-related receptors present in renal glomerulus and tubule epithelial cells.  相似文献   

18.
By using four distinct monoclonal antibodies to CEA, the molecular profile of which was clarified in our accompanying companion paper, immunohistochemical distribution of the antigenic determinants on both cancerous and noncancerous tissues as well as fetal tissues was studied with the use of the immunoperoxidase method. All of the monoclonal antibodies recognize different antigenic determinants on the tissue section. None of the antibodies stained granulocytes in the peripheral blood or in the normal liver tissues tested. Three of our monoclonal antibodies stained columnar epithelial cells in morphologically normal colonic mucosa; however, monoclonal antibody YK024 did not stain them. This antibody was also found to be unreactive with intestinal metaplasia lesions of the stomach, but reacted with a 16-wk-old fetal stomach as well as with cancerous parts of the colon and of the stomach. Moreover, it was found that this monoclonal antibody mainly reacted with moderately or poorly differentiated adenocarcinoma lesions of the colon and the stomach. Periodic acid treatment in this study, together with trypsin treatment on the antigen as described in our accompanying companion paper, may suggest that this antibody recognizes the carbohydrate antigenic determinant in nature.  相似文献   

19.
Madin-Darby canine kidney (MDCK) cells grown in tissue culture have the morphological properties of distal tubular epithelial cells, form tight junctions, and lack several proximal tubular enzyme markers. Adenylate cyclase in these cells was stimulated by vasopressin, oxytocin, prostaglandins E1 and E2, glucagon, and cholera toxin. Hormone-stimulated adenylate cyclase activity in isolated membrane preparations was dependent on low concentrations of GTP and had the MgCl2 and pH optima expected for the kidney enzyme. The results, as well as the demonstration of enhanced hemicyst formation induced by cyclic AMP, suggest that the MDCK cell line has retained the differentiated properties of the kidney epithelial cell of origin. When MDCK cells were injected into baby nude mice, continuous nodule growth was observed until adulthood was attained. Histological studies revealed the presence of two cell types: normal mouse fibroblasts which comprise 80--90% of the solid nodule mass, and MDCK cells, which formed epithelial sheets lining internal fluid-filled glands. Electron microscope analysis showed that the mucosal surfaces of the cells were characterized by microvilli which faced the lumen of the glands, that adjacent MDCK cells were joined by tight junctions, and that the serosal surfaces of the epithelial sheets were characterized by smooth plasma membranes which were lined by a continuous basement membrane. These observations lead to the conclusion that the MDCK cells retain regional differentiation of their plasma membranes and the ability to regenerate kidney tubule-like structures in vivo.  相似文献   

20.
The novel antigen K114 (AgK114) has been previously identified in normal hamster skin, and its expression has been up-regulated accompanying tissue damages of the skin, although there is no information on its biological functions. To determine the physiological role of AgK114, we prepared anti-mouse AgK114 monoclonal antibody and studied its tissue distribution in healthy adult mice by immunocytochemistry. A widespread and unique expression of AgK114 peptide was found in the selected organs of various systems (hair follicle cells and sebaceous gland of skin, ciliated epithelial cells of trachea and bronchial tube, striated portion of submandibular gland, distal convoluted tubule cells of kidney, ciliated epithelial cells of oviduct, medulla of adrenal gland and anterior lobe of pituitary gland). Interestingly, dual expression of AgK114 peptide and growth hormone in somatotrophs was found in anterior lobe of pituitary gland by double immunocytochemistry. AgK114 peptide was expressed widely in many regionally well-defined cellular systems in various peripheral tissues, suggesting that AgK114 peptide may have some roles of physiological functions in these organs. The data from our current study have provided a rationale for further studies of functional roles of AgK114 peptide in a variety of organs or tissues under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号