首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
A series of cationic porphyrin–anthraquinone hybrids bearing either pyridine, imidazole, or pyrazole rings at the meso-positions have been investigated for their interaction with DNA G-quadruplexes by employing molecular docking and molecular dynamics simulations. Three types of DNA G-quadruplexes were utilized, which comprise parallel, antiparallel, and mixed hybrid topologies. The porphyrin hybrids have a preference to bind with parallel and mixed hybrid structures compared to the antiparallel structure. This preference arises from the end stacking of porphyrin moiety following G-stem and loop binding of anthraquinone tail, which is not found in the antiparallel due to the presence of diagonal and lateral loops that crowd the G-quartet. The binding to the antiparallel, instead, occurred with poorer affinity through both the loop and wide groove. All sites of porphyrin binding were confirmed by 6 ns molecular dynamics simulation, as well as by the negative value of the total binding free energies that were calculated using the MMPBSA method. Free energy analysis shows that the favorable contribution came from the electrostatic term, which supposedly originated from the interaction of either cationic pyridinium, pyrazole, or imidazole groups and the anionic phosphate backbone, and also from the van der Waals energy, which primarily contributed through end stacking interaction.  相似文献   

2.
Khandelia H  Kaznessis YN 《Peptides》2005,26(11):2037-2049
We report long time scale simulations of the 18-residue helical antimicrobial peptide ovispirin-1 and its analogs novispirin-G10 and novispirin-T7 in SDS micelles. The SDS micelle serves as an economical and effective model for a cellular membrane. Ovispirin, which is initially placed along a micelle diameter, diffuses out to the water-SDS interface and stabilizes to an interface-bound steady state in 16.35 ns of simulation. The final conformation, orientation, and the structure of ovispirin are in good agreement with the experimentally observed properties of the peptide in presence of lipid bilayers. The simulation succeeds in capturing subtle differences of the membrane-bound peptide structure as predicted by solid state NMR. The novispirins also undergo identical diffusion patterns and similar final conformations. Although the final interface-bound states are similar, the simulations illuminate the structural and binding properties of the mutant peptides which make them less toxic compared to ovispirin. Based on previous data and the current simulations, we propose that introduction of a bend/hinge at the center of helical antimicrobial peptides (containing a specific C-terminal motif), without disrupting the helicity of the peptides might attenuate host-cell toxicity as well as improve membrane binding properties to bacterial cellular envelopes.  相似文献   

3.
Wettability of nonylphenol ethoxylate with four ethylene oxide groups (NP-4) on a subbituminous coal was carried out. As the concentration of NP-4 gradually increases, the contact angle firstly increases and then decreases with maximum contact angle at about critical micelle concentration (CMC) of NP-4. The monolayer adsorption behaviour of NP-4 on the model surface of Hatcher subbituminous coal was investigated by means of molecular dynamics simulations. The surfactant molecules could be detected at the water–coal interface. The water molecules are repelled and stronger hydrophobicity of the coal is obtained in the presence of NP-4, which are consistent with contact angle results at low concentration. The aggregated structure of the surfactant molecules on the coal surface in terms of head group and tail group density profiles along the perpendicular direction shows that the ethoxylate groups of the surfactant are attached at the solid surfaces. The negative interaction energy between NP-4 and the subbituminous coal surface calculated suggests that adsorption process is spontaneous. The self-diffusion coefficients results indicate that the presence of NP-4 causes higher water mobility meaning improving the hydrophobicity of low-rank coal, which is consistent with the experimental results of contact angle.  相似文献   

4.
G-protein-coupled receptors have extraordinary therapeutic potential as targets for a broad spectrum of diseases. Understanding their function at the molecular level is therefore essential. A variety of crystal structures have made the investigation of the inactive receptor state possible. Recently released X-ray structures of opsin and the β2-adrenergic receptor (β2AR) have provided insight into the active receptor state. In addition, we have contributed to the crystal structure of an irreversible agonist-β2 adrenoceptor complex. These extensive studies and biophysical investigations have revealed that agonist binding leads to a low-affinity conformation of the active state that is suggested to facilitate G-protein binding. The high-affinity receptor state, which promotes signal transduction, is only formed in the presence of both agonist and G-protein. Despite numerous crystal structures, it is not yet clear how ligands tune receptor dynamics and G-protein binding. We have now used molecular dynamics simulations to elucidate the distinct impact of agonist and inverse agonist on receptor conformation and G-protein binding by investigating the influence of the ligands on the structure and dynamics of a complex composed of β2AR and the C-terminal end of the Gαs subunit (GαCT). The simulations clearly showed that the agonist isoprenaline and the inverse agonist carazolol influence the ligand-binding site and the interaction between β2AR and GαCT differently. Isoprenaline induced an inward motion of helix 5, whereas carazolol blocked the rearrangement of the extracellular part of the receptor. Moreover, in the presence of isoprenaline, β2AR and GαCT form a stable interaction that is destabilized by carazolol.  相似文献   

