首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A protein of 15 kDa (p15) was isolated from Trypanosoma brucei subpellicular microtubules by tubulin affinity chromatography. The protein bound tubulin specifically both in its native form and after SDS-PAGE in tubulin overlay experiments. p15 promoted both the in vitro polymerization of purified calf brain tubulin and the bundling of preformed mammalian microtubules. Immunolabeling identified p15 at multiple sites along microtubule polymers comprising calf brain tubulin and p15 as well as on the subpellicular microtubules of cryosectioned trypanosomes. Antibodies directed against p15 did not cross react with mammalian microtubules. It is suggested that p15 is a trypanosome-specific microtubule-associated protein (MAP) that contributes to the unique organization of the subpellicular microtubules.  相似文献   

2.
Subpellicular microtubules isolated from Trypanosoma brucei parasites were fractionated on a phosphocellulose column, and the trypanosomal p52 microtubule-associated protein was eluted along with two other proteins of 41 and 36 kDa. These proteins were found to be the glycosomal enzymes aldolase (41 kDa) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 36 kDa) by enzyme activity, antibody cross-reaction, and N-terminal sequencing. These enzymes were coprecipitated with tubulin in the presence of taxol, and aldolase had the capacity to polymerize tubulin and crosslink microtubules. Immunolocalization of anti-aldolase and anti-GAPDH antibodies did not show an interaction between these enzymes and the subpellicular microtubules. The question whether the copurification of aldolase and the subpellicular microtubules could reflect a physiological phenomenon or may be an experimental artifact is discussed.  相似文献   

3.
Tubulin expression in trypanosomes   总被引:2,自引:0,他引:2  
Microtubules in trypanosomes are the main component of the flagellar axoneme and of the subpellicular microtubule corset, whose relative positions determine the morphology of each cell stage of the life cycle of these parasites. Microtubules are polymers of tubulin, a protein dimer of two 55-kDa subunits, alpha- and beta-tubulin; in Trypanosoma brucei, the tubulin-coding sequences are clustered in a 40-kb fragment of tandemly repeated alpha- and beta-tubulin genes separated by a 170-bp intergenic zone. This cluster is transcribed in a unique RNA which is rapidly processed into mature mRNAs carrying the 5' 35-nucleotide leader sequence found in all trypanosome mRNAs. Although no heterogeneity has been found at the gene level, tubulin can be post-translationally modified in 2 ways: the C-terminal tyrosine of alpha-tubulin can be selectively cleaved and added again with 2 enzymes, tubulin carboxypeptidase and tubulin-tyrosine ligase; alpha-tubulin can also be acetylated on a lysine residue. Some molecular domains of tubulin are restricted to subpopulations of microtubules; for instance, the beta-tubulin form defined by the monoclonal antibody 1B41 is sequestered into a part of the subpellicular cytoskeleton limited to the flagellar adhesion zone, which might correspond to the group of 4 microtubules associated with a cisterna of the endoplasmic reticulum, forming the so-called "subpellicular microtubule quartet" (SFMQ). The early assembly of this zone in each daughter cell during the cell division of T. brucei, together with the alterations undergone by the domain defined by the monoclonal antitubulin 24E3 during the differentiation of Trypanosoma cruzi, suggest that specific tubulin forms are responsible for dynamic properties of SFMQ possibly involved in trypanosome morphogenesis.  相似文献   

4.
γ‐Tubulin complex constitutes a key component of the microtubule‐organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ‐tubulin small complex (γTuSC) composed of γ‐tubulin, gamma‐tubulin complex protein (GCP)2 and GCP3, whereas animals contain the γ‐tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ‐tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ‐tubulin complex in T. brucei is composed of γ‐tubulin and three GCP proteins, GCP2‐GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ‐tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex.  相似文献   

