首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of surface polarity has been studied in the epithelial Madin-Darby canine kidney (MDCK) cell line by examining two basolateral markers: a monoclonal antibody against a 58-kd protein and [35S]methionine uptake. The surface distribution of these markers was followed after plating the cells on coverslips or nitrocellulose filters. In subconfluent monolayers the apical surface of many cells was stained with the anti-58-kd antibody. Clearing of the apical surface occurred first after confluency had been reached in cells grown on coverslips. Similarly, in cells grown on filters the basolateral 58-kd protein disappeared from the apical surface concomitantly with the development of a measurable electrical resistance over the cell monolayer. The uptake of [35S]methionine was measured from both sides of filter-grown cells and began to polarize early after seeding, reaching a value of greater than 98% basolateral in the fully polarized monolayer. These results emphasize that the development of surface polarity in MDCK cells is a gradual process, and that extensive cell-cell contacts seem to be required for complete surface polarization.  相似文献   

2.
3.
N Rodrig  T Osanai  M Iwamori  Y Nagai 《FEBS letters》1987,221(2):315-319
The effect of exogenous gangliosides on the occurrence of domes in MDCK cell cultures was investigated in view of the involvement of both dome formation and gangliosides in cell growth, differentiation and transepithelial transport. Dome formation was increased by gangliosides in medium free of fetal calf serum. Among the gangliosides tested, GM3 and GD3 isolated from porcine kidney were most active, increasing the dome number 12-17-fold. Since gangliosides from kidney were more active than those from brain and erythrocytes, the hydrophobic moiety as well as sialic acid might be involved in this activity. These results indicate that tissue-specific molecules of gangliosides function as inducers or mediators of dome formation. The mechanism probably involves adenylate-cyclase or another transmembrane biosignal-transducing system.  相似文献   

4.
Madin-Darby canine kidney (MDCK) cells grown in tissue culture have the morphological properties of distal tubular epithelial cells, form tight junctions, and lack several proximal tubular enzyme markers. Adenylate cyclase in these cells was stimulated by vasopressin, oxytocin, prostaglandins E1 and E2, glucagon, and cholera toxin. Hormone-stimulated adenylate cyclase activity in isolated membrane preparations was dependent on low concentrations of GTP and had the MgCl2 and pH optima expected for the kidney enzyme. The results, as well as the demonstration of enhanced hemicyst formation induced by cyclic AMP, suggest that the MDCK cell line has retained the differentiated properties of the kidney epithelial cell of origin. When MDCK cells were injected into baby nude mice, continuous nodule growth was observed until adulthood was attained. Histological studies revealed the presence of two cell types: normal mouse fibroblasts which comprise 80--90% of the solid nodule mass, and MDCK cells, which formed epithelial sheets lining internal fluid-filled glands. Electron microscope analysis showed that the mucosal surfaces of the cells were characterized by microvilli which faced the lumen of the glands, that adjacent MDCK cells were joined by tight junctions, and that the serosal surfaces of the epithelial sheets were characterized by smooth plasma membranes which were lined by a continuous basement membrane. These observations lead to the conclusion that the MDCK cells retain regional differentiation of their plasma membranes and the ability to regenerate kidney tubule-like structures in vivo.  相似文献   

5.
Madin-Darby canine kidney (MDCK) cells were mutagenized and variants resistant to 10, 160, and 2000 times the ouabain lethal dose for wild type cells selected. The phenotypes were stable in the absence of selection. The frequencies with which variants were recovered were consistent with genetic alterations being responsible for drug resistance. It was shown that 50% of the (Na+, K+)-ATPase activity present in mutant cells had a higher Kd for ouabain than normal while 50% remained wild type for ouabain binding. Wild type MDCK cells were measured to have 2 X 10(6) ouabain binding sites per cell with a Kd for the drug of 0.6-1.0 X 10(-7) M. The novel (Na+, K+)-ATPase activities in the mutants demonstrated Kd values for ouabain of 10(-5) M, 3 X 10(-4) M, or 3 X 10(-3) M for the different mutant classes tested. The rate of synthesis of the (Na+, K+)-ATPase as well as the total amount of enzyme per unit of cell protein was unaltered in the mutants. Comparison of the alpha subunit of the enzyme, known to contain the ouabain-binding site, by sodium dodecyl sulfate-gel electrophoresis did not reveal any difference in the size of this subunit in mutant versus wild type cells.  相似文献   

6.
When mamalian cells are starved for amino acids, the activity of the A amino acid transport system increases, a phenomenon called adaptive regulation. We have examined the effects of those factors which support Madin-Darby canine kidney (MDCK) cell growth in a defined medium on the derepression of System A activity. Of the five factors which supported MDCK cell growth, insulin was found to be an absolute requirement for derepression. In contrast, PGE1 was a negative controlling factor for the transport system. Growth of MDCK cells in the absence of PGE1 resulted in elevated System A activity which derepressed poorly upon amino acid starvation. Kinetic analysis of α-(methylamino) isobutyric acid (mAIB) uptake as a function of substrate concentration showed that the elevated A activity observed when cells were grown in the absence of PGE1 was kinetically similar to the activity induced by starvation for amino acids. Transport of mAIB by amino-acid-fed cells grown in the presence of PGE1 was characterized by a linear Eadie-Hofstee graph and by a relatively low Vmax. Transport by cells starved for amino acids or by cells grown in the absence of PGE1 was characterized by biphasic kinetics for mAIB transport and by elevated Vmax values. An influence of growth factors on the inactivation of derepressed A activity was also observed. In the presence of cycloheximide the rate of loss of A activity in amino-acid-starved cells was 1/4–1/2 that of amino-acid-fed cells. Insulin slowed inactivation in the absence of most amino acids in a protein-synthesis-independent manner, but insulin did not influence the more rapid inactivation observed in amino-acid-fed cells. These results indicate that the level of System A activity observed in response to regulation by amino acids represents a balance between carrier synthesis and inactivation, which can be positively or negatively influenced by growth factors.  相似文献   

7.
1. Two clones (osmR-A and osmR-B) resistant to hyperosmotic media of 700 and 800 mosmol/l, respectively, were selected from Madin-Darby canine kidney (MDCK) cells. 2. When cultured in isosmotic medium (300 mosmol/l), the concentration of galactosyl sulfatide and lactosyl sulfatide in these hyperosmosis-resistant clones was 3.4-5.9 times higher than in the wild-type MDCK. The rate of incorporation of [35S]sulfate into sulfolipids of osmR-A and osmR-B was 1.9-6.7 times higher than MDCK. 3. The stimulation of incorporation into sulfolipids by hyperosmotic culture was completely inhibited by cycloheximide. The pulse-chase studies indicated decreased turnover rate of sulfolipids in osmR-A.  相似文献   

8.
This paper reports the suitability of culturing a line of dog kidney epithelial cells, MDCK, in the presence of a serum substitute, Ultroser G. Serial subcultivation with this product was possible for at least 10 passages without any change in cell shape and size, saturation density, dome-forming ability, transepithelial resistance, and growth curve. Adhesion of newly plated cells to plastic was somewhat lower than in fetal calf serum but the trypsin-harvesting kinetics were essentially the same. However, the membrane ion transport systems was alterd: cell sodium influx was greatly diminished, suggesting a deep change in the amiloride-sensitive Na+ channels: sodium efflux was highly enhanced (both active and passive).  相似文献   

