首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pigeon peas [Cajanus cajan (L.) Millsp.] were grown in soil columns containing 15N-enriched organic matter. Seasonal N2 fixation activity was determined by periodically assaying plants for reduction of C2H2. N2 fixation rose sharply from the first assay period at 51 days after planting to a peak of activity between floral initiation and fruit set. N2 fixation (acetylene reduction) activity dropped concomitantly with pod maturation but recovered after pod harvests. Analysis of 15N content of plant shoots revealed that approximately 91 to 94% of plant N was derived from N2 fixation. The effect of inoculation with hydrogenase-positive and hydrogenase-negative rhizobia was examined. Pigeon peas inoculated with strain P132 (hydrogenase-positive) yielded significantly more total shoot N than other inoculated or uninoculated treatments. However, two other hydrogenase-positive strains did not yield significantly more total shoot N than a hydrogenase-negative strain. The extent of nodulation by inoculum strains compared to indigenous rhizobia was determined by typing nodules according to intrinsic antibiotic resistance of the inoculum strains. The inoculum strains were detected in almost all typed nodules of inoculated plants.

Gas samples were taken from soil columns several times during the growth cycle of the plants. H2 was never detected, even in columns containing pigeon peas inoculated with hydrogenase-negative rhizobia. This was attributed to H2 consumption by soil bacteria. Estimation of N2 fixation by acetylene reduction activity was closest to the direct 15N method when ethylene concentrations in the gas headspace (between the column lid and soil surface) were extrapolated to include the soil pore space as opposed solely to measurement in the headspace. There was an 8-fold difference between the two acetylene reduction assay methods of estimation. Based on a planting density of 15,000 plants per hectare, the direct 15N fixation rates ranged from 67 (noninoculated) to 134 kilograms per hectare, while grain yields ranged from 540 to 825 kilograms per hectare. Grain yields were not increased with N fertilizer.

  相似文献   

2.
Summary A two-year field study was undertaken using15N isotope techniques to differentiate between stimulation of N uptake and N2 fixation in Western Canadian cultivars of spring wheat (Triticum aestivum L. emend Thell) and durum (T. turgidum L. emend Bowden) in response to inoculation with N2-fixing bacteria. Bacterial inoculation either had no effect or lowered the % N derived from the fertilizer and the fertilizer use efficiency. Despite the depression of fertilizer uptake, inoculants did not alter the relative uptake from soil and fertilizer-N pools indicating that bacterial inoculation did not alter rooting patterns. Nitrogen-15 isotope dilution indicated that N2 fixation did occur. In 1984, % plant N derived from the atmosphere (% Ndfa) due to inoculation with Bacillus C-11-25 averaged 23.9% while that withAzospirillum brasilense ATCC 29729 (Cd) averaged 15.5%. In 1985, higher soil N levels reduced these values by approximately one-half. Cultivar x inoculant interactions, while significant, were not consistent across years. However, these interactions did not affect cultivars ‘Cadet’ and ‘Rescue’. In agreement with previous results, ‘Cadet’ performed well with all inoculants in both years while ‘Rescue’ performed poorly. Among 1984 treatments, the N increament in inoculated plants was positively correlated with % Ndfa but no such correlation existed in 1985. N2 fixation averaged over all cultivars and strains was 17.9 and 6.7 kg N fixed ha−1 in 1984 and 1985, respectively. Highest rates of N2 fixation were estimated at 52.4 kg N ha−1 for ‘Cadet’ in 1984 and 31.3 kg N ha−1 for ‘Owens’ in 1985, both inoculated with Bacillus C-11-25, an isolate from southern Alberta soils. Inoculation with either ofAzospirillum brasilense strain Cd (ATCC29729) or 245 did not result in as consistent or as high N2 fixation, suggesting that these wheats had not evolved genetic compatability with this exogenous microorganism. These agronomically significant amounts of N2 fixation occurred under optimally controlled experimental conditions in the field. It is yet to be determined if N2 fixation would occur in response to bacterial inoculation under dryland conditions commonly occurring in Western Canada. Contribution from Agriculture Canada Research Station, Lethbridge, Alberta, Canada.  相似文献   