5.
A factor (33K protein) that modulates tubulin polymerization in vitro has been purified to homogeneity from porcine brain by ammonium sulfate fractionation and Whatman DE52, Toyo-pearl HW65C and Bio-Gel A 0.5 m column chromatographies. The purified fraction was free of nucleic acids and sugars. The activity of the purified 33K protein is pronase E sensitive but apparently heat- and trypsin-resistant though it undergoes tryptic digestion. The 33K protein inhibits polymerization of brain microtubule proteins in a dose-dependent manner and partially depolymerizes preformed microtubules. It also inhibits polymerization of purified starfish tubulin and microtubule elongation involving fragellar outer doublet microtubules and purified porcine brain tubulin. This suggests that the target of the 33K protein is tubulin rather than microtubule-associated proteins. The 33K protein causes incomplete depolymerization of microtubules and a new steady state is quickly attained which is apparently independent of microtubule mass concentration. Divalent cations such as calcium and magnesium do not modulate the inhibitory activity of the 33K protein.  相似文献   

6.
MAP2C is a microtubule-associated protein abundant in immature nerve cells. We isolated a cDNA clone encoding whole mouse MAP2C of 467 amino acid residues. In fibroblasts transiently transfected with cDNA of MAP2C, interphase microtubule networks were reorganized into microtubule bundles. To reveal the dynamic properties of microtubule bundles, we analyzed the incorporation sites of exogenously introduced tubulin by microinjection of biotin-labeled tubulin and the turnover rate of microtubule bundles by photoactivation of caged fluorescein- labeled tubulin. The injected biotin-labeled tubulin was rapidly incorporated into distal ends of preexisting microtubule bundles, suggesting a concentration of the available ends of microtubules at this region. Although homogenous staining of microtubule bundles with antibiotin antibody was observed 2 h after injection, the photoactivation study indicated that turnover of microtubule bundles was extremely suppressed and < 10% of tubulin molecules would be exchanged within 1 h. Multiple photoactivation experiments provided evidence that neither catastrophic disassembly at the distal ends of bundles nor concerted disassembly due to treadmilling at the proximal ends could explain the observed rapid incorporation of exogenously introduced tubulin molecules. We conclude that microtubules bundled by MAP2C molecules are very stable while the abrupt increase of free tubulin molecules by microinjection results in rapid assembly from the distal ends within the bundles as well as free nucleation of small microtubules which are progressively associated laterally with preexisting microtubule bundles. This is the first detailed study of the function of MAPs on the dynamics of microtubules in vivo.  相似文献   

7.
Mao T  Jin L  Li H  Liu B  Yuan M 《Plant physiology》2005,138(2):654-662
The organization and dynamics of microtubules are regulated by microtubule-associated proteins, or MAPs. In Arabidopsis (Arabidopsis thaliana), nine genes encode proteins of the evolutionarily conserved MAP65 family. We proposed that different MAP65s might have distinct roles in the interaction with microtubules. In this study, two AtMAP65 proteins, AtMAP65-1 and AtMAP65-6, were chosen to test this hypothesis in vitro. Although both fusion proteins were able to cosediment with microtubules in vitro, different properties on tubulin polymerization and microtubule bundling were observed. AtMAP65-1 was able to promote tubulin polymerization, enhance microtubule nucleation, and decrease the critical concentration for tubulin polymerization. It also induced the formation of large microtubule bundles by forming cross-bridges between microtubules evenly along the whole length of microtubules. In the presence of AtMAP65-1, microtubule bundles were more resistant to cold and dilution treatments. AtMAP65-6, however, demonstrated no activity in promoting tubulin polymerization and stabilizing preformed microtubules. AtMAP65-6 induced microtubules to form a mesh-like network with individual microtubules. Cross-bridge-like interactions were only found at regional sites between microtubules. The microtubule network induced by AtMAP65-6 was more resistant to high concentration of NaCl than the bundles induced by AtMAP65-1. Purified monospecific anti-AtMAP65-6 antibodies revealed that AtMAP65-6 was associated with mitochondria in Arabidopsis cells. It was concluded that these two MAP65 proteins were targeted to distinct sites, thus performing distinct functions in Arabidopsis cells.  相似文献   

