首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genetic variation between naturally occurring populations provides a unique source to unravel the complex mechanisms of stress tolerance. Here, we have analysed O3 sensitivity of 93 natural Arabidopsis thaliana accessions together with five O3‐sensitive mutants to acute O3 exposure. The variation in O3 sensitivity among the natural accessions was much higher than among the O3‐sensitive mutants and corresponding wild types. A subset of nine accessions with major variation in their O3 responses was studied in more detail. Among the traits assayed, stomatal conductance (gst) was an important factor determining O3 sensitivity of the selected accessions. The most O3‐sensitive accession, Cvi‐0, had constitutively high gst, leading to high initial O3 uptake rate and dose received during the first 30 min of exposure. Analyzing O3‐induced changes in stress hormone concentrations indicated that jasmonate (JA) concentration was also positively correlated with leaf damage. Quantitative trait loci (QTL) mapping in a Col‐0 × Cvi‐0 recombinant inbred line (RIL) population identified three QTLs for O3 sensitivity, and one for high water loss of Cvi‐0. The major O3 QTL mapped to the same position as the water loss QTL further supporting the role of stomata in regulating O3 entry and damage.  相似文献   

3.
Leaf discs of the ozone tolerant tobacco (Nicotiana tabacum L.) cv. Bel B and of the ozone sensitive cv. Bel W3, were exposed to an acute ozone fumigation (300 ppb) for 3 h. We measured ozone uptake by leaves and physiological characteristics before, during and after the treatment, in order to determine if the different O3 sensitivity was correlated to the leaf uptake. In the tolerant cv. Bel B, O3 uptake was high during the first 2 h of ozone exposure and then decreased. In the sensitive cv. Bel W3, the rate of O3 uptake decreased constantly during ozone fumigation. The estimated cumulative uptake over the treatment time was higher (200 ± 30 μmol m–2) in Bel B than in Bel W3 (130 ± 12 μmol m–2). Thus, the ozone sensitivity was not correlated with ozone uptake. Stomatal conductance and photosynthesis were significantly inhibited during the fumigation in both cultivars. However, these reductions were strong and irreversible in the cv. Bel W3, while in the cv. Bel B both parameters recovered in the post-fumigation period. Thus, ozone tolerance may be related to a sustained capacity of recovery. There was no linear correlation between ozone uptake and photosynthesis reduction, but a threshold of ozone uptake was found after which photosynthesis was substantially impaired. This threshold may or may not be reached under the same external ozone level, indicating that the AOT40 may not be a sufficiently accurate index for the detection of ozone damage in plants.  相似文献   

4.
RbcS-antisense transformed tobacco plants (Nicotiana tabacum cv. Petit Havana) expressing reduced quantities of Rubisco protein were used to examine the role of Rubisco quantity in determining ozone (O3) sensitivity. Transformed and wild-type plants were exposed to O3 in the greenhouse and in the field. Stomatal conductance, net photosynthesis and Rubisco protein quantity were measured at various times. Antisense-transformed genotypes responded to O3 by exhibiting rapid, severe foliar necrosis. The wild-type plants responded more slowly, exhibiting limited injury. Decreases in stomatal conductance, net photosynthesis or Rubisco quantity in plants exposed to O3 were not observed in asymptomatic leaves. Total biomass was lower for the transformed genotypes and decreased in both genotypes after exposure to O3. Shoot–root ratio and specific leaf area were higher in the transformed genotypes and increased in both genotypes with exposure to O3. Measurements of intercellular airspace demonstrated the presence of larger intercellular spaces in the transformed plants. The indirect effects of the rbcS antisense transformation, including morphological changes in the leaf, probably rendered the transformed plants more sensitive to the oxidant. The decreased quantity of Rubisco is not thought to be directly related to increased O3 sensitivity in the transformed plants.  相似文献   

5.
Previous studies suggest that salicylic acid (SA) plays an important role in influencing plant resistance to ozone (O3). To further define the role of SA in O3-induced responses, we compared the responses of two Arabidopsis genotypes that accumulate different amounts of SA in response to O3 and a SA-deficient transgenic Col-0 line expressing salicylate hydroxylase (NahG). The differences observed in O3-induced changes in SA levels, the accumulation of active oxygen species, defense gene expression, and the kinetics and severity of lesion formation indicate that SA influences O3 tolerance via two distinct mechanisms. Detailed analyses indicated that features associated with a hypersensitive response (HR) were significantly greater in O3-exposed Cvi-0 than in Col-0, and that NahG plants failed to exhibit these HR-like responses. Furthermore, O3-induced antioxidant defenses, including the redox state of glutathione, were greatly reduced in NahG plants compared to Col-0 and Cvi-0. This suggests that O3-induced cell death in NahG plants is due to the loss of SA-mediated potentiation of antioxidant defenses, while O3-induced cell death in Cvi-0 is due to activation of a HR. This hypothesis is supported by the observation that inhibition of NADPH-oxidases reduced O3-induced H2O2 levels and the O3-induced cell death in Cvi-0, while no major changes were observed in NahG plants. We conclude that although SA is required to maintain the cellular redox state and potentiate defense responses in O3 exposed plants, high levels of SA also potentiate activation of an oxidative burst and a cell death pathway that results in apparent O3 sensitivity.  相似文献   

6.
The crop sensitivity to ozone (O3) is affected by the timing of the O3 exposure, by the O3 concentration, and by the crop age. To determine the physiological response to the acute ozone stress, tomato plants were exposed to O3 at two growth stages. In Experiment I (Exp. I), O3 (500 μg m?3) was applied to 30-d-old plants (PL30). In Experiment II (Exp. II), three O3 concentrations (200, 350, and 500 μg m?3) were applied to 51-d-old plants (PL51). The time of the treatment was 4 h (7:30–11:30 h). Photosynthesis and chlorophyll fluorescence measurements were done 4 times (before the exposure; 20 min, 20 h, and 2–3 weeks after the end of the treatment) using a LI-COR 6400 photosynthesis meter. The stomatal pore area and stomatal conductance were reduced as the O3 concentration increased. Ozone induced the decrease in the photosynthetic parameters of tomato regardless of the plant age. Both the photosystem (PS) II operating efficiency and the maximum quantum efficiency of PSII photochemistry declined under the ozone stress suggesting that the PSII activity was inhibited by O3. The impaired PSII contributed to the reduced photosynthetic rate. The greater decline of photosynthetic parameters was found in the PL30 compared with the PL51. It proved the age-dependent ozone sensitivity of tomato, where the younger plants were more vulnerable. Ozone caused the degradation of photosynthetic apparatus, which affected the photosynthesis of tomato plants depending on the growth stage and the O3 concentration.  相似文献   

7.
The carbon‐sink strength of temperate and boreal forests at midlatitudes of the northern hemisphere is decreased by ozone pollution, but knowledge on subtropical evergreen broadleaved forests is missing. Taking the dataset from Chinese studies covering temperate and subtropical regions, effects of elevated ozone concentration ([O3]) on growth, biomass, and functional leaf traits of different types of woody plants were quantitatively evaluated by meta‐analysis. Elevated mean [O3] of 116 ppb reduced total biomass of woody plants by 14% compared with control (mean [O3] of 21 ppb). Temperate species from China were more sensitive to O3 than those from Europe and North America in terms of photosynthesis and transpiration. Significant reductions in chlorophyll content, chlorophyll fluorescence parameters, and ascorbate peroxidase induced significant injury to photosynthesis and growth (height and diameter). Importantly, subtropical species were significantly less sensitive to O3 than temperate ones, whereas deciduous broadleaf species were significantly more sensitive than evergreen broadleaf and needle‐leaf species. These findings suggest that carbon‐sink strength of Chinese forests is reduced by present and future [O3] relative to control (20–40 ppb). Given that (sub)‐tropical evergreen broadleaved species dominate in Chinese forests, estimation of the global carbon‐sink constraints due to [O3] should be re‐evaluated.  相似文献   

8.
Low temperatures and high light cause imbalances in primary and secondary reactions of photosynthesis, and thus can result in oxidative stress. Plants employ a range of low‐molecular weight antioxidants and antioxidant enzymes to prevent oxidative damage, and antioxidant defence is considered an important component of stress tolerance. To figure out whether oxidative stress and antioxidant defence are key factors defining the different cold acclimation capacities of natural accessions of the model plant Arabidopsis thaliana, we investigated hydrogen peroxide (H2O2) production, antioxidant enzyme activity and lipid peroxidation during a time course of cold treatment and exposure to high light in four differentially cold‐tolerant natural accessions of Arabidopsis (C24, Nd, Rsch, Te) that span the European distribution range of the species. All accessions except Rsch (from Russia) had elevated H2O2 in the cold, indicating that production of reactive oxygen species is part of the cold response in Arabidopsis. Glutathione reductase activity increased in all but Rsch, while ascorbate peroxidase and superoxide dismutase were unchanged and catalase decreased in all but Rsch. Under high light, the Scandinavian accession Te had elevated levels of H2O2. Te appeared most sensitive to oxidative stress, having higher malondialdehyde (MDA) levels in the cold and under high light, while only high light caused elevated MDA in the other accessions. Although the most freezing‐tolerant, Te had the highest sensitivity to oxidative stress. No correlation was found between freezing tolerance and activity of antioxidant enzymes in the four accessions investigated, arguing against a key role for antioxidant defence in the differential cold acclimation capacities of Arabidopsis accessions.  相似文献   

9.
Ozone exposure stimulates an oxidative burst in leaves of sensitive plants, resulting in the generation and accumulation of hydrogen peroxide (H2O2) in tobacco and tomato, and superoxide (O2–?) together with H2O2 in Arabidopsis accessions. Accumulation of these reactive oxygen species (ROS) preceded the induction of cell death, and both responses co‐occurred spatially in the periveinal regions of the leaves. Re‐current ozone exposure of the sensitive tobacco cv. Bel W3 in closed chambers or in the field led to an enlargement of existing lesions by priming the border cells for H2O2 accumulation. Open top chamber experiments with native herbaceous plants in the field showed that Malva sylvestris L. accumulates O2–? at those sites that later exhibit plant cell death. Blocking of ROS accumulation markedly reduced ozone‐induced cell death in tomato, Arabidopsis and M. sylvestris. It is concluded that ozone triggers an in planta generation and accumulation of H2O2 and/or O2–? depending on the species, accession and cultivar, and that both these reactive oxygen species are involved in the induction of cell death in sensitive crop and native plants.  相似文献   

10.
11.
Ground concentration of ozone (O3) causes serious threat to plants. In order to protect sensitive plants from O3 pollution, many kinds of antioxidants were assessed in previous studies. In this study, effects of O3 fumigation (a single spike of 120 ± 20 nmol mol–1 for four hours) on an ornamental species (Coleus blumei) was examined in open-top chambers. Before the O3 treatment, plants were sprayed respectively either with a solution of three different antioxidants [Na-ascorbate (NaAsA), kinetin (KIN), and spermidine (Spd)] or with distilled water to compare their protective effects to plants. Our results revealed that O3 fumigation impaired the plasma membrane, decreased chlorophyll (Chl) content, inhibited photosynthesis, induced photoinhibition and photodamage, and caused visible injury. Spraying with KIN, NaAsA or Spd ameliorated the decrease of the Chl content and photosynthetic capability, the impairment of membrane, and visible injury under O3 fumigation. The plants treated with KIN showed the best ability to mitigate the injury caused by O3.  相似文献   

12.
Monda K  Negi J  Iio A  Kusumi K  Kojima M  Hashimoto M  Sakakibara H  Iba K 《Planta》2011,234(3):555-563
The Arabidopsis Cape Verde Islands (Cvi-0) ecotype is known to differ from other ecotypes with respect to environmental stress responses. We analyzed the stomatal behavior of Cvi-0 plants, in response to environmental signals. We investigated the responses of stomatal conductance and aperture to high [CO2] in the Cvi-0 and Col-0 ecotypes. Cvi-0 showed constitutively higher stomatal conductance and more stomatal opening than Col-0. Cvi-0 stomata opened in response to light, but the response was slow. Under low humidity, stomatal opening was increased in Cvