首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
cyt18-1 (299-9) is a nuclear mutant of Neurospora crassa that has been shown to have a temperature-sensitive defect in splicing the mitochondrial large rRNA intron. In the present work, we investigate the effect of the cyt18-1 mutation on splicing of mitochondrial mRNA introns. Two genes were studied in detail; the cytochrome b (cob) gene, which contains two introns, and a "long form" of the cytochrome oxidase subunit I (coI) gene, which contains four introns. We found that splicing of both cob introns and splicing of at least two of the coI introns are strongly inhibited in the mutant, whereas splicing of coI intron 1, which is excised as a 2.6 X 10(3) base circle, is relatively unaffected. The rRNA intron and both cob introns are group I introns, whereas the circular coI intron may belong to another structural class. Control experiments showed that the degree of inhibition of splicing is greater in the mutant than can be accounted for by severe inhibition of mitochondrial protein synthesis. Finally, experiments in which mutant cells were shifted from 25 degrees C to 37 degrees C showed that splicing of the large rRNA precursor and splicing of the coI mRNA precursor are inhibited with similar kinetics. Considered together, our results suggest that the cyt18 gene encodes a trans-acting component that is required for the splicing of group I mitochondrial DNA introns or some subclass thereof. Since Neurospora cob intron 1 has been shown to be self-splicing in vitro, defective splicing of this intron in cyt18-1 indicates that an essentially RNA-catalyzed splicing reaction must be facilitated by a trans-acting factor, presumably a protein, in vivo.  相似文献   

2.
3.
The nuclear cyt-4 mutants of Neurospora crassa have been shown previously to be defective in splicing the group I intron in the mitochondrial large rRNA gene and in 3' end synthesis of the mitochondrial large rRNA. Here, Northern hybridization experiments show that the cyt-4-1 mutant has alterations in a number of mitochondrial RNA processing pathways, including those for cob, coI, coII and ATPase 6 mRNAs, as well as mitochondrial tRNAs. Defects in these pathways include inhibition of 5' and 3' end processing, accumulation of aberrant RNA species, and inhibition of splicing of both group I introns in the cob gene. The various defects in mitochondrial RNA synthesis in the cyt-4-1 mutant cannot be accounted for by deficiency of mitochondrial protein synthesis or energy metabolism, and they suggest that the cyt-4-1 mutant is defective in a component or components required for processing and/or turnover of a number of different mitochondrial RNAs. Defective splicing of the mitochondrial large rRNA intron in the cyt-4-1 mutant may be a secondary effect of failure to synthesize pre-rRNAs having the correct 3' end. However, a similar explanation cannot be invoked to account for defective splicing of the cob pre-mRNA introns, and the cyt-4-1 mutation may directly affect splicing of these introns.  相似文献   

4.
We reported previously that mitochondrial tyrosyl-tRNA synthetase, which is encoded by the nuclear gene cyt-18 in Neurospora crassa, functions in splicing several group I introns in N. crassa mitochondria (R. A. Akins and A. M. Lambowitz, Cell 50:331-345, 1987). Two mutants in the cyt-18 gene (cyt-18-1 and cyt-18-2) are defective in both mitochondrial protein synthesis and splicing, and an activity that splices the mitochondrial large rRNA intron copurifies with a component of mitochondrial tyrosyl-tRNA synthetase. Here, we used antibodies against different trpE-cyt-18 fusion proteins to identify the cyt-18 gene product as a basic protein having an apparent molecular mass of 67 kilodaltons (kDa). Both the cyt-18-1 and cyt-18-2 mutants contain relatively high amounts of inactive cyt-18 protein detected immunochemically. Biochemical experiments show that the 67-kDa cyt-18 protein copurifies with splicing and synthetase activity through a number of different column chromatographic procedures. Some fractions having splicing activity contain only one or two prominent polypeptide bands, and the cyt-18 protein is among the few, if not only, major bands in common between the different fractions that have splicing activity. Phosphocellulose columns resolve three different forms or complexes of the cyt-18 protein that have splicing or synthetase activity or both. Gel filtration experiments show that splicing activity has a relatively small molecular mass (peak at 150 kDa with activity trailing to lower molecular masses) and could correspond simply to dimers or monomers, or both, of the cyt-18 protein. Finally, antibodies against different segments of the cyt-18 protein inhibit splicing of the large rRNA intron in vitro. Our results indicate that both splicing and tyrosyl-tRNA synthetase activity are associated with the same 67-kDa protein encoded by the cyt-18 gene. This protein is a key constituent of splicing activity; it functions directly in splicing, and few, if any, additional components are required for splicing the large rRNA intron.  相似文献   

