首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Melatonin is synthesized primarily in the pineal gland. Lithium affects the circadian rhythms that may explain its therapeutic effectiveness in the treatment of bipolar disorder. The objective of this study was to investigate the effect of lithium on the biochemical parameters involved in melatonin synthesis in the pineal gland of viscacha. Viscachas were daily intraperitoneally injected with lithium chloride or saline solution for one month. Pineal mRNAs encoding β1-adrenoceptor and arylalkylamine-N-acetyltransferase enzyme (AA-NAT) were studied by in situ hybridization. Pineal melatonin concentrations were determined by radioimmunoassay, and AA-NAT and hydroxyindol-O-methyltransferase (HIOMT) activities were investigated by radiometric assays. The only parameters that decreased significantly were the expression of AA-NAT mRNA and pineal melatonin levels. Our data suggest that lithium treatment may decrease melatonin synthesis in the viscacha pineal gland by a complex mechanism that involves currently unknown events that are beyond a decrease in the expression of AA-NAT enzyme.  相似文献   

4.
The high affinity immunoglobulin E receptor (FcepsilonRI) complex is dedicated to immunoglobulin E-mediated allergic responses. Expression of the FcepsilonRI receptor is thought to be relatively stable and limited to mast cells, basophils, eosinophils, monocytes, Langerhans cells, platelets, and neutrophils. We now report that the FcepsilonRIalpha and FcepsilonRIgamma polypeptides are expressed in the pinealocyte, the melatonin-secreting cell of the pineal gland. Moreover, Fcer1a mRNA levels increased approximately 100-fold at night to levels that were higher than in other tissues examined. Pineal FcepsilonRIalpha protein also increased markedly at night from nearly undetectable daytime levels. Our studies indicate that pineal Fcer1a mRNA levels are controlled by a well described neural pathway that controls pineal function. This pathway includes the master circadian oscillator in the suprachiasmatic nucleus and passes through central and peripheral structures. The circadian expression of FcepsilonRIalpha in the pineal gland is driven by this neural circuit via an adrenergic/cyclic AMP mechanism. Pineal FcepsilonRIalpha and FcepsilonRIgamma may represent a previously unrealized molecular link between the neuroendocrine and immune systems.  相似文献   

5.
6.
7.
The oligopeptide transporter 1, PepT1, is a member of the Slc15 family of 12 membrane-spanning domain transporters; PepT1 has proton/peptide cotransport activity and is selectively expressed in intestinal epithelial cells, where it is responsible for the nutritional absorption of di- and tri-peptides. Here, a novel PepT1 gene product has been identified in the rat pineal gland, termed pgPepT1. It encodes a 150-amino acid protein encompassing the C-terminal 3 membrane-spanning domains of intestinal PepT1 protein, with 3 additional N-terminal residues. Expression of pgPepT1 appears to be restricted to the pineal gland and follows a marked circadian pattern with >100-fold higher levels of mRNA occurring at night; this is accompanied by an accumulation of membrane-associated pgPepT1 protein ( approximately 16 kDa). The daily rhythm in pgPepT1 mRNA is regulated by the well described neural pathway that controls pineal melatonin production. This includes the retina, the circadian clock in the suprachiasmatic nucleus, central structures, and projections from the superior cervical ganglia; activation of this pathway results in the release of norepinephrine. Here it was found that pgPepT1 expression is mediated by a norepinephrine-->cyclic AMP mechanism that activates an alternative promoter located in intron 20 of the gene. pgPepT1 protein was found to have transporter-modulator activity; it could contribute to circadian changes in pineal function through this mechanism.  相似文献   

8.
9.
10.
Abstract: The circadian rhythms in melatonin production in the chicken pineal gland and retina reflect changes in the activity of serotonin N -acetyltransferase (arylalkylamine N -acetyltransferase; AA-NAT; EC 2.3.1.87). Here we determined that the chicken AA-NAT mRNA is detectable in follicular pineal cells and retinal photoreceptors and that it exhibits a circadian rhythm, with peak levels at night. AA-NAT mRNA was not detected in other tissues. The AA-NAT mRNA rhythm in the pineal gland and retina persists in constant darkness (DD) and constant lighting (LL). The amplitude of the pineal mRNA rhythm is not decreased in LL. Light appears to influence the phase of the clock driving the rhythm in pineal AA-NAT mRNA in two ways: The peak is delayed by ∼6 h in LL, and it is advanced by >4 h by a 6-h light pulse late in subjective night in DD. Nocturnal AA-NAT mRNA levels do not change during a 20-min exposure to light, whereas this treatment dramatically decreases AA-NAT activity. These observations suggest that the rhythmic changes in chicken pineal AA-NAT activity reflect, at least in part, clock-generated changes in mRNA levels. In contrast, changes in mRNA content are not involved in the rapid light-induced decrease in AA-NAT activity.  相似文献   