3.
The influence of a supplementary bradyrhizobial inoculation after an initial seed slurry inoculation with the same strain on nodulation and N2 fixation in soybeans was examined in the greenhouse. The plants were grown in a Typic Eutrocrepts soil: sand mixture containing 25, 65, or 83 mg of N per kg (i.e., native soil N plus 15N-labeled ammonium sulfate). Harvests were made at early flowering and physiological maturity. The supplementary inoculations which were made 14 or 21 days after planting (DAP) caused formation of substantially more nodules than the single slurry inoculation did. Autoregulation was therefore not completely successful in preventing subsequent infections. For the slurry-inoculated plants, at both harvests the proportion of N derived from fixation was greatest in the soil containing the least N, and only slight increases in N2 fixation resulted from a second inoculation. The inhibition of N2 fixation at the higher N levels was significantly reduced by a second inoculation at 21 DAP; this treatment resulted in at least a doubling of both the percentage and total amount of N2 fixed by the single slurry inoculation at physiological maturity. The N2 fixation increases resulting from the supplementary inoculation at 14 DAP were less pronounced and not significant. Greater N2 fixation was frequently not reflected by increased total N or dry matter yield, suggesting that the major benefit of the increased fixation was a decreased dependence of plants on soil N for growth.  相似文献   

4.

Background and Aims

Understanding the impact of soil rhizobial populations and inoculant rhizobia in supplying sufficient nodulation is crucial to optimising N2 fixation by legume crops. This study explored the impact of different rates of inoculant rhizobia and contrasting soil rhizobia on nodulation and N2 fixation in faba bean (Vicia faba L.).

Methods

Faba beans were inoculated with one of seven rates of rhizobial inoculation, from no inoculant to 100 times the normal rate of inoculation, sown at two field sites, with or without soil rhizobia present, and their nodulation and N2 fixation assessed.

Results

At the site without soil rhizobia, inoculation increased nodule number and increased N2 fixation from 21 to 129 kg shoot N ha?1, while N2 fixation increased from 132 to 218 kg shoot N ha?1 at the site with high background soil rhizobia. At the site without soil rhizobia, inoculation increased concentrations of shoot N from 14 to 24 mg g?1, grain N from 32 to 45 mg g?1, and grain yields by 1.0 Mg (metric tonne) ha?1. Differences in nodulation influenced the contributions of fixed N to the system, which varied from the net removal of 20 kg N ha?1 from the system in the absence of rhizobia, to a net maximum input of 199 kg N ha?1 from legume shoot and root residues, after accounting for removal of N in grain harvest.

Conclusions

The impact of inoculation and soil rhizobia strongly influenced grain yield, grain N concentration and the potential contributions of legume cropping to soil N fertility. In soil with resident rhizobia, N2 fixation was improved only with the highest inoculation rate.  相似文献   

5.
Although common bean (Phaseolus vulgaris L.) has good potential for N2 fixation, some additional N provided through fertilizer usually is required for a maximum yield. In this study the suppressive effect of N on nodulation and N2 fixation was evaluated in an unfertile soil under greenhouse conditions with different levels of soil fertility (low=no P, K and S additions; medium = 50, 63 and 10 mg kg–1 soil and high = 200, 256 and 40 mg kg–1 soil, respectively) and combined with 5, 15, 60 and 120 mg N kg–1 soil of 15N-labelled urea. The overall average nodule number and weight increased under high fertility levels. At low N applications, nitrogen had a synergistic effect on N2 fixation, by stimulating nodule formation, nitrogenase activity and plant growth. At high fertility and at the highest N rate (120 mg kg–1 soil), the stimulatory effect of N fertilizer on N2 fixation was still observed, increasing the amounts of N2 fixed from 88 up to 375 mg N plant–1. These results indicate that a suitable balance of soil nutrients is essential to obtain high N2 fixation rates and yield in common beans.  相似文献   