5.
6.
Using the molecular dynamics simulation, the role of lipids in the lysozyme transition into the aggregation-competent conformation has been clarified. Analysis of the changes of lysozyme secondary structure upon its interactions with the model bilayer membranes composed of phosphatidylcholine and its mixtures with phosphatidylglycerol (10, 40, and 80 mol%) within the time interval of 100 ns showed that lipid-bound protein is characterized by the increased content of β-structures. Along with this, the formation of protein–lipid complexes was accompanied by the increase in the gyration radius and the decrease in RMSD of polypeptide chain. The results obtained were interpreted in terms of the partial unfolding of lysozyme molecule on the lipid matrix, with the magnitude of this effect being increased with increasing the fraction of anionic lipids. Based on the results of molecular dynamics simulation, a hypothetical model of the nucleation of lysozyme amyloid fibrils in a membrane environment was suggested.  相似文献   

7.
G protein-coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across cell membranes and represent major targets in the development of novel drug candidates. Membrane cholesterol plays an important role in GPCR structure and function. Molecular dynamics simulations have been successful in exploring the effect of cholesterol on the receptor and a general consensus molecular view is emerging. We review here recent molecular dynamics studies at multiple resolutions highlighting the main features of cholesterol-GPCR interaction. Several cholesterol interaction sites have been identified on the receptor that are reminiscent of nonannular sites. These cholesterol hot-spots are highly dynamic and have a microsecond time scale of exchange with the bulk lipids. A few consensus sites (such as the CRAC site) have been identified that correspond to higher cholesterol interaction. Interestingly, high plasticity is observed in the modes of cholesterol interaction and several sites have been suggested to have high cholesterol occupancy. We therefore believe that these cholesterol hot-spots are indicative of ‘high occupancy sites’ rather than ‘binding sites’. The results suggest that the energy landscape of cholesterol association with GPCRs corresponds to a series of shallow minima interconnected by low barriers. These specific interactions, along with general membrane effects, have been observed to modulate GPCR organization. Membrane cholesterol effects on receptor structure and organization, that in turn influences receptor cross-talk and drug efficacy, represent a new frontier in GPCR research. This article is part of a Special Issue entitled: Lipid-protein interactions. Guest Editors: Amitabha Chattopadhyay and Jean-Marie Ruysschaert.  相似文献   

8.
9.
An artificial muscle composite material consisting of carbide derived carbon (CDC) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4) ionic liquid was modeled using molecular dynamics (MD) simulations, in order to determine the molecular structural rearrangements causing actuation. CDC was represented as separate curved graphene-like flakes with charges of +2, 0 or −2 on each flake, with 24–27 aromatic rings each. The charge distribution in the flakes was determined by PM6 semi-empirical optimization. The pore size distribution of CDC and the density of the material were comparable to experimental data. Molecular structure analysis revealed a preferential parallel orientation for the cations over the negatively charged CDC surfaces, while cationic rotations and reorientations could be observed for positively charged CDC. Changes in the pore occupancy for each ionic type were observed for pore sizes between 4 and 7 ?, which, together with the replacement of large cations with smaller anions, could explain the volume decrease in the anodes (and, vice versa, the volume increase in the cathodes) in this type of actuator.  相似文献   

10.
Galanthus nivalis agglutinin (GNA), a mannose-specific lectin from snowdrop bulbs, is a member of the monocot mannose-specific lectin family and exhibits antiviral activity toward HIV. In the present study, molecular dynamics (MD) simulations were performed to study the interaction between GNA and its carbohydrate ligand over a specific time span. By analysis of the secondary structures, it was observed that the GNA conformation maintains rather stable along the trajectories and the high fluctuations were only centered on the carbohydrate recognition domains. Our MD simulations also reproduced most of the hydrogen bonds observed in the x-ray crystal structure. Furthermore, the obtained MD trajectories were used to estimate the binding free energy of the complex using the molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) method. It was revealed by the inspection of the binding free energy components that the major contributions to the complex stability arose from electrostatic interactions.  相似文献   

11.
The counterion distribution around a DNA dodecamer (5'-CGCGAATTCGCG-3') is analyzed using both standard and novel techniques based on state of the art molecular dynamics simulations. Specifically, we have explored the population of Na(+) in the minor groove of DNA duplex, and whether or not a string of Na(+) can replace the spine of hydration in the narrow AATT minor groove. The results suggest that the insertion of Na(+) in the minor groove is a very rare event, but that when once the ion finds specific sites deep inside the groove it can reside there for very long periods of time. According to our simulation the presence of Na(+) inside the groove does not have a dramatic influence in the structure or dynamics of the duplex DNA. The ability of current MD simulations to obtain equilibrated pictures of the counterion atmosphere around DNA is critically discussed.  相似文献   

12.
The bidirectional force transmission process of integrin through the cell membrane is still not well understood. Several possible mechanisms have been discussed in literature on the basis of experimental data, and in this study, we investigate these mechanisms by free and steered molecular dynamics simulations. For the first time, constant velocity pulling on the complete integrin molecule inside a dipalmitoyl-phosphatidylcholine membrane is conducted. From the results, the most likely mechanism for inside-out and outside-in signaling is the switchblade model with further separation of the transmembrane helices.  相似文献   

