首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a result of a low pH, the inorganic carbon of acidic lakes is present as CO2 at air-equilibrium concentration and is substantially lower than the inorganic carbon concentration in higher-pH waters with bicarbonate. This situation is quite common in artificially acidified lakes and where inorganic carbon is considered the limiting factor in phytoplankton growth. Apart from low inorganic carbon content, Lake Caviahue in Argentina has low nitrogen and high phosphorus content. The aim of this work was to assess the importance of inorganic carbon, phosphorus, and nitrogen, relating data on lake nutrients to phytoplankton species requirements. Lake samples taken in the 2004–2006 period did not show any particular trend in the vertical distribution of the water column of ammonium, inorganic carbon, and phosphorus with reference to either seasonality or depth. A decrease of some 15% in the lake’s phosphorus concentration was observed over the same period. Although the total phytoplankton biomass in Lake Caviahue was similar throughout the period, a seasonal variation was observed. Lab bioassays were carried out with solutions of bicarbonates, ammonium, nitrates, and phosphate. We worked with three species separately, namely, two chlorophytes, Keratococcus rhaphidioides and Watanabea sp.; and one euglenophyte, Euglena mutabilis. Answers to specific nutrient requirements differed for each algal species: both chlorophytes prefer ammonium or nitrates added on their own, whereas the euglenophyte registered a higher growth rate with the joint addition of ammonium and phosphorus. Even when the limiting nutrient(s) for phytoplankton yield and rate varied between species, we observed a tendency for nitrogen limitation in Lake Caviahue.  相似文献   

2.
Phytoplankton pigments and community composition in Lake Tanganyika   总被引:3,自引:0,他引:3  
1. A 2‐year (2002–2003) survey of chlorophyll and carotenoid pigments is reported for two off‐shore stations of Lake Tanganyika, Kigoma (Tanzania) and Mpulungu (Zambia), and from three cruises between those sites. Chlorophyll a concentrations were low (0.3–3.4 mg m?3) and average chlorophyll a integrated through the 100 m water column were similar for both stations and years (36.4–41.3 mg m?2). Most pigments were located in the 0–60 m layer and decreased sharply downward. Chlorophyll a degradation products (phaeophytins and phaeophorbides) were detected at 100 m depth, whereas carotenoids became undetectable. Temporal and seasonal variation of the vertical distribution of pigments was high. 2. The biomass of phytoplankton groups was calculated from marker pigment concentrations over the 0–100 m water column using the CHEMTAX software. On average for the study period, chlorophytes dominated in the northern station, followed by cyanobacteria T1 (type 1, or Synechococcus pigment type), whereas cyanobacteria T1 dominated in the south. Cyanobacteria T2 (type 2, containing echinenone), presumably corresponding to filamentous taxa, were detected in the rainy season. Diatoms (and chrysophytes) developed better in the dry season conditions, with a deep mixed layer and increased nutrient availability. Very large variation in the vertical distribution of algal groups was observed. 3. Our observations on phytoplankton composition are broadly consistent with those from previous studies. Our pigment data provide evidence for the lake‐wide importance of picocyanobacteria and high interannual variation and spatial heterogeneity of phytoplankton in Lake Tanganyika, which may render difficult assessment of long‐term changes in phytoplankton driven by climate change.  相似文献   

3.
Phytoplankton pigments were studied in seven soft water, weakly mineralized karst lakes in central Russia (Vladimir oblast). The lakes Kshchara, Sankhar, Yukhor, Bol’shoye Poridovo, Svetlen’koye, Bol’shie, and Malye Garavy were investigated. The seasonal dynamics, vertical distribution of chlorophyll a, and its content in the phytoplankton biomass were considered. The relationship between chlorophyll a content and abiotic factors was analyzed. In addition to algae pigments, high concentrations of bacterial chlorophyll d were recorded in meta- and hypolimnetic layers of lakes Yukhor, Kshchara, Sankhar, and Svetlen’koye.  相似文献   

4.
An HPLC analysis of the summer phytoplankton assemblage in Lake Baikal   总被引:5,自引:0,他引:5  
1. The enormous size and spatial heterogeneity of Lake Baikal require rapid methods for large sample sets. We therefore tested the applicability of a novel, high‐performance liquid chromatography (HPLC)‐based, combination of methods for analysing phytoplankton. In July 2001, samples were collected in a transect across the lake at various depths down to 30 m. Phytoplankton (>3 μm) and autotrophic picoplankton (APP) were counted under light and epifluorescence microscopes, respectively. Pigments were analysed with HPLC. 2. The pigment data allowed the contributions of the dominant phytoplankton groups to the total chlorophyll a (Chl a) in the lake to be estimated by multiple linear regression and by the CHEMTAX matrix factorisation program. Three marker pigments, fucoxanthin, lutein and zeaxanthin, were shown to be useful indicators of the abundance and spatial distribution of certain phytoplankton groups. The relative contributions of the various phytoplankton groups to the total Chl a in the lake determined using these marker pigments were similar, but not identical, to those determined by cell counts. 3. Pigment analyses of isolated strains from Lake Baikal and some European lakes confirmed that phycoerythrin‐containing Cyanobacteria with very high amounts of zeaxanthin were responsible for the low Chl a/zeaxanthin ratios of the water samples. A picoplanktonic species of Eustigmatophyceae was isolated from the lake. Its high violaxanthin content, responsible for very low Chl a/violaxanthin ratios of some water samples, can be used to estimate the contribution of this group to total Chl a.  相似文献   

5.
A large ultra-oligotrophic Antarctic freshwater lake, Crooked Lake, was investigated between January 1993 and November 1993. The water column supported a small phytoplankton community limited by temperature, nutrient availability and, seasonally, by low photosynthetically active radiation. Chlorophyll a concentrations were consistently low (<1 g l−1) and showed no obvious seasonal patterns. Production rates were low, ranging from non-detectable to 0.56 g C l−1 h−1, with highest rates generally occurring towards the end of the austral winter and in spring. The pattern of carbon fixation indicated that the phytoplankton was adapted to low light levels. Chlorophyll a specific photosynthetic rates (assimilation numbers) ranged from non-detectable to 1.27 gC (g chlorophyll a)−1 h−1. Partitioning of photosynthetic products revealed carbon incorporation principally into storage products such as lipids at high light fluxes with increasing protein synthesis at depth. With little allochthonous input the data suggest that lake dynamics in this Antarctic system are driven by phytoplankton activity. Received: 21 February 1997 / Accepted: 18 May 1997  相似文献   

6.
Suspension feeding by bivalves has been hypothesized to control phytoplankton biomass in shallow aquatic ecosystems. Lake Waccamaw, North Carolina, USA is a shallow lake with a diverse bivalve assemblage and low to moderate phytoplankton biomass levels. Filtration and ingestion rates of two relatively abundant species in the lake, the endemic unionid, Elliptio waccamawensis, and an introduced species, Corbicula fluminea, were measured in experiments using natural phytoplankton for durations of 1 to 6 days. Measured filtration and ingestion rates averaged 1.78 and 1.121 ind.–1 d–1, much too low to control phytoplankton at the observed phytoplankton biomass levels and growth rates. Measured ingestion rates averaged 4.80 and 1.50 µg chlorophyll a ind.–1 d–1, too low to support individuals of either species. The abundance of benthic microalgae in Lake Waccamaw reaches 200 mg chlorophyll a m–2 in the littoral zone and averages almost an order of magnitude higher than depth-integrated phytoplankton chlorophyll a. Total microalgal biomass in the lake is therefore not controlled by suspension feeding by bivalves.  相似文献   

7.
8.
Lake Baringo is a shallow equatorial lake. This paper reports a diel study of the depth-time distribution of phytoplankton and photosynthesis at one location in Lake Baringo on 10 March 1989. The water column shows a pattern of diurnal stratification probably accentuated by the high turbidity of the water and therefore rapid attenuation of solar energy. This stratified pattern breaks down at night due to atmospheric cooling and the regular onset of winds in the early evening. The phytoplankton is dominated byMicrocystis aeruginosa with some associated epiphytes. It concentrates in the narrow euphotic zone during the diurnal period of stratification due to buoyancy of theMicrocystis; evening breakdown of the thermocline results in the phytoplankton being mixed throughout the water column. A series of measurements of photosynthesis throughout the diurnal period gives an areal rate of 3.8 g O2 m−2 d−1. The relationship between this value and the level of fish exploitation in Lake Baringo is discussed. The diel cycle in Lake Baringo is interpreted as dominating over any seasonal limnological cycle in the lake.  相似文献   

9.
Reichwaldt ES  Stibor H 《Oecologia》2005,146(1):50-56
Diel vertical migration (DVM) of large zooplankton is a very common phenomenon in the pelagic zone of lakes and oceans. Although the underlying mechanisms of DVM are well understood, we lack experimental studies on the consequences of this behaviour for the zooplankton’s food resource—the phytoplankton. As large zooplankton species or individuals migrate downwards into lower and darker water strata by day and upwards into surface layers by night, a huge amount of herbivorous biomass moves through the water column twice a day. This migration must have profound consequences for the phytoplankton. It is generally assumed that migration supports an enhanced phytoplankton biomass and a change in the composition of the phytoplankton community towards smaller, edible algae in the epilimnion of a lake. We tested this assumption for the first time in field experiments by comparing phytoplankton biomass and community assemblage in mesocosms with and without artificially migrating natural stocks of Daphnia hyalina. We show that DVM can enhance phytoplankton biomass in the epilimnion and that it has a strong impact on the composition of a phytoplankton community leading to an advantage for small, edible algae. Our results support the idea that DVM of Daphnia can have strong effects on phytoplankton dynamics in a lake.  相似文献   

10.
Recruitment of total phytoplankton, chlorophytes and cyanobacteria from lake sediments to the water column was studied using photosynthetic pigments at one site (1.5 m) in Lake Taihu, a large shallow lake in China. Samples were taken weekly from the migration traps installed on the bottom from March to May 2004. Abundance of total phytoplankton, chlorophytes and cyanobacteria were represented by Chlorophyll (Chl) a, b, and phycocyanin (PC), respectively. Over the three months, total phytoplankton, chlorophytes, and cyanobacteria corresponding to 48.9%, 68.9% and 316.2% of their initial concentrations in surface sediments were recruited in Lake Taihu. However, compared with their increase in pelagic abundance over the same period, the recruitment accounted for a rather small inoculum. Accompanying the recruitment, total phytoplankton and chlorophytes declined and cyanobacteria increased in the upper 0–2 cm sediments; colonies of Microcystis aeruginosa in the water column enlarged from small size with several cells to large colonies with hundreds of cells. Thus, overwintering and subsequent growth renewal of pelagic phytoplankton merits further study and comparison with benthic survival and recruitment. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We analyzed experimentally the relative contribution of phytoplankton and periphyton in two shallow lakes from the Pampa Plain (Argentina) that represent opposite scenarios according to the alternative states hypothesis for shallow lakes: a clear lake with submerged macrophytes, and a turbid lake with high phytoplankton biomass. To study the temporal changes of both microalgal communities under such contrasting conditions, we placed enclosures in the littoral zone of each lake, including natural phytoplankton and artificial substrata, half previously colonized by periphyton until a mature stage and half clean to analyze periphyton colonization. In the clear vegetated shallow lake, periphyton chlorophyll a concentrations were 3–6 times higher than those of the phytoplankton community. In contrast, phytoplankton chlorophyll a concentrations were 76–1,325 times higher than those of periphyton in the turbid lake. Here, under light limitation conditions, the colonization of the periphyton was significantly lower than in the clear lake. Our results indicate that in turbid shallow lakes, the light limitation caused by phytoplankton determines a low periphyton biomass dominated by heterotrophic components. In clear vegetated shallow lakes, where nitrogen limitation probably occurs, periphyton may develop higher biomass, most likely due to their higher efficiency in nutrient recycling.  相似文献   

12.
Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4 +, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4 +, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing.  相似文献   

13.
This study relates to the ecology of Dictyosphaerium pulchellum Wood in Delamere Lake in Cheshire, UK. Dictyosphaerium pulchellum is a cosmopolitan, green colonial phytoplankton species that occasionally forms dense, monospecific populations in lakes. Delamere Lake is a small, shallow, acid lake (mean pH, 4.5) with very high phytoplankton biomass (annual mean chlorophyll a, 290 μg l−1) and devoid of any significant cladoceran population, the efficient grazers of phytoplankton. A predominantly unicellular form of D. pulchellum was the dominant species in Lake Delamere, and it comprised on average ca. 80% (maximum >99%) of the lake phytoplankton biovolume. Laboratory and lake experiments were conducted on this species showed that its pH tolerance varied between 2.4 and 10.7, and its optimum tolerance range between 3.3 and 8.5 depending on other environmental variables. Low pH was not responsible for the unicellular habit of this alga, but a very high nutrient regime could be an important factor. Bioassays revealed that in Delamere Lake this species was limited by nitrogen, but nitrogen did not hamper high growth in the lake. Dictyosphaerium pulchellum can persist at low light levels, tolerate CO2-deficiency and can grow in polyhumic water with water colour around 300 mg Pt l−1, but probably not in darker waters. The dominance of D. pulchellum in Delamere Lake is apparently due to a combination of several factors: its ability to tolerate both low pH and high turbidity, exploit high nutrient conditions, absence of effective grazing pressure by zooplankton and being a superior competitor.  相似文献   