6.
The ability to predict the symbiotic performance of rhizobia introduced into different environments would allow for a more judicious use of rhizobial inoculants. Data from eight standardized field inoculation trials were used to develop models that could be used to predict the success of rhizobial inoculation in diverse environments based on indices of the size of indigenous rhizobial populations and the availability of mineral N. Inoculation trials were conducted at five diverse sites on the island of Maui, Hawaii, with two to four legumes from among nine species, yielding 29 legume-site observations. The sizes of indigenous rhizobial populations were determined at planting. Soil N mineralization potential, total soil N, N accumulation and seed yield of nonnodulating soybean, and N derived from N2 fixation in inoculated soybean served as indices of available soil N. Uninoculated, inoculated, and fertilizer N treatments evaluated the impact of indigenous rhizobial populations and soil N availability on inoculation response and crop yield potential. The ability of several mathematical models to describe the inverse relationship between numbers of indigenous rhizobia and legume inoculation responses was evaluated. Power, exponential, and hyperbolic functions yielded similar results; however, the hyperbolic equation provided the best fit of observed to estimated inoculation responses (r2 = 0.59). The fact that 59% of the observed variation in inoculation responses could be accounted for by the relationship of inoculation responses to numbers of indigenous rhizobia illustrates the profound influence that the size of soil rhizobial populations has on the successful use of rhizobial inoculants. In the absence of indigenous rhizobia, the inoculation response was directly proportional to the availability of mineral N. Therefore, the hyperbolic response function was subsequently combined with several indices of soil N availability to generate models for predicting legume inoculation response. Among the models developed, those using either soil N mineralization potential or N derived from N2 fixation in soybean to express the availability of mineral N were most useful in predicting the success of legume inoculation. Correlation coefficients between observed and estimated inoculation responses were r = 0.83 for the model incorporating soil N mineralization potential and r = 0.96 for the model incorporating N derived from N2 fixation. Several equations collectively termed “soil N deficit factors” were also found to be useful in estimating inoculation responses. In general, models using postharvest indices of soil N were better estimators of observed inoculation responses than were those using laboratory measures of soil N availability. However, the latter, while providing less precise estimates, are more versatile because all input variables can be obtained through soil analysis prior to planting. These models should provide researchers, as well as regional planners, with a more precise predictive capability to determine the inoculation requirements of legumes grown in diverse environments.  相似文献   

7.
Summary A field experiment was performed to assess the effects of Rhizobium inoculation and nitrogen fertilizer (100 kg N ha–1) on four cultivars of Phaseolus beans; Carioca, Negro Argel, Venezuela 350 and Rio Tibagi. In the inoculated treatment 2.5 kg N ha–1 of15N labelled fertilizer was added in order to apply the isotope dilution technique to quantify the contribution of N2 fixation to the nutrition of these cultivars.Nodulation of all cultivars in the uninoculated treatments was poor, but the cultivars Carioca and Negro Argel were well nodulated when inoculated. Even when inoculated, nodulation of the cultivars Venezuela 350 and Rio Tibagi was poor and these cultivars showed little response to inoculation in terms of nitrogen accumulation or grain yield. The estimates of the contribution of N2 fixation estimated using the isotope dilution technique, for the Carioca and Negro Argel cultivars, amounted to 31.7 and 18.4 kg N ha–1 respectively. These two cultivars produced 991 and 883 kg ha–1 of grain, respectively, when inoculated and 663 and 620 kg ha–1 with the addition of 100 kg N ha–1 of N fertilizer. The response to nitrogen was particularly poor due to high leaching losses in the very sandy soil at the experimental site.The Venezuela 350 and Rio Tibagi cultivars only responded to N fertilizer and not to inoculation with Rhizobium which stresses the great importance of selecting plant cultivars for nitrogen fixation in the field.  相似文献   

