首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The 3'-untranslated regions (UTRs) of human papillomavirus 16 (HPV16) and bovine papillomavirus 1 (BPV1) contain a negative regulatory element (NRE) that inhibits viral late gene expression. The BPV1 NRE consists of a single 9-nucleotide (nt) U1 small nuclear ribonucleoprotein (snRNP) base pairing site (herein called a U1 binding site) that via U1 snRNP binding leads to inhibition of the late poly(A) site. The 79-nt HPV16 NRE is far more complicated, consisting of 4 overlapping very weak U1 binding sites followed by a poorly understood GU-rich element (GRE). We undertook a molecular dissection of the HPV16 GRE and identify via UV cross-linking, RNA affinity chromatography, and mass spectrometry that is bound by the CUG-binding protein 1 (CUGBP1). Reporter assays coupled with knocking down CUGBP1 levels by small interfering RNA and Dox-regulated shRNA, demonstrate CUGBP1 is inhibitory in vivo. CUGBP1 is the first GRE-binding protein to have RNA interfering knockdown evidence in support of its role in vivo. Several fine-scale GRE mutations that inactivate GRE activity in vivo and GRE binding to CUGBP1 in vitro are identified. The CUGBP1.GRE complex has no activity on its own but specifically synergizes with weak U1 binding sites to inhibit expression in vivo. No synergy is seen if the U1 binding sites are made weaker by a 1-nt down-mutation or made stronger by a 1-nt up-mutation, underscoring that the GRE operates only on weak sites. Interestingly, inhibition occurs at multiple levels, in particular at the level of poly(A) site activity, nuclear-cytoplasmic export, and translation of the mRNA. Implications for understanding the HPV16 life cycle are discussed.  相似文献   

4.
The major capsid protein L1 of human papillomavirus (HPV) contains the immunodominant neutralization epitopes of the virus and can auto-assembles to form virus-like particles (VLPs). Therefore, HPV L1 capsid proteins have been well investigated as potential vaccine candidates. To express large quantities of human papillomavirus type 16 (HPV-16) L1 in Escherichia coli (E. coli), The HPV-16 L1 gene was cloned into pGEX-4T-1, resulting in only low expression levels of HPV-16 L1 in E. coli. The first 129 nucleotides of the 5' end of the L1 gene, which contains the major inhibitory RNA element, were then deleted. The deletion RNA was efficiently translated, resulting in about 2-fold higher L1 accumulation in E. coli. The N-terminal amino-acid deletion did not affect the ability of L1 to auto-assemble in E. coli and form small VLPs.  相似文献   

5.
6.
7.
8.
We have initiated a screen for cellular factors that can induce human papillomavirus type 16 (HPV-16) late gene expression in human cancer cells. We report that the overexpression of polypyrimidine tract binding protein (PTB), also known as heterologous nuclear ribonucleoprotein I (hnRNP I), induces HPV-16 late gene expression in cells transfected with subgenomic HPV-16 plasmids or with full-length HPV-16 genomes and in persistently HPV-16-infected cells. In contrast, other hnRNPs such as hnRNP B1/A2, hnRNP F, and hnRNP Q do not induce HPV-16 late gene expression. PTB activates SD3632, the only 5' splice site on the HPV-16 genome that is used exclusively by late mRNAs. PTB interferes with splicing inhibitory sequences located immediately upstream and downstream of SD3632, thereby activating late gene expression. One AU-rich PTB-responsive element was mapped to a 198-nucleotide sequence located downstream of SD3632. The deletion of this element induced HPV-16 late gene expression in the absence of PTB. Our results suggest that the overexpression of PTB interferes with cellular factors that interact with the inhibitory sequences. One may speculate that an increase in PTB levels or a reduction in the concentration of a PTB antagonist is required for the activation of HPV-16 late gene expression during the viral life cycle.  相似文献   