8.
The involvement of high molecular weight microtubule-associated proteins (HMW-MAPs) in the process of taxol-induced microtubule bundling has been studied using immunofluorescence and electron microscopy. Immunofluorescence microscopy shows that HMW-MAPs are released from microtubules in granulosa cells which have been extracted in a Triton X-100 microtubule-stabilizing buffer (T-MTSB), unless the cells are pretreated with taxol. 1.0 microM taxol treatment for 48 h results in microtubule bundle formation and the retention of HMW-MAPs in these cells upon extraction with T-MTSB. Electron microscopy demonstrates that microtubules in control cytoskeletons are devoid of surface structures whereas the microtubules in taxol-treated cytoskeletons are decorated by globular particles of a mean diameter of 19.5 nm. The assembly of 3 X cycled whole microtubule protein (tubulin plus associated proteins) in vitro in the presence of 1.0 microM taxol, results in the formation of closely packed microtubules decorated with irregularly spaced globular particles, similar in size to those observed in cytoskeletons of taxol-treated granulosa cells. Microtubules assembled in vitro in the absence of taxol display prominent filamentous extensions from the microtubule surface and center-to-center spacings greater than that observed for microtubules assembled in the presence of taxol. Brain microtubule protein was purified into 6 s and HMW-MAP-enriched fractions, and the effects of taxol on the assembly and morphology of these fractions, separately or in combination, were examined. Microtubules assembled from 6 s tubulin alone or 6 s tubulin plus taxol (without HMW-MAPs) were short, free structures whereas those formed in the presence of taxol from 6 s tubulin and a HMW-MAP-enriched fraction were extensively crosslinked into aggregates. These data suggest that taxol induces microtubule bundling by stabilizing the association of HMW-MAPs with the microtubule surface which promotes lateral aggregation.  相似文献   

9.
Taxol-induced bundling of brain-derived microtubules   总被引:5,自引:4,他引:1       下载免费PDF全文
Taxol has two obvious effects in cells. It stabilizes microtubules and it induces microtubule bundling. We have duplicated the microtubule- bundling effect of taxol in vitro and report preliminary characterization of this bundling using electron microscopy, sedimentation, and electrophoretic analyses. Taxol-bundled microtubules from rat brain crude extracts were seen as massive bundles by electron microscopy. Bundled microtubules sedimented through sucrose five times faster than control microtubules. Electrophoretic analysis of control and taxol-bundled microtubules pelleted through sucrose revealed no striking differences between the two samples except for a protein doublet of approximately 100,000 daltons. Taxol-induced microtubule bundling was not produced by using pure tubulin or recycled microtubule protein; this suggested that taxol-induced microtubule bundling was mediated by a factor present in rat brain crude extracts. Taxol cross- linked rat brain crude extract microtubules were entirely labile to ATP in the millimolar range. This ATP-dependent relaxation was also demonstrated in a more purified system, using taxol-bundled microtubules pelleted through sucrose and gently resuspended. Although the bundling factor did not recycle with microtubule protein, it was apparently retained on isolated taxol-stabilized microtubules. The bundling factor was salt extracted from taxol-stabilized microtubules and its retained activity was demonstrated in an add-back experiment with assembled phosphocellulose-purified tubulin.  相似文献   

10.
The life cycle of the African trypanosome Trypanosoma brucei, is characterised by a transition between insect and mammalian hosts representing very different environments that present the parasite with very different challenges. These challenges are met by the expression of life-cycle stage-specific cohorts of proteins, which function in systems such as metabolism and immune evasion. These life-cycle transitions are also accompanied by morphological rearrangements orchestrated by microtubule dynamics and associated proteins of the subpellicular microtubule array. Here we employed a gel-based comparative proteomic technique, Difference Gel Electrophoresis, to identify cytoskeletal proteins that are expressed differentially in mammalian infective and insect form trypanosomes. From this analysis we identified a pair of novel, paralogous proteins, one of which is expressed in the procyclic form and the other in the bloodstream form. We show that these proteins, CAP51 and CAP51V, localise to the subpellicular corset of microtubules and are essential for correct organisation of the cytoskeleton and successful cytokinesis in their respective life cycle stages. We demonstrate for the first time redundancy of function between life-cycle stage specific paralogous sets in the cytoskeleton and reveal modification of cytoskeletal components in situ prior to their removal during differentiation from the bloodstream form to the insect form. These specific results emphasise a more generic concept that the trypanosome genome encodes a cohort of cytoskeletal components that are present in at least two forms with life-cycle stage-specific expression.  相似文献   