8.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   

9.
Summary Isotopic as well as non-isotopic methods were used to assess symbiotic nitrogen fixation within eight soybean [Glycine max (L.) Merr.] cultivars grown at 20 and 100 kg N/ha levels of nitrogen fertilizer under field conditions.The15N methodology revealed large differences between soybean cultivars in their abilities to support nitrogen fixation. In almost all cases, the application of 100 kg N/ha resulted in lower N2 fixed in soybean than at 20 kg N/ha in the first year of the study. However, N2 fixed in one cultivar, Dunadja, was not significantly affected by the higher rate of N fertilizer application. These results were confirmed by measurements of acetylene reduction activity, nodule dry weight and N2 fixed as measured by the difference method. Further proof of differences in N2 fixed within soybean cultivars and the ability of Dunadja to fix similar amounts of N2 at 20 and 100 kg N/ha was obtained during a second year experiment. Dunadja yield was affected by N fertilizer and produced larger yield at 100 kg N/ha than at 20 kg N/ha. This type of cultivar could be particularly useful in situations where soil N levels are high or where there is need to apply high amounts of N fertilizer.The present study reveals the great variability between legume germplasms in the ability to fix N2 at different inorganic N levels, and also the potential that exists in breeding for nitrogen fixation associative traits. The15N methodology offers a unique tool to evaluate germplasms directly in the field for their N2 fixation abilities at different N fertilizer levels.  相似文献   

10.

Background and aims

Emission of the greenhouse gas (GHG) nitrous oxide (N2O) are strongly affected by nitrogen (N) fertilizer application rates. However, the role of other nutrients through stoichiometric relations with N has hardly been studied. We tested whether phosphorus (P) availability affects N2O emission. We hypothesized that alleviation of plant P-limitation reduces N2O emission through lowering soil mineral N concentrations.

Methods

We tested our hypothesis in a pot experiment with maize (Zea mays L.) growing on a P-limiting soil/sand mixture. Treatment factors included P and N fertilization and inoculation with Arbuscular Mycorrhizal Fungi (AMF; which can increase P uptake).

Results

Both N and P fertilization, as well as their interaction significantly (P?<?0.01) affected N2O emission. Highest N2O emissions (2.38 kg N2O-N ha?1) were measured at highest N application rates without P fertilization or AMF. At the highest N application rate, N2O fluxes were lowest (0.71 kg N2O-N ha?1) with both P fertilization and AMF. The N2O emission factors decreased with 50 % when P fertilization was applied.

Conclusions

Our results illustrate the importance of the judicious use of all nutrients to minimize N2O emission, and thereby further underline the intimate link between sound agronomic practice and prudent soil GHG management.  相似文献   

11.
Summary The15N-substratum labeling technique and other indirect methods were used to compare nitrogen (N2) fixation in soybean varieties grown in the field in Greece and Romania. Significant variation in the amount (Ndfa) and proportion of N derived from fixation (% Ndfa) was found in different varieties. With 20 kg N/ha applied to soil, N2 fixed ranged from 22 to 236 kg N/ha in Greece and from 17 to 132 kg N/ha in Romania. In general, varieties or treatments with higher dry matter yield supported greater fixation. Also, varieties with high Ndfa had high % Ndfa andvice versa. Breeding N2-fixing legumes for high yields at low soil N levels therefore appears to be a reasonable strategy for enhancing N2 fixation. Heavy applications of inorganic N fertilizer severely depressed N2 fixation in two out of the three varieties used in Romania. One variety, F 74–412, however, derived slightly higher amounts of N2 from fixation at 100 kg N/ha rate than when fertilized with 20 kg N/ha. In Greece, Chippewa, Williams and Amsoy-71 inoculated with a Nitragin inoculant fixed similar amounts of N2 at both 20 and 100 kg N/ha fertilizer rates. However, when Chippewa and Williams were inoculated with amother, locally-isolated Rhizobium strain, N2 fixation was substantially depressed at the higher N rate.  相似文献   

12.
The effects of inoculating soil with a water suspension of Bradyrhizobium japonicum (i) at seeding, (ii) 7, or (iii) 14 days after planting (DAP), (iv) seed slurry inoculation and (v) seed slurry supplemented with postemergence inoculation of a water suspension of Bradyrhizobium at 7 or (vi) 14 DAP, on nodulation, N2 fixation and yield of soybean (Glycine max. [L.] Merrill) were compared in the greenhouse. The 15N isotope dilution technique was used to quantify N2 fixed at flowering, early pod filling and physiological maturity stages (36, 52 and 70 DAP, respectively). On average, the water suspension inoculation formed the greatest number of nodules, and seed plus postemergence inoculation formed slightly more nodules than the seed-only inoculated plants (27, 19 and 12 nodules/plant respectively at physiological maturity). Seed slurry inoculation followed by postemergence inoculation at 14 DAP gave the highest nodule weight, with the plants fixing significantly more (P<0.05) N2 (125 mg N plant−1 or 56% N) than any other treatment (mean, 75 mg plant−1 or 35% N). However, the higher N2 fixation was not translated into higher N or dry matter yields. Estimates of N2 fixed by the ostemergence Bradyrhizobium inoculations as well as plant yield were not significantly different from those of the seed slurry inoculation. Thus, delaying inoculation (e.g., by two weeks as in this study) did not reduce the symbiotic ability of soybean plants.  相似文献   

13.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

14.
Summary Two experiments were carried out with two nodulating and non-nodulating soybean isolines, with three different levels of N as (15NH4)2SO4 at the equivalent of 0, 25 and 50 kg N/ha. In the first experiment three seeds were sown in each pot and the plants harvested at 35, 55 and 75 days. In the second experiment only one seed was sown per pot and harvested at 75 days.Isotope dilution technique and in certain cases natural isotope variation (15N) was used to determine directly the origin of nitrogen in the plant, whether from soil, fertilizer or biological N2-fixation. The use of nodulating and non-nodulating isolines enabled comparison with the classical method of estimating N2-fixation by difference from total plant N. Results at the 75 day harvest were similar for either method, but at the earlier harvests, particularly at 35 days, the total-N method was inadequate. The isotope method appeared more sensitive while the total-N method suffered from greater variability with correspondingly high standard errors and significant differences.It was found that by the 35 and 55 day harvests hardly any N2-fixation had taken place, plant nitrogen being almost entirely derived from soil or fertilizer N. Plants in competition used up soil fertilizer N more rapidly, thus stimulating symbiotic nitrogen fixation. When only one plant was grown in each pot it had a greater proportion of N derived from soil or fertilizer, and less N derived from fixation. In general the15N data showed that only about 25% of the applied fertilizer N was absorbed by the plant.The nodulating isoline absorbed more N than the non-nodulating plants. This suggests a possible synergistic effect of N2-fixation on N derived from other sources, giving an increase in total-N content of nudulated plants. The N derived from N2-fixation was scarcely detectable in the roots but appeared to be translocated almost entirely to shoots and pods.With 25 kg N/ha the greater proportion of the nitrogen in the pods was derived from N2-fixation. Even with 50 kg N/ha the nitrogen in the pods derived from fixation remained high, that being derived from fertilizer being less than 15%. About 80% of the nitrogen in the nodules was due to fixation.In the present experiment the application of 25 kg N/ha appeared sufficient to give maximum N absorption by both isolines. At this level symbiotic fixation by Rhizobium remained high in nodulating plants, while the proportion of total N due to fixation was reduced with 50 kg N/ha.UNDP/IAEA Project BRA 78/006.  相似文献   