14.
In order to investigate variations of absorption and total chlorophyll-a (TChl-a)-specific absorption coefficient of phytoplankton in Lake Taihu, 57 water samples obtained from Lake Taihu during November 8–22, 2007 were used in this study. Package effect and accessory pigments’ influences on the absorption spectra were also examined. Phytoplankton absorption was measured by quality filter technical, and TChl-a concentration was measured by “hot ethanol” method. Results yielded significant variations in phytoplankton absorption and TChl-a-specific absorption coefficient. Phytoplankton absorption coefficient at 675 nm is highly correlated to TChl-a concentration, while absorption at 440 nm is less correlated to TChl-a concentration because of great package effect and accessory pigments’ influence. There was an inverse relationship between a ph*(λ) and TChl-a concentration. Four types of absorption spectra are identified by normalizing a ph*(λ) to a ph*(440). The a ph*(λ) variation is mainly due to accessory pigments and package effect, whose influence at 675 nm ranges from 83.2% to 28%, with an average of 65.3%. Meanwhile, the wide varying ratio of a ph*(440) to a ph*(675) indicates a large variation range in the ratio of accessory pigment to TChl-a concentration. Those findings are significant to estimate Chl-a concentration based on bio-optical model, estimate primary production from remote sensing, and plan further ecological restoration measures for Lake Taihu. Handling editor: Luigi Naselli-Flores  相似文献   

15.
G. G. Ganf 《Oecologia》1974,16(1):9-29
Summary Lake George, a shallow lake in western Uganda, supports a permanent and dense crop of phytoplankton, and may be regarded as eutrophic although the ambient concentrations of inorganic nitrogen and phosphorus are low. The figures for the annual nutrient loadings (Viner and Smith, 1973) would suggest, however, a eutrophic lake when analysed on the scheme of eutrophication proposed by Vollenweider (1968).The horizontal distribution of chlorophyll a shows a concentric pattern, with the maximum values occurring towards the center. This horizontal variation is thought to reflect water movements, and a general pattern of water flow is proposed.The majority of the species show no seasonal variation but populations of both Anabaena and Melosira show annual variations. These two species also have a horizontal distribution pattern which is the reverse of other species. This pattern is used to support the proposed movements of water.Phytoplankton generation times are discussed in relation to the diurnal cycle occurring in Lake George.  相似文献   

16.
A study aimed at investigating the temporal variation of phytoplankton assemblages in Lake Nyamusingiri was carried out during the period of December 1997–May 1998. Uganda’s freshwaters are ecologically diverse but a few are intensively studied. Research on phytoplankton has been restricted to large water bodies. There is little information on phytoplankton of the western Uganda crater lakes, which are important water and biodiversity resources. This study provided baseline data on phytoplankton, which will serve as a basis for monitoring the effects of human activities on the lake that might result in ecological transformations like loss of biodiversity because of overexploitation. A laboratory thermometer and Winker’s method were used to determine temperature and dissolved oxygen concentration, respectively. Lake transparency was measured by using the Secchi disc. A Van Dorn sampler was used to collect water samples. Nutrient and chlorophyll a concentrations were determined by using facilities at the Fisheries Resources Research Institute (FIRRI), Jinja. The Sedgwick‐Rafter counting chamber was used to analyse phytoplankton. Variation in temperature was small (25.4–26.2°C). Stable thermal stratification was not evident. The Secchi disc transparency was less than unity. The chlorophyll a value was high. Biomass was found to be light‐limited by nonalgal materials. Dissolved oxygen concentration was more than 100% in the surface waters but declined to <20% at the bottom, which reflected the eutrophic nature of the lake. Diversity indices were low. Eighteen species and five classes of phytoplankton were revealed by this study. The phytoplankton flora was dominated by chlorococcal green algae characteristic of the large eutrophic East African lakes.  相似文献   