9.
10.
We have used Madin-Darby canine kidney (MDCK) cells grown on nitrocellulose filters to study the polarity of virus infection and maturation. The cells form epithelia-like monolayers, which display high (>1000 Ω cm2) electrical resistance and a cuboidal morphology. Vesicular stomatitis virus (VSV) was found to infect the monolayer at least 100 times more efficiently when applied through the filter to the basolateral surface than when applied to the apical surface. The avian influenza, fowl plague virus (FPV), infected the monolayer through either the apical or basolateral surface. The polarity of virus budding was evaluated by harvesting virus from the two sides of the monolayer. More than 99% of released influenza hemagglutinin titre was found on the apical side of the filter, while more than 98% of budded VSV was found on the basal side. This polarity of budding was retained through 10 hr of viral infection, as was the polarity of surface expression of viral envelope proteins revealed by immunofluorescence. The strong preference of VSV for basolateral maturation is paralleled by an equally strong preference for infection through the basolateral membrane of this polar epithelial cell.  相似文献   

11.
The Madin-Darby canine kidney (MDCK) cell line was investigated with respect to the cellular polarity of amino acid transport in early confluent versus late confluent cultures. Early confluent cultures could take up amino acids from the apical and the basolateral sides of the cell layer via amino acid transport Systems A, ASC, and L. However, in late confluent cultures the activities of Systems A and L were clearly localized to the basolateral surface of the cell monolayer. In addition to the presence of systems A, ASC, and L, a novel activity, measurable under conditions used for quantitating System ASC, was found to be active in the apical membrane of these cells. This transporter, termed System G (for general), recognized basic and neutral amino acids with high affinity and acidic amino acids with lower affinity. System G exhibited broad substrate specificity, strict cation specificity, and a broad pH optimum with maximal activity at acidic pH. The activity of System G was relatively low after growth in serum-containing medium but was induced in a defined medium. Induction of System G activity was dependent upon the presence of prostaglandin E1. The broad substrate specificity, low pH optimum, and Na+ dependence suggest that System G may function in apical membranes as an energy-dependent transport route during reabsorption of amino acids from the kidney tubule lumen.  相似文献   

12.
13.
Squirrel monkeys are the most commonly used New World primates in biomedical research, but in vitro studies are restricted by the limited number of cell lines available from this species. We report here the development and characterization of a continuous, kidney epithelial cell line (SQMK-FP cells) derived from a newborn squirrel monkey. Karyotype was consistent with Bolivian squirrel monkey (submetacentric chromosome pair 15 and acrocentric chromosome pair 16). All cells examined were hyperdiploid with chromosome numbers ranging from 52 to 57. Ultrastructural analysis of SQMK-FP cells revealed the presence of cell junctions with radiating filaments, indicating desmosomes and numerous surface projections containing longitudinally oriented filaments typical of tubular epithelium. Biochemically, SQMK-FP cells exhibit glucocorticoid resistance typical of the squirrel monkey. Glucocorticoid receptor (GR) binding is low in SQMK-FP cells because of high expression of the FK506-binding immunophilin FKBP51 that inhibits GR binding. SQMK-FP cells constitute a tubular epithelial cell line that has biochemical properties characteristic of squirrel monkeys and represents an alternate cell model to B-lymphoblast SML cells to study the biology of the squirrel monkey in vitro.  相似文献   

14.
15.
Although the presence of a dominant basolateral sorting signal ensures that the majority of newly synthesized epidermal growth factor (EGF) receptors are delivered directly to the basolateral surface in polarized epithelial cells, a fraction of the receptors are also delivered to the apical surface. Similar to most basolateral membrane proteins, the EGF receptor has an additional signal(s) that selectively targets molecules lacking a dominant basolateral signal to the apical surface. Although the physiological relevance of signal hierarchy is not known, alternative targeting may occur in different epithelial cell types or during development. The goal of this study, therefore, was to determine the effect of membrane domain location on EGF receptor function, focusing on EGF-induced MAP kinase signaling and DNA synthesis. Whereas ligand responsiveness was restricted to the basolateral domain in Madin-Darby canine kidney (MDCK) cells expressing a normal complement of receptors, apical ligand was effective if apical receptor density was increased by overexpression of an exogenous wild-type human gene. Unexpectedly, cells expressing apically localized, cytoplasmically truncated receptors, which behave as dominant negative mutations in other cell types, were also responsive to apical EGF. The cytoplasmically truncated molecules appear to have at least two effects: first, to increase the local concentration of ligand at the apical cell surface; and second, to facilitate activation of the relatively few native EGF receptors normally located at the apical surface. These results indicate that cell context is a critical determinant of receptor mutant protein phenotype.  相似文献   