15.
The relationship between ureide N and N2 fixation was evaluated in greenhouse-grown soybean (Glycine max L. Merr.) and lima bean (Phaseolus lunatus L.) and in field studies with soybean. In the greenhouse, plant N accumulation from N2 fixation in soybean and lima bean correlated with ureide N. In soybean, N2 fixation, ureide N, acetylene reduction, and nodule mass were correlated when N2 fixation was inhibited by applying KNO3 solutions to the plants. The ureide-N concentrations of different plant tissues and of total plant ureide N varied according to the effectiveness of the strain of Bradyrhizobium japonicum used to inoculate plants. The ureide-N concentrations in the different plant tissues correlated with N2 fixation. Ureide N determinations in field studies with soybean correlated with N2 fixation, aboveground N accumulation, nodule weight, and acetylene reduction. N2 fixation was estimated by 15N isotope dilution with nine and ten soybean genotypes in 1979 and 1980, respectively, at the V9, R2, and R5 growth stages. In 1981, we investigated the relationship between ureide N, aboveground N accumulation, acetylene reduction, and nodule mass using four soybean genotypes harvested at the V4, V6, R2, R4, R5, and R6 growth stages. Ureide N concentrations of young stem tissues or plants or aboveground ureide N content of the four soybean genotypes varied throughout growth correlating with acetylene reduction, nodule mass, and aboveground N accumulation. The ureide-N concentrations of young stem tissues or plants or aboveground ureide-N content in three soybean genotypes varied across inoculation treatments of 14 and 13 strains of Bradyrhizobium japonicum in 1981 and 1982, respectively, and correlated with nodule mass and acetylene reduction. In the greenhouse, results correlating nodule mass with N2 fixation and ureide N across strains were variable. Acetylene reduction in soybean across host-strain combinations did not correlate with N2 fixation and ureide N. N2 fixation, ureide N, acetylene reduction, and nodule mass correlated across inoculation treatments with strains of Bradyrhizobium spp. varying in effectiveness on lima beans. Our data indicate that ureide-N determinations may be used as an additional method to acetylene reduction in studies of the physiology of N2 fixation in soybean. Ureide-N measurements also may be useful to rank strains of B. japonicum for effectiveness of N2 fixation.  相似文献   

16.
Summary Two experiments were performed to examine the effects of inoculation of field grown wheat with various Azospirillum strains. In the first experiment the soil was sterilized with methyl bromide to reduce the Azospirillum population and15N labelled fertilizer was added to all treatments. Two strains ofAzospirillum brasilense isolated from surface sterilized wheat roots and theA. brasilense type strain Sp7 all produced similar increases in grain yield and N content. From the15N and acetylene reduction data it was apparent that these increases were not due to N2 fixation. In the second experiment performed in the same (unsterilized) soil, twoA. brasilense strains (Sp245, Sp246) and oneA. amazonense strain (Am YTr), all isolated from wheat roots, produced responses of dry matter and N content while the response to the strain Sp7 was much smaller. These data confirm earlier results which indicate that if natural Azospirillum populations in the soil are high (the normal situation under Brazilian conditions), strains which are isolated from wheat roots are better able to produce inoculation responses than strains isolated from other sources. The inoculation of a nitrate reductase negative mutant of the strain Sp245 produced only a very small inoculation response in wheat. This suggests that the much greater inoculation response of the original strain was not due to N2 fixation but to an increased nitrate assimilation due to the nitrate reductase activity of the bacteria in the roots. Consultant Inter-American Institute for Cooperation in Agriculture IICA/EMBRAPA World Bank Project.  相似文献   

17.
Summary The effect of S fertilization on symbiotic N2 fixation was measured with the15N technique and the N difference method in a lysimeter study using Josephine loam (Typic Haploxurults). Nitrogen fixation by subclover (Trifolium subterraneum L.) was strongly enhanced by added S. The association of soft chess (Bromus mollis L.) or filaree (Erodium botrys (Cav.) Bertol.) with subclover increased the percentage of N in subclover that was fixed, with the results that N2 fixation was increased beyond that due to the mere increase in subclover biomass. Nitrogen fixation estimates by15N dilution and N difference methods were highly correlated (r2=0.97), and S fertilizer did not result in any significant differences in N2-fixation estimation by the two methods. Both methods were useful in distinguishing between soil N uptake and N2 fixation where S applications produced highly significant increases in both uptake and fixation. Application of sulfur fertilizers to much annual rangeland has the potential to increase pasture productivity through enhanced N2 fixation. Contribution of the University of California Hopland Field Station and Department of Agronomy and Range Science, Univ. of California, Davis, CA 95616.  相似文献   