11.
The presence of luteinizing hormone receptors in human pineal glands from five females and three males, ranging in age from 61-89 yr, was examined by in situ hybridization and immunocytochemistry. The results demonstrated the presence of these receptors at the mRNA and protein levels in all the pineal glands examined. Pineal gland luteinizing hormone receptors could potentially be involved in the regulation of melatonin synthesis.  相似文献   

12.
The presence of luteinizing hormone receptors in human pineal glands from five females and three males, ranging in age from 61-89 yr, was examined by in situ hybridization and immunocytochemistry. The results demonstrated the presence of these receptors at the mRNA and protein levels in all the pineal glands examined. Pineal gland luteinizing hormone receptors could potentially be involved in the regulation of melatonin synthesis.  相似文献   

13.
14.
A second gene encoding a functional tryptophan hydroxylase activity has recently been described (TPH2), which is expressed abundantly in brainstem, the primary site of serotonergic neurons in the CNS. As serotonin (5-HT) has an important role as a precursor of the nocturnal synthesis of the pineal gland hormone, melatonin, it was of interest to determine the relative expression of TPH1 and 2 mRNA in the rat pineal during the light:dark (L:D) cycle using sensitive real-time RT-PCR assays which were developed for each TPH isoform. TPH1 mRNA expression was 105-fold more abundant in rat pineal than TPH2, and showed a significant approximately 4-fold nocturnal increase in expression which may contribute to the previously described nocturnal increase in pineal tryptophan hydroxylase activity. TPH2 expression within the gland showed no significant variation with time of day and was very low (approximately 300 copies/gland) indicating expression in the small proportion of "non-pinealocyte" cells in the gland.  相似文献   

15.
16.
Otx2 is a vertebrate homeobox gene, which has been found to be essential for the development of rostral brain regions and appears to play a role in the development of retinal photoreceptor cells and pinealocytes. In this study, the temporal expression pattern of Otx2 was revealed in the rat brain, with special emphasis on the pineal gland throughout late embryonic and postnatal stages. Widespread high expression of Otx2 in the embryonic brain becomes progressively restricted in the adult to the pineal gland. Crx (cone-rod homeobox), a downstream target gene of Otx2, showed a pineal expression pattern similar to that of Otx2, although there was a distinct lag in time of onset. Otx2 protein was identified in pineal extracts and found to be localized in pinealocytes. Total pineal Otx2 mRNA did not show day-night variation, nor was it influenced by removal of the sympathetic input, indicating that the level of Otx2 mRNA appears to be independent of the photoneural input to the gland. Our results are consistent with the view that pineal expression of Otx2 is required for development and we hypothesize that it plays a role in the adult in controlling the expression of the cluster of genes associated with phototransduction and melatonin synthesis.  相似文献   

17.
18.
19.
S-Antigen is a soluble cell protein unique to the retina and pineal gland. In the former, it is a well-characterized molecule that participates in light-induced signal transduction in photoreceptor cells. In the latter, the functional role is presently not known. The expression of S-antigen and its mRNA was examined in the rat retina and pineal gland throughout the diurnal cycle and with light interruption of the dark cycle. A cDNA for rat S-antigen was isolated from a pineal gland library to examine the mRNAs. A 1.7-kb mRNA for S-antigen was observed in both the pineal gland and the retina. Retinal S-antigen mRNA was expressed throughout the diurnal cycle and increased with light interruption of the dark cycle. In contrast, pineal gland S-antigen mRNA levels were detectable only during the dark and were absent preceding and during light. The phenotypic expression of immunoreactive S-antigen, identified with two S-antigen monoclonal antibodies (MAbs), MAb A9C6 and MAb C10C10, was analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel (PAGE) and isoelectric focusing (IEF) electrophoresis. Immunoblot analysis of gels after SDS-PAGE revealed a single 46-kDa protein in retina. In contrast, two bands of approximately 43 and 46 kDa were identified in the pineal gland. Immunoblots of the retinal extracts separated by IEF electrophoresis revealed five S-antigen isomers, which vary quantitatively throughout the diurnal cycle and when light interrupted the dark cycle. Immunoblots of the pineal gland samples separated by IEF electrophoresis indicated that the pineal gland possesses four pineal gland-specific forms of S-antigen in addition to the five forms present in the retina. The differences observed in the mRNA and protein analyses suggest tissue-specific structural components for S-antigen in the retina and pineal gland that are not regulated in the same manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号