13.
We have applied a theoretical methodology, previously developed to evaluate the association and kinetic reactivation constants of oximes, comparing theoretical data obtained for human acetylcholinesterase (HsAChE) with in vitro results from Mus musculus AChE (MmAChE) previously reported in the literature. Our results, further checked by additional molecular dynamics simulations steps, showed a good correlation between the theoretical and experimental data, supporting the methodology as appropriate for prediction of thermodynamic and kinetic parameters and corroborated MmAChE as a suitable model for studies with HsAChE.  相似文献   

14.
We have applied a theoretical methodology, previously developed to evaluate the association and kinetic reactivation constants of oximes, comparing theoretical data obtained for human acetylcholinesterase (HsAChE) with in vitro results from Mus musculus AChE (MmAChE) previously reported in the literature. Our results, further checked by additional molecular dynamics simulations steps, showed a good correlation between the theoretical and experimental data, supporting the methodology as appropriate for prediction of thermodynamic and kinetic parameters and corroborated MmAChE as a suitable model for studies with HsAChE.  相似文献   

15.
16.
17.
We have carried out molecular dynamics simulations of the naturally occurring protegrin PG-1 peptide and two of its mutants, PC-9 and PC-13 in the presence of a dodecyl-phosphocholine (DPC) micelle. The effects of mutations that disrupt the β-sheet structure in the case of PC-9 and reduce the charge at the C-terminus in the case of PC-13 are analyzed. It is found that the surface-bound conformations of the peptides are severely affected by both mutations. PG-1 exhibits a conformation in which the C-terminus and the β-hairpin turn interact strongly with the micelle lipid head groups, while its N-terminal strand bends away from the micelle and resides in the aqueous region; PC-13 exhibits strong interactions with the micelle at its N-terminus as well as the β-hairpin turn region, while retaining a much more compact conformation than PG-1; PC-9 achieves a highly distorted conformation relative to the homologous PG-1 structure, which allows both its termini and the β-hairpin region to interact with the micelle. These significant differences observed as a result of seemingly minor mutations to the sequences of the three peptides are explained in terms of the interplay between residue charges, structural rigidity and amphiphilic interactions. Conservative inferences are made bridging these biophysical interactions and the pharmacological profiles of the peptides.  相似文献   

18.
19.
The determination of G protein-coupled receptor (GPCR) structures at atomic resolution has improved understanding of cellular signaling and will accelerate the development of new drug candidates. However, experimental structures still remain unavailable for a majority of the GPCR family. GPCR structures and their interactions with ligands can also be modelled computationally, but such predictions have limited accuracy. In this work, we explored if molecular dynamics (MD) simulations could be used to refine the accuracy of in silico models of receptor-ligand complexes that were submitted to a community-wide assessment of GPCR structure prediction (GPCR Dock). Two simulation protocols were used to refine 30 models of the D3 dopamine receptor (D3R) in complex with an antagonist. Close to 60 μs of simulation time was generated and the resulting MD refined models were compared to a D3R crystal structure. In the MD simulations, the receptor models generally drifted further away from the crystal structure conformation. However, MD refinement was able to improve the accuracy of the ligand binding mode. The best refinement protocol improved agreement with the experimentally observed ligand binding mode for a majority of the models. Receptor structures with improved virtual screening performance, which was assessed by molecular docking of ligands and decoys, could also be identified among the MD refined models. Application of weak restraints to the transmembrane helixes in the MD simulations further improved predictions of the ligand binding mode and second extracellular loop. These results provide guidelines for application of MD refinement in prediction of GPCR-ligand complexes and directions for further method development.  相似文献   

20.
Amyloid β (Aβ) peptides and metal ions have been associated with the pathogenesis of Alzheimer’s disease. The conformational space of Aβ fragments of different length with and without binding of metal ions has been extensively investigated by replica-exchange molecular dynamics (REMD) simulation. However, only trajectories extracted at relatively low temperatures have been used for this analysis. The capability of REMD simulations to characterize the internal dynamics of such intrinsically disordered proteins (IDPs) as Aβ has been overlooked. In this work, we use an approach recently developed by Xue and Skrynnikov (J Am Chem Soc 133:14614–14628, 2011) to calculate NMR observables, including 15N relaxation rates and 15N–1H nuclear Overhauser enhancement (NOE), from the high-temperature trajectory of REMD simulations for zinc-bound Aβ peptides. The time axis of the trajectory was rescaled to correct for the effect of the high temperature (408 K) compared with the experimental temperature (278 K). Near-quantitative agreement between simulated values and experimental results was obtained. When the structural properties and free-energy surfaces of zinc-bound Aβ(1–40) and Aβ(1–42) were compared at the physiological temperature 310 K it was found that zinc-bound Aβ(1–42) was more rigid than Aβ(1–40) at the C terminus, and its conformational transitions were also more preferred. The self-consistent results derived from trajectories at high and low temperatures demonstrate the capability of REMD simulations to capture the internal dynamics of IDPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号