5.
R A Akins  A M Lambowitz 《Cell》1987,50(3):331-345
The nuclear cyt-18 mutants of Neurospora crassa are defective in splicing a number of group I introns in mitochondria. Here, cloning and sequencing of the cyt-18 gene show that it contains an open reading frame having significant homology to bacterial tyrosyl-tRNA synthetases. Biochemical and genetic experiments lead to the conclusions that the cyt-18 gene encodes mitochondrial tyrosyl-tRNA synthetase, that mutations in this gene inhibit splicing directly, and that mitochondrial tyrosyl-tRNA synthetase or a derivative of this protein is related to the soluble activity that functions in splicing the mitochondrial large rRNA intron and possibly other group I introns. Analysis of partial revertants provides direct evidence that the cyt-18 gene encodes a protein or proteins with two activities, splicing and aminoacylation, that can be partially separated by mutation. Our findings may be relevant to the evolution of introns and splicing mechanisms in eukaryotes.  相似文献   

6.
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (mt tyrRS), which is encoded by the nuclear gene cyt-18, functions not only in aminoacylation but also in the splicing of group I introns. Here, we isolated the cognate Podospora anserina mt tyrRS gene, designated yts1, by using the N. crassa cyt-18 gene as a hybridization probe. DNA sequencing of the P. anserina gene revealed an open reading frame (ORF) of 641 amino acids which has significant similarity to other tyrRSs. The yts1 ORF is interrupted by two introns, one near its N terminus at the same position as the single intron in the cyt-18 gene and the other downstream in a region corresponding to the nucleotide-binding fold. The P. anserina yts1+ gene transformed the N. crassa cyt-18-2 mutant at a high frequency and rescued both the splicing and protein synthesis defects. Furthermore, the YTS1 protein synthesized in Escherichia coli was capable of splicing the N. crassa mt large rRNA intron in vitro. Together, these results indicate that YTS1 is a bifunctional protein active in both splicing and protein synthesis. The P. anserina YTS1 and N. crassa CYT-18 proteins share three blocks of amino acids that are not conserved in bacterial or yeast mt tyrRSs which do not function in splicing. One of these blocks corresponds to the idiosyncratic N-terminal domain shown previously to be required for splicing activity of the CYT-18 protein. The other two are located in the putative tRNA-binding domain toward the C terminus of the protein and also appear to be required for splicing. Since the E. coli and yeast mt tyrRSs do not function in splicing, the adaptation of the Neurospora and Podospora spp. mt tyrRSs to function in splicing most likely occurred after the divergence of their common ancestor from yeast.  相似文献   

7.
We determined a 1.95 A X-ray crystal structure of a C-terminally truncated Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) that functions in splicing group I introns. CYT-18's nucleotide binding fold and intermediate alpha-helical domains superimpose on those of bacterial TyrRSs, except for an N-terminal extension and two small insertions not found in nonsplicing bacterial enzymes. These additions surround the cyt-18-1 mutation site and are sites of suppressor mutations that restore splicing, but not synthetase activity. Highly constrained models based on directed hydroxyl radical cleavage assays show that the group I intron binds at a site formed in part by the three additions on the nucleotide binding fold surface opposite that which binds tRNATyr. Our results show how essential proteins can progressively evolve new functions.  相似文献   