17.
Seasonal Dynamics of Periphyton in a Large Tropical Lake   总被引:1,自引:0,他引:1  
Tropical aquatic systems are generally assumed to have little seasonality in productivity patterns. However, this study indicated that there was substantial seasonal variation in epilithic productivity and biomass in tropical Lake Tanganyika, due primarily to seasonal patterns in lake hydrodynamics that influence nutrient availability. Although they support much of the lake’s biological diversity, epilithic algae made a minor contribution to the total energy budget in Lake Tanganyika. A comparison among large, oligotrophic lakes revealed no significant latitudinal trends in periphyton productivity or biomass. However, Lake Tanganyika has relatively low benthic algal biomass and is therefore more efficient at photosynthesis than the temperate lakes. The influence of wave action and consumer density and diversity may be important in moderating productivity of the epilithic community.  相似文献   

18.
Summary Four autotrophic compartments were recognised in Lake Kitiesh, King George Island (Southern Shetland) at the beginning of the summer in 1987: snow microalgae, ice bubble communities, phytoplankton in the water column and benthic communities of moss with epiphytes. Chlorophyll a concentration and pigment absorption spectra were obtained in these four compartments before and/or after the thawing of the ice cover. During the ice free period, carbon fixation and biomass was measured in the phytoplankton and in the benthic moss Campyliadelphus polygamus. From these measurements we conclude that the benthic moss is the most significant autotrophic component in this lake in terms of biomass, chlorophyll a content and primary productivity. The integral assimilation number (The ratio of carbon fixation per unit area to biomass per unit area) values were similar for both phytoplankton and the moss, ranging from 3.6 to 5.4 mg C (mg Chl a)–1h–1in phytoplankton and from 4.0 to 6.4 mgC (mg Chl a)–1h–1 in the benthic moss. This approach allows comparisons of carbon fixation efficiency of the chlorophyll a under a unit area between compartments in their different light environments.  相似文献   

19.
A bioassay was developed, involving steady-state ATP level determinations, for estimation of phosphate demand and deficiency in natural phytoplankton communities. The studies were performed on phytoplankton from the moderately acidified Lake Njupfatet in central Sweden before and after liming. Phytoplankton samples from in situ enclosure experiments with low-dose enrichments of nitrate and phosphate and removal of large (> 100 µm) zooplankton and from the lake water were collected. The phytoplankton were concentrated by through-flow centrifugation and post-cultured in the laboratory with or without the addition of phosphate. A relative increase in the ATP:chlorophyll a ratio after the phosphate treatment as compared to samples without phosphate enrichment was found to be a highly reproducible indicator of phosphate deficiency in the natural phytoplankton population. In contrast, the absolute ATP:chlorophyll a ratio varied substantially between different sampling occasions. No phosphate deficiency was detected in phytoplankton from the acidic lake or from fertilized in situ enclosures. However, phytoplankton from in situ enclosures without added nutrients showed evidence of phosphate limitation after 21 days incubation. Also, the phytoplankton community developed a significant phosphate deficiency the summer after lake liming. The results from the ATP analyses are compared with chemical data of the lake water, phytoplankton community structure and phosphatase activities in the lake before and after liming. The average total biomass of phytoplankton and the average Tot-P measured during May to September decreased with appr. 30% after liming while Tot-N was essentially unaffected and the phosphatase activities increased by 1000–2000%.  相似文献   

20.
Pigment-based chemotaxonomy and CHEMTAX software have proven to be a valuable phytoplankton monitoring tool in marine environments, but are yet underdeveloped to determine algal assemblages in freshwater ecosystems. The main objectives of this study were (1) to compare the results of direct microscopy and CHEMTAX in describing phytoplankton community composition dynamics in a large, shallow and eutrophic lake; (2) to analyze the efficiency of the pigment-based method to detect changes in phytoplankton seasonal dynamics and during rapid bloom periods; (3) to assess the suitability of specific marker pigments and available marker pigment:chlorophyll a ratios to follow seasonal changes in eutrophic freshwater environment. A 5-year (2009-2013) parallel phytoplankton assessment by direct microscopy and by CHEMTAX was conducted using published marker pigment:chlorophyll a ratios. Despite displaying some differences from microscopy results, the pigment-based method successfully described the overall pattern of phytoplankton community dynamics during seasonal cycle in a eutrophic lake. Good agreement between the methods was achieved for most phytoplankton groups - cyanobacteria, chlorophytes, diatoms and cryptophytes. The agreement was poor in case of chrysophytes and dinoflagellates. Our study shows clearly that published marker pigment:chlorophyll a ratios can be used to describe algal class abundances, but they need to be calibrated for specific freshwater environment. Broader use of this method would enable to expand monitoring networks and increase measurement frequencies of freshwater ecosystems to meet the goals of the Water Framework Directive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号