9.
Mutations within coding sequences of the various human papillomavirus type 16 (HPV-16) genes have been used to demonstrate that the HPV-16 E7 gene is necessary and sufficient for transformation of rodent cells. We now provide evidence that, in addition to E7 coding sequences, a small cis-acting region immediately flanking the 3' end of E7 coding sequences is also required for transformation. This was shown by translation termination linker insertion, progressive deletion analysis, and site-directed mutagenesis. Disruption of the nucleotide (nt) 880 splice donor site within the 3'-flanking region by deletion of as few as 4 nt or substitution of 3 nt totally abolished transformation. Regeneration of the wild-type sequence in a previously transformation-incompetent splice site mutant restored transformation. Mutating the wild-type splice donor site to the consensus splice site resulted in a stronger transformation phenotype, while mutating the +2 position of the consensus sequence significantly reduced the frequency of transformation. It was shown with RNase protection assays that the amount of E7 mRNA in transformation-deficient splice site mutants was much lower. Nuclear runoff experiments revealed that there was no change in the rate of synthesis of E7 message in the nt 880 splice site mutant. Furthermore, mutations of HPV-16 sequences indicated that the two other early region splice donor sites have no more than minor roles in transformation and efficient RNA accumulation. These results indicate that the specific integrity of the nt 880 splice donor site is essential for both accumulation of E7 RNA and efficient E7-mediated transformation.  相似文献   

10.
Zhao X  Rush M  Schwartz S 《Journal of virology》2004,78(20):10888-10905
We have previously identified cis-acting RNA sequences in the human papillomavirus type 16 (HPV-16) L1 coding region which inhibit expression of L1 from eukaryotic expression plasmids. Here we have determined the function of one of these RNA elements, and we provide evidence that this RNA element is a splicing silencer which suppresses the use of the 3' splice site located immediately upstream of the L1 AUG. We also show that this splice site is inefficiently utilized as a result of a suboptimal polypyrimidine tract. Introduction of point mutations in the L1 coding region that altered the RNA sequence without affecting the L1 protein sequence resulted in the inactivation of the splicing silencer and induced splicing to the L1 3' splice site. These mutations also prevented the interaction of the RNA silencer with a 35-kDa cellular protein identified here as hnRNP A1. The splicing silencer in L1 inhibits splicing in vitro, and splicing can be restored by the addition of RNAs containing an hnRNP A1 binding site to the reaction, demonstrating that hnRNP A1 inhibits splicing of the late HPV-16 mRNAs through the splicing silencer sequence. While we show that one role of the splicing silencer is to determine the ratio between partially spliced L2/L1 mRNAs and spliced L1 mRNAs, we also demonstrate that it inhibits splicing from the major 5' splice site in the early region to the L1 3' splice site, thereby playing an essential role in preventing late gene expression at an early stage of the viral life cycle. We speculate that the activity of the splicing silencer and possibly the concentration of hnRNP A1 in the HPV-16-infected cell determines the ability of the virus to establish a persistent infection which remains undetected by the host immune surveillance.  相似文献   

11.
12.
13.
IL-4 secreted by activated T cells is a pleiotropic cytokine affecting growth and differentiation of diverse cell types such as T cells, B cells, and mast cells. We investigated the upstream regulatory elements of the human IL-4 promoter. A novel T cell-specific negative regulatory element (NRE) composed of two protein-binding sites were mapped in the 5' flanking region of the IL-4 gene: -311CTCCCTTCT-303 (NRE-I) and -288CTTTTTGCTT-TGC-300 (NRE-II). A T cell-specific protein Neg-1 and a ubiquitous protein Neg-2 binding to NRE-I and NRE-II, respectively, were identified. Furthermore, a positive regulatory element was found 45 bp downstream of the NRE. The enhancer activity of the PRE was completely suppressed when the NRE was present. These data suggest that IL-4 promoter activity is normally down-regulated by an NRE via repression of the enhancer positive regulatory element. These data may have implications for the stringent control of IL-4 expression in T cells.  相似文献   

14.
Mutations in yeast U5 snRNA alter the specificity of 5' splice-site cleavage   总被引:47,自引:0,他引:47  
A Newman  C Norman 《Cell》1991,65(1):115-123
Recognition of 5' splice sites in pre-mRNA splicing is achieved in part by base pairing with U1 snRNA. We have used interactive suppression in the yeast Saccharomyces cerevisiae to look for other factors involved in 5' splice-site recognition. This approach identified an extragenic suppressor that activates a cryptic 5' splice site. The suppressor is a gene for U5 snRNA (snR7) with a single base mutation in a strictly conserved 9 base sequence. This suggests that U5 snRNA can play a part in determining the position of 5' splice-site cleavage. Consistent with this, we have been able to isolate other mutations in the 9 base element in U5 snRNA that specifically activate a second cryptic 5' splice site nearby.  相似文献   

15.
The fourth exon of the mouse polymeric immuno-globulin receptor (pIgR) is 654 nt long and, despite being surrounded by large introns, is constitutively spliced into the mRNA. Deletion of an 84 nt sequence from this exon strongly activated both cryptic 5' and 3' splice sites surrounding a 78 nt cryptic intron. The 84 nt deletion is just upstream of the cryptic 3' splice site; the cryptic 3' splice site was likely activated because the deletion created a better 3' splice site. However, the cryptic 5' splice site was also required to activate the cryptic splice reaction; point mutations in either of the cryptic splice sites that decreased their match to the consensus splice site sequence inactivated the cryptic splice reaction. The activation and inactivation of these cryptic splice sites as a pair suggests that they are being co-recognized by the splicing machinery. Interestingly, the large fourth exon of the pIgR gene encodes two immunoglobulin-like extracellular protein domains; the cryptic 3' splice site coincides with the junction between these protein domains. The cryptic 5' splice site is located between protein subdomains where an intron is found in another gene of the immunoglobulin superfamily.  相似文献   

16.
17.
A 5' splice site located in a 3' untranslated region (3'UTR) has been shown previously to inhibit gene expression. Natural examples of inhibitory 5' splice sites have been identified in the late 3'UTRs of papillomaviruses and are thought to inhibit viral late gene expression at early stages of the viral life cycle. In this study, we demonstrate that the interaction of the human immunodeficiency virus type 1 Rev protein with the Rev-responsive element (RRE) overcomes the inhibitory effects of a 5' splice site located within a 3'UTR. This was studied by using both a bovine papillomavirus type 1 L1 cDNA expression vector and a chloramphenicol acetyltransferase expression vector containing a 5' splice site in the 3'UTR. In both systems, coexpression of Rev enhanced cytoplasmic expression from vectors containing the RRE even when the RRE and the inhibitory 5' splice site were separated by up to 1,000 nucleotides. In addition, multiple copies of a 5' splice site in a 3'UTR were shown to act synergistically, and this effect could also be moderated by the interaction of Rev and the RRE. These studies provide additional evidence that at least one mechanism of Rev action is through interactions with the splicing machinery. We have previously shown that base pairing between the U1 small nuclear RNA and a 3'UTR 5' splice site is required for inhibition of gene expression. However, experiments by J. Kjems and P. A. Sharp (J. Virol. 67:4769-4776, 1993) have suggested that Rev acts on spliceosome assembly at a stage after binding of the U1 small nuclear ribonucleoprotein to the 5' splice site. This finding suggests that binding of additional small nuclear ribonucleoproteins, as well as other splicing factors, may be necessary for the inhibitory action of a 3'UTR 5' splice site. These data also suggest that expression of the papillomavirus late genes in terminally differentiated keratinocytes can be regulated by a viral or cellular Rev-like activity.  相似文献   

18.
19.
We have investigated the role of the human papillomavirus type 16 (HPV-16) early untranslated region (3' UTR) in HPV-16 gene expression. We found that deletion of the early 3' UTR reduced the utilization of the early polyadenylation signal and, as a consequence, resulted in read-through into the late region and production of late L1 and L2 mRNAs. Deletion of the U-rich 3' half of the early 3' UTR had a similar effect, demonstrating that the 57-nucleotide U-rich region acted as an enhancing upstream element on the early polyadenylation signal. In accordance with this, the newly identified hFip1 protein, which has been shown to enhance polyadenylation through U-rich upstream elements, interacted specifically with the HPV-16 upstream element. This upstream element also interacted specifically with CstF-64, hnRNP C1/C2, and polypyrimidine tract binding protein, suggesting that these factors were either enhancing or regulating polyadenylation at the HPV-16 early polyadenylation signal. Mutational inactivation of the early polyadenylation signal also resulted in increased late mRNA production. However, the effect was reduced by the activation of upstream cryptic polyadenylation signals, demonstrating the presence of additional strong RNA elements downstream of the early polyadenylation signal that direct cleavage and polyadenylation to this region of the HPV-16 genome. In addition, we identified a 3' splice site at genomic position 742 in the early region with the potential to produce E1 and E4 mRNAs on which the E1 and E4 open reading frames are preceded only by the suboptimal E6 AUG. These mRNAs would therefore be more efficiently translated into E1 and E4 than previously described HPV-16 E1 and E4 mRNAs on which E1 and E4 are preceded by both E6 and E7 AUGs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号