8.
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) promotes the splicing of group I introns by stabilizing the catalytically active RNA structure. To accomplish this, CYT-18 recognizes conserved structural features of group I intron RNAs using regions of the N-terminal nucleotide-binding fold, intermediate alpha-helical, and C-terminal RNA-binding domains that also function in binding tRNA(Tyr). Curiously, whereas the splicing of the N. crassa mitochondrial large subunit rRNA intron is completely dependent on CYT-18's C-terminal RNA-binding domain, all other group I introns tested thus far are spliced efficiently by a truncated protein lacking this domain. To investigate the function of the C-terminal domain, we used an Escherichia coli genetic assay to isolate mutants of the Saccharomyces cerevisiae mitochondrial large subunit rRNA and phage T4 td introns that can be spliced in vivo by the wild-type CYT-18 protein, but not by the C-terminally truncated protein. Mutations that result in dependence on CYT-18's C-terminal domain include those disrupting two long-range GNRA tetraloop/receptor interactions: L2-P8, which helps position the P1 helix containing the 5'-splice site, and L9-P5, which helps establish the correct relative orientation of the P4-P6 and P3-P9 domains of the group I intron catalytic core. Our results indicate that different structural mutations in group I intron RNAs can result in dependence on different regions of CYT-18 for RNA splicing.  相似文献   

9.
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) promotes the splicing of group I introns by helping the intron RNA fold into the catalytically active structure. The regions required for splicing include an idiosyncratic N-terminal extension, the nucleotide-binding fold domain, and the C-terminal RNA-binding domain. Here, we show that the idiosyncratic N-terminal region is in fact comprised of two functionally distinct parts: an upstream region consisting predominantly of a predicted amphipathic alpha-helix (H0), which is absent from bacterial tyrosyl-tRNA synthetases (TyrRSs), and a downstream region, which contains predicted alpha-helices H1 and H2, corresponding to features in the X-ray crystal structure of the Bacillus stearothermophilus TyrRS. Bacterial genetic assays with libraries of CYT-18 mutants having random mutations in the N-terminal region identified functionally important amino acid residues and supported the predicted structures of the H0 and H1 alpha-helices. The function of N and C-terminal domains of CYT-18 was investigated by detailed biochemical analysis of deletion mutants. The results confirmed that the N-terminal extension is required only for splicing activity, but surprisingly, at least in the case of the N. crassa mitochondrial (mt) large ribosomal subunit (LSU) intron, it appears to act primarily by stabilizing the structure of another region that interacts directly with the intron RNA. The H1/H2 region is required for splicing activity and TyrRS activity with the N. crassa mt tRNA(Tyr), but not for TyrRS activity with Escherichia coli tRNA(Tyr), implying a somewhat different mode of recognition of the two tyrosyl-tRNAs. Finally, a CYT-18 mutant lacking the N-terminal H0 region is totally defective in binding or splicing the N. crassa ND1 intron, but retains substantial residual activity with the mt LSU intron, and conversely, a CYT-18 mutant lacking the C-terminal RNA-binding domain is totally defective in binding or splicing the mt LSU intron, but retains substantial residual activity with the ND1 intron. These findings lead to the surprising conclusion that CYT-18 promotes splicing via different sets of interactions with different group I introns. We suggest that these different modes of promoting splicing evolved from an initial interaction based on the recognition of conserved tRNA-like structural features of the group I intron catalytic core.  相似文献   

10.
The mitochondrial tyrosyl-tRNA synthetases (mt TyrRSs) of Pezizomycotina fungi are bifunctional proteins that aminoacylate mitochondrial tRNA(Tyr) and are structure-stabilizing splicing cofactors for group I introns. Studies with the Neurospora crassa synthetase (CYT-18 protein) showed that splicing activity is dependent upon Pezizomycotina-specific structural adaptations that form a distinct group I intron-binding site in the N-terminal catalytic domain. Although CYT-18's C-terminal domain also binds group I introns, it has been intractable to X-ray crystallography in the full-length protein. Here, we determined an NMR structure of the isolated C-terminal domain of the Aspergillus nidulans mt TyrRS, which is closely related to but smaller than CYT-18's. The structure shows an S4 fold like that of bacterial TyrRSs, but with novel features, including three Pezizomycontia-specific insertions. (15)N-(1)H two-dimensional NMR showed that C-terminal domains of the full-length A. nidulans and Geobacillus stearothermophilus synthetases do not tumble independently in solution, suggesting restricted orientations. Modeling onto a CYT-18/group I intron cocrystal structure indicates that the C-terminal domains of both subunits of the homodimeric protein bind different ends of the intron RNA, with one C-terminal domain having to undergo a large shift on its flexible linker to bind tRNA(Tyr) or the intron RNA on either side of the catalytic domain. The modeling suggests that the C-terminal domain acts together with the N-terminal domain to clamp parts of the intron's catalytic core, that at least one C-terminal domain insertion functions in group I intron binding, and that some C-terminal domain regions bind both tRNA(Tyr) and group I intron RNAs.  相似文献   

11.
The sequence of the apocytochrome b (cob) gene of Neurospora crassa has been determined. The structural gene is interrupted by two intervening sequences of approximately 1260 bp each. The polypeptide encoded by the exons shows extensive homology with the cob proteins of Aspergillus nidulans and Saccharomyces cerevisiae (79% and 60%, respectively). The two introns are, however, located at sites different from those of introns in the cob genes of A. nidulans and S. cerevisiae (which contain highly homologous introns at the same site within the gene). The introns share several short regions of sequence homology (10-12 bp long) with each other and with other fungal mitochondrial introns. Moreover, the second intron contains a 50 nucleotide long sequence that is highly homologous with sequences within every ribosomal intron of fungal mitochondria sequenced to date. The conserved sequences may allow the formation of a core secondary structure, which is nearly identical in many mitochondrial introns. The conserved secondary structure may be required for intron splicing. The second intron contains an open reading frame, continuous with the preceding exon, of approximately 290 codons. Two stretches of 10 amino acid residues, conserved in many introns, are present in the open reading frame.  相似文献   

12.
Mohr S  Stryker JM  Lambowitz AM 《Cell》2002,109(6):769-779
The Neurospora crassa CYT-18 protein, the mitochondrial tyrosyl-tRNA synthetase, functions in splicing group I introns by inducing formation of the catalytically active RNA structure. Here, we identified a DEAD-box protein (CYT-19) that functions in concert with CYT-18 to promote group I intron splicing in vivo and vitro. CYT-19 does not bind specifically to group I intron RNAs and instead functions as an ATP-dependent RNA chaperone to destabilize nonnative RNA structures that constitute kinetic traps in the CYT-18-assisted RNA-folding pathway. Our results demonstrate that a DExH/D-box protein has a specific, physiologically relevant chaperone function in the folding of a natural RNA substrate.  相似文献   

13.
The Neurospora CYT-18 protein, a tyrosyl-tRNA synthetase, which functions in splicing group I introns in mitochondria, promotes splicing of mutants of the distantly related bacteriophage T4 td intron. In an in vivo assay, wild-type CYT-18 protein expressed in E. coli suppressed mutations in the td intron's catalytic core. CYT-18-suppressible mutations were also suppressed by high Mg2+ or spermidine in vitro, suggesting they affect intron structure. Both the N- and C-terminal domains of CYT-18 are required for efficient splicing, but CYT-18 with a large C-terminal truncation retains some activity. Our results indicate that CYT-18 interacts with conserved structural features of group I introns, and they provide direct evidence that a protein promotes splicing by stabilizing the catalytically active structure of the intron RNA.  相似文献   

14.
Mitochondrial genomes (mtDNAs) in angiosperms contain numerous group II-type introns that reside mainly within protein-coding genes that are required for organellar genome expression and respiration. While splicing of group II introns in non-plant systems is facilitated by proteins encoded within the introns themselves (maturases), the mitochondrial introns in plants have diverged and have lost the vast majority of their intron-encoded ORFs. Only a single maturase gene (matR) is retained in plant mtDNAs, but its role(s) in the splicing of mitochondrial introns is currently unknown. In addition to matR, plants also harbor four nuclear maturase genes (nMat 1 to 4) encoding mitochondrial proteins that are expected to act in the splicing of group II introns. Recently, we established the role of one of these proteins, nMAT2, in the splicing of several mitochondrial introns in Arabidopsis. Here, we show that nMAT1 is required for trans-splicing of nad1 intron 1 and also functions in cis-splicing of nad2 intron 1 and nad4 intron 2. Homozygous nMat1 plants show retarded growth and developmental phenotypes, modified respiration activities and altered stress responses that are tightly correlated with mitochondrial complex I defects.  相似文献   

15.
In Neurospora, the gene encoding the mitochondrial large (25S) ribosomal RNA contains an intervening sequence of 2.3 kb. We have identified eight nuclear mutants that are defective in splicing the mitochondrial large ribosomal RNA and that accumulate unspliced precursor RNA. These mutants identify three different nuclear genes required for the same mitochondrial RNA splicing reaction. Some of the mutants have unique phenotypic characteristics (for example, accumulation of an unusual intron RNA) that may provide insight into specific aspects of mitochondrial RNA splicing. Mutations at one locus, cyt4, are subject to partial phenotypic suppression by the electron-transport inhibitor antimycin. This phenomenon suggests that at least one component required for mitochondrial RNA splicing is regulated such that its synthesis or activity is increased in response to impairment of electron transport.  相似文献   

16.
Alternative modes of binding by U2AF65 at the polypyrimidine tract   总被引:1,自引:0,他引:1  
During initial recognition of an intron in pre-mRNA, the 3' end of the intron is bound by essential splicing factors. Notably, the consensus RNA sequences bound by these proteins are highly degenerate in humans. This raises the question of 3' splicing factor function in introns lacking canonical binding sites. Investigating the introns of the model organism Neurospora crassa revealed a different organization at the 3' end of the intron compared to most eukaryotic organisms. The predicted branch point sequences of Neurospora introns are much closer to the 3' splice site compared to those in human introns. In addition, Neurospora introns lack the canonical polypyrimidine tract found at the end of introns in most eukaryotic organisms. The large subunit of the U2 snRNP associated factor (U2AF65), which is essential for splicing of human introns and specifically recognizes the polypyrimidine tract, is also present in Neurospora. We show that Neurospora U2AF65 binds RNA with low affinity and specificity, apparently evolving with its disappearing binding site. The arginine/serine rich domain at the N-terminus of Neurospora U2AF65 regulates its RNA binding. We find that this regulated binding can be recapitulated in human U2AF65 which has been mutated to decrease both affinity and overall charge. Finally, we show that the addition of the small U2AF subunit (U2AF35) to U2AF65 with weakened RNA binding affinity significantly enhances the affinity of the resulting U2AF heterodimer.  相似文献   

17.
Neurospora mitochondrial tyrosyl-tRNA synthetase (mt TyrRS), which is encoded by nuclear gene cyt-18, functions in splicing group I introns. Analysis of intragenic partial revertants of the cyt-18-2 mutant and in vitro mutants of the cyt-18 protein expressed in E. coli showed that splicing activity of the cyt-18 protein is dependent on a small N-terminal domain that has no homolog in bacterial or yeast mt TyrRSs. This N-terminal splicing domain apparently acts together with other regions of the protein to promote splicing. Our findings support the hypothesis that idiosyncratic sequences in aminoacyl-tRNA synthetase may function in processes other than aminoacylation. Furthermore, they suggest that splicing activity of the Neurospora mt TyrRs was acquired after the divergence of Neurospora and yeast, and they demonstrate one mechanism whereby splicing factors may evolve from cellular RNA binding proteins.  相似文献   

18.
19.
Self-splicing of yeast mitochondrial ribosomal and messenger RNA precursors   总被引:25,自引:0,他引:25  
G van der Horst  H F Tabak 《Cell》1985,40(4):759-766
We have previously shown linear and circular splicing intermediates resembling intermediates that result from self-splicing of ribosomal precursor RNA of Tetrahymena to be present in mitochondrial RNA. Here we show that splicing of yeast mitochondrial precursor RNA also occurs in vitro in the absence of mitochondrial proteins. The large ribosomal RNA gene, consisting of the intron and part of the flanking exon regions, was inserted behind the SP6 promoter in a recombinant plasmid and was transcribed in vitro. The resulting RNA shows self-catalyzed splicing via incorporation of GTP at the 5'-end of the excised intron, 5'- to 3'-exon ligation, and intron circularization. When purified mitochondrial RNA is incubated under similar conditions with alpha-32P-GTP, the excised ribosomal intron RNA is also labeled, as well as several other RNA species. Some of these RNAs are derived from excised introns from the multiply split gene coding for cytochrome oxidase subunit I.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号