11.
The subpellicular microtubules of the trypanosome cytoskeleton are cross-linked to each other and the plasma membrane, creating a cage-like structure. We have isolated, from Trypanosoma brucei, two related low-molecular-weight cytoskeleton-associated proteins (15- and 17-kDa), called CAP15 and CAP17, which are differentially expressed during the life cycle. Immunolabeling shows a corset-like colocalization of both CAPs and tubulin. Western blot and electron microscope analyses show CAP15 and CAP17 labeling on detergent-extracted cytoskeletons. However, the localization of both proteins is restricted to the anterior, microtubule minus, and less dynamic half of the corset. CAP15 and CAP17 share properties of microtubule-associated proteins when expressed in heterologous cells (Chinese hamster ovary and HeLa), colocalization with their microtubules, induction of microtubule bundle formation, cold resistance, and insensitivity to nocodazole. When overexpressed in T. brucei, both CAP15 and CAP17 cover the whole subpellicular corset and induce morphological disorders, cell cycle-based abnormalities, and subsequent asymmetric cytokinesis.  相似文献   

12.
A microtubule cross-bridging factor was isolated from erythrocytes of the toad, Bufo marinus. Erythrocytes were lysed and their cytoskeletons disassembled by sonication and high salt extraction. The solubilized proteins were recovered and fractionated using Sephadex G-200 column chromatography. The protein fractions from the column were analysed by SDS-PAGE and pooled into three groups: high molecular weight (HMW) proteins that eluted from the column in the void volume and had a protein composition that included HMW polypeptides; intermediate MW proteins that were shown by SDS-PAGE to contain polypeptides smaller than 120,000 D; and low MW (LMW) proteins that contained polypeptides smaller than 70,000 D. Each group was further fractionated by phosphocellulose (PC) chromatography. The flow-through was recovered, and bound proteins were then eluted by a step gradient of salt (0.2, 0.4, 0.6 and 0.8 M KCl). To assay for microtubule cross-bridging activity, column fractions were incubated with taxol-stabilized microtubules, formed from PC-purified brain tubulin (PC microtubules). Negatively stained samples were examined in the electron microscope for the reconstitution of microtubule bundles with interconnecting cross-bridges. The HMW protein fraction from the G-200 column contained the cross-bridging factor. When these proteins were further fractionated by PC chromatography only the fraction eluted by 0.2 M KCl induced the formation of microtubule bundles with cross-bridges. No other protein fraction isolated by the described method revealed cross-bridges between microtubules in vitro.  相似文献   

13.
Seven monoclonal antibodies specific for mammalian β-tubulin demonstrate the microtubule cytoskeleton of Toxoplasma gondii and Leishmania donovani by indirect immunofluorescence microscopy. Immunoblots of T. gondii and L. donovani proteins separated by SDS polyacrylamide gel electrophoresis confirm the specificity of the monoclonal antibodies for tubulin. Differential staining of flagellar and subpellicular microtubule populations was not seen in L. donovani with these antibodies. All seven antibodies also detected the subpellicular microtubules of T. gondii, but the polar ring and conoid of this organism was not visualized by any of them. This technique provides a rapid and specific way to assess microtubular organization in whole organisms.  相似文献   

14.
Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of [14C]NAD+ and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the alpha and beta chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight mirotubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated [14C]ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD+ resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.  相似文献   

15.
H W Detrich  L Wilson 《Biochemistry》1983,22(10):2453-2462
Tubulin was purified from unfertilized eggs of the sea urchin Strongylocentrotus purpuratus by chromatography of an egg supernatant fraction on DEAE-Sephacel or DEAE-cellulose followed by cycles of temperature-dependent microtubule assembly and disassembly in vitro. After two assembly cycles, the microtubule protein consisted of the alpha- and beta-tubulins (greater than 98% of the protein) and trace quantities of seven proteins with molecular weights less than 55 000; no associated proteins with molecular weights greater than tubulin were observed. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis on urea-polyacrylamide gradient gels, the alpha- and beta-tubulins did not precisely comigrate with their counterparts from bovine brain. Two-dimensional electrophoresis revealed that urchin egg tubulin contained two major alpha-tubulins and a single major beta species. No oligomeric structures were observed in tubulin preparations maintained at 0 degrees C. Purified egg tubulin assembled efficiently into microtubules when warmed to 37 degrees C in a glycerol-free polymerization buffer containing guanosine 5'-triphosphate. The critical concentration for assembly of once- or twice-cycled egg tubulin was 0.12-0.15 mg/mL. Morphologically normal microtubules were observed by electron microscopy, and these microtubules were depolymerized by exposure to low temperature or to podophyllotoxin. Chromatography of a twice-cycled egg tubulin preparation on phosphocellulose did not alter its protein composition and did not affect its subsequent assembly into microtubules. At concentrations above 0.5-0.6 mg/mL, a concentration-dependent "overshoot" in turbidity was observed during the assembly reaction. These results suggest that egg tubulin assembles into microtubules in the absence of the ring-shaped oligomers and microtubule-associated proteins that characterize microtubule protein from vertebrate brain.  相似文献   

16.
Seven monoclonal antibodies specific for mammalian beta-tubulin demonstrate the microtubule cytoskeleton of Toxoplasma gondii and Leishmania donovani by indirect immunofluorescence microscopy. Immunoblots of T. gondii and L. donovani proteins separated by SDS polyacrylamide gel electrophoresis confirm the specificity of the monoclonal antibodies for tubulin. Differential staining of flagellar and subpellicular microtubule populations was not seen in L. donovani with these antibodies. All seven antibodies also detected the subpellicular microtubules of T. gondii, but the polar ring and conoid of this organism was not visualized by any of them. This technique provides a rapid and specific way to assess microtubular organization in whole organisms.  相似文献   

17.
In higher plant cells, thus far only a few molecules have been inferred to be involved in microtubule organizing centers (MTOCs). Examination of a 49 kDa tobacco protein, homologous to a 51 kDa protein involved in sea urchin MTOCs, showed that it also accumulated at the putative MTOC sites in tobacco BY-2 cells. In this report, we show that the 49 kDa protein is likely to play a significant role in microtubule organization in vitro. We have established a system prepared from BY-2 cells, capable of organizing microtubules in vitro. The fraction, which was partially purified from homogenized miniprotoplasts (evacuolated protoplasts) by salt extraction and subsequent ion exchange chromatography, contained many particles of diameters about 1 micron after desalting by dialysis. When this fraction was incubated with purified porcine brain tubulin, microtubules were elongated radially from the particles and organized into structures similar to the asters observed in animal cells, and therefore also termed "asters" here. Since we could hardly detect BY-2 tubulin molecules in this fraction, the microtubules in "asters" seemed to be solely composed of the added porcine tubulin. Tubulin molecules were newly polymerized at the ends of the microtubules distal to the particles, and the elongation rate of microtubules was more similar to the reported rate of the plus-ends than that of the minus-ends in vitro. By fluorescence microscopy, the 49 kDa protein was shown to be located at the particles. Thus, its location at the centers of the "asters" suggests that the protein plays a role in microtubule organization in vitro.  相似文献   