16.
The effect of pH on the secretion of the gp 80 glycoprotein complex and lysozyme from MDCK cells was examined by treatment of the cells with either NH4Cl, chloroquine or monensin. In untreated cells gp 80 is sorted with approximately 75% efficiency into the apical pathway. Lysozyme is secreted in a nonpolar fashion at both cell surfaces. Treatment of the cells with the drugs had nearly identical effects on the transport kinetics and on the ratio of the proteins released at the two plasma membrane domains. At increasing drug concentrations, the transport of both proteins to the apical and the basolateral cell surface was equally retarded. Furthermore, we observed a dose-dependent decrease in the amount of gp 80 and lysozyme released at the basolateral cell surface, which was accompanied by a nearly equivalent increase in the secretion of the two proteins at the apical plasma membrane domain. A twofold rise in the apical to basolateral ratio was already found at drug concentrations which only marginally affected the kinetics of transport. These results show that an increase in intravesicular pH not only redirects secretory proteins sorted into the basolateral pathway (Caplan et al. Nature, 329, 632 (1987] but also secretory proteins devoid of sorting information for that pathway, presumably by modulating the vesicular traffic to the basolateral cell surface.  相似文献   

17.
Two sublines of the epithelial cell line MDCK differ in glycosphingolipid composition (Hansson, G.C. et al. (1986) EMBO J. 5, 483-489). The Forssman pentaglycosylceramide was an abundant glycolipid in the MDCK II subline, but was absent in the MDCK I subline. The MDCK I line instead contained another five-sugar glycolipid in relatively large amounts. This component has now been isolated and characterized with mass spectrometry, methylation analysis, exoglycosidase digestion, and proton NMR spectroscopy. The structure was concluded to be Gal alpha 1----3Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4Glc beta 1----1 Cer. This is a blood group B-like glycolipid lacking fucose, earlier found in rabbit and bovine erythrocytes.  相似文献   

18.
The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway.  相似文献   

19.
Certain epithelial cell lines have morphologic, physiologic, biochemical and pharmacologic characteristics of transporting epithelia from intact organs. In this paper we show that dibutyryl cyclic AMP, 5' AMP, adenosine and cyclic AMP phosphodiesterase inhibitors stimulate hemicyst formation by the dog kidney cell line MDCK. It is suggested that this effect is explained by elevation of intracellular cyclic AMP levels by means of an exogenous non-metabolizable source of cyclic AMP, phosphodiesterase inhibition or adenyl cyclase stimulation. Since hemicyst formation is in part due to transepithelial fluid transport, these findings raise the possibility that this fraction might be modulated by cAMP in an established cell line. We believe that cultured epithelial cells may provide an exploitable model system to investigate at the cellular and subcellular levels, the mechanism by which cyclic AMP modifies water and solute movements across epithelia.  相似文献   

20.
Secretion of a foreign protein--chicken oviduct lysozyme--and of endogenous proteins was studied in the polarized epithelial Madin-Darby Canine Kidney (MDCK) cell line. Cell clones that secrete enzymatically active chicken lysozyme were generated by transforming the cells with lysozyme cDNA inserted in a SV40-pBR322 recombinant vector and a dominant selectable marker gene. The kinetics and polarity of lysozyme secretion from one transformed cell clone were studied using cell monolayers grown on nitrocellulose filters. Lysozyme was secreted into the apical and the basolateral medium, demonstrating the existence of direct transport pathways to each cell surface. Control experiments excluded the effects of monolayer leakiness, reabsorption, transepithelial transport, and depolarization. In contrast, the secretion of a set of endogenous proteins of MW 30-40 kd was found to be strictly apical showing that polarized secretion also occurs in this cell line. The latter group of proteins appear to be generated from larger precursor molecules by intracellular cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号