18.
Yields of above ground biomass and total N were determined in summer-grown maize and cowpea as sole crops or intercrops, with or without supplementary N fertilizer (25 kg N ha−1, urea) at an irrigated site in Waroona, Western Australia over the period 1982–1985. Good agreement was obtained between estimates of N2 fixation of sole or intercrop cowpea (1984/85 season) based on the15N natural abundance and15N fertilizer dilution techniques, both in the field and in a glasshouse pot study. Field-grown cowpea was estimated to have received 53–69% of its N supply from N2-fixation, with N2-fixation onlyslightly affected by intercropping or N fertilizer application. Proportional reliance on N2-fixation of cowpea in glasshouse culture was lower (36–66%) than in the field study and more affected by applied N. Budgets for N were drawn up for the field intercrops, based on above-ground seed yields, return of crop residues, inputs of fixed N and fertilizer N. No account was taken of possible losses of N through volatilization, denitrification and leaching or gains of N in the soil from root biomass. N2-fixation was estimated tobe 59 kg N ha−1 in the plots receiving no fertilizer N, and 73 kg N ha−1 in plots receiving 25 kg N ha−1 as urea. Comparable fixation by sole cowpea was higher (87 and 82 kg N ha−1 respectively) but this advantage was outweighed by greater land use efficiency by the intercrop than sole crops.  相似文献   

19.
Legume-based cropping systems have the potential to internally regulate N cycling due to the suppressive effect of soil N availability on biological nitrogen fixation. We used a gradient of endogenous soil N levels resulting from different management legacies and soil textures to investigate the effects of soil organic matter dynamics and N availability on soybean (Glycine max) N2 fixation. Soybean N2 fixation was estimated on 13 grain farm fields in central New York State by the 15N natural abundance method using a non-nodulating soybean reference. A range of soil N fractions were measured to span the continuum from labile to more recalcitrant N pools. Soybean reliance on N2 fixation ranged from 36% to 82% and total N2 fixed in aboveground biomass ranged from 40 to 224 kg N ha?1. Soil N pools were consistently inversely correlated with % N from fixation and the correlation was statistically significant for inorganic N and occluded particulate organic matter N. However, we also found that soil N uptake by N2-fixing soybeans relative to the non-nodulating isoline increased as soil N decreased, suggesting that N2 fixation increased soil N scavenging in low fertility fields. We found weak evidence for internal regulation of N2 fixation, because the inhibitory effects of soil N availability were secondary to the environmental and site characteristics, such as soil texture and corresponding soil characteristics that vary with texture, which affected soybean biomass, total N2 fixation, and net N balance.  相似文献   

20.
Nitrogen fixation was measured in monocropped sweet-blue lupin (Lupinus angustifolius), lupin intercropped with two ryegrass (Lolium multiflorum) cultivars or with oats (Avena sativa) on an Andosol soil, using the 15N isotope dilution method. At 117 days after planting and at a mean temperature below 10°C, monocropped lupin derived an average of 92% or 195 kg N ha−1 of its N from N2 fixation. Intercropping lupin with cereals increased (p<0.05) the percentage of N derived from atmospheric N2 (% Ndfa) to a mean of 96%. Compared to the monocropped, total N fixed per hectare in intercropped lupin declined approximately 50%, in line with the decrease in seeding rate and dry matter yield. With these high values of N2 fixation, selection of the reference crop was not a problem; all the cereals, intercropped or grown singly produced similar estimates of N2 fixed in lupin. It was deduced from the 15N data that significant N transfer occurred from lupin to intercropped Italian ryegrass but not to intercropped Westerwoldian ryegrass or to oats. Doubling the 15N fertilizer rate from 30 to 60 kg N ha−1 decreased % Ndfa to 86% (p<0.05), but total N fixed was unaltered. These results indicate that lupin has a high potential for N2 fixation at low temperatures, and can maintain higher rates of N2 fixation in soils of high N than many other forage and pasture legumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号