18.
In acentriolar higher plant cells, the surface of the nucleus acts as a microtubule-organizing center, substituting for the centrosome. However, the protein factors responsible for this microtubule organization are unknown. The nuclear surfaces of cultured tobacco BY-2 cells possess particles that generate microtubules. We attempted to isolate the proteins in these particles to determine their role in microtubule organization. When incubated with plant or mammalian tubulin, some, but not all, of the isolated nuclei generated abundant microtubules radially from their surfaces. The substance to induce the formation of radial microtubules was confirmed by SDS-PAGE to be a protein with apparent molecular mass of 38 kDa. Partial analysis of the amino acid sequences of the peptide fragments suggested it was a histone H1-related protein. Cloning and cDNA sequence analysis confirmed this and revealed that when the recombinant protein was incubated with tubulin, it could organize microtubules as well as the 38-kDa protein. Histone H1 and tubulin formed complexes immediately, even on ice, and then clusters of these structures were formed. These clusters generated radial microtubules. This microtubule-organizing property was confined to histone H1; all other core histones failed to act as organizers. On immunoblot analysis, rabbit antibodies raised against the 38-kDa protein cross-reacted with histone H1 proteins from tobacco BY-2 cells. These antibodies virtually abolished the ability of the nucleus to organize radial microtubules. Indirect immunofluorescence showed that the antigen was distributed at the nuclear plasm and particularly at nuclear periphery independently from DNA.  相似文献   

19.
Hill CM  Libich DS  Harauz G 《Biochemistry》2005,44(50):16672-16683
Myelin basic protein (MBP), a highly cationic protein that maintains the structure of the myelin sheath, associates with tubulin in vivo. The in vitro assembly of tubulin by MBP was examined here using several assays. The unmodified C1 component of 18.5 kDa bovine MBP (bC1) assembled tubulin into microtubules in a dose-dependent manner via filamentous intermediates, and was able simultaneously to promote the formation of microtubule bundles. The critical tubulin concentration in the presence of bC1 was 0.69 +/- 0.05 microM. The effects of post-translational modifications (such as deamidation and phosphorylation) were assayed by comparing the bC1-bC6 components of 18.5 kDa bovine MBP; an increasing level of modification enhanced the ability of MBP to assemble tubulin. The effects of charge reduction via deimination were examined using recombinant murine isoforms emulating the unmodified C1 and deiminated C8 isoforms of 18.5 kDa MBP; both rmC1 and rmC8 exhibited a comparable ability to assemble tubulin. The effects of alternate exon recombination of the classic MBP variants were tested using the recombinant murine 21.5, 17.22, and 14 kDa isoforms. The isoforms containing regions derived from exon II of the classic MBP gene, 21.5 and 17.22 kDa MBP, showed no substantial difference in the extent of tubulin polymerization and bundling when compared to those of 18.5 kDa MBP. The 14 kDa isoform and two terminal deletion mutants of rmC1 were able to induce microtubule polymerization, but not bundling, to the same degree as the longer proteins. Finally, bC1 was shown to disrupt and aggregate planar sheets of crystalline tubulin stabilized by paclitaxel, establishing that these structures are not suitable substrates for the formation of MBP cocrystals.  相似文献   

20.
A H Lockwood 《Cell》1978,13(4):613-627
Cytoplasmic microtubule assembly from tubulin monomers requires an accessory protein or proteins present is isolated microtubules. These proteins have been designated "tau" factors. One such factor, tubulin assembly protein (TAP), has been purified to homogeneity from calf brain microtubules. A precipitating, monospecific antibody against the protein has been prepared. The antibody has been used to investigate the mechanism of TAP action in microtubule assembly and the distribution of TAP in cellular microtubules. Immunochemical, immunofluorescent and electron microscopic studies indicate that TAP functions stoichiometrically by binding physically to tubulin to form a complex active in microtubule assembly. TAP is an elongation protein which is required throughout the growth of a microtubule and which is actually present along the entire microtubule. Immunofluorescence microscopy has been used to demonstrate that TAP is distributed throughout the cytoplasmic microtubule network of cultured human, hamster and rat cells-both normal and virally transformed. Immunofluorescence of cells in mitosis shows that TAP is present in the mitotic spindle. These results demonstrate the biological importance of tubulin assembly protein and suggest that it or immunologically related "tau" proteins represent ubiquitous cofactors in cytoplasmic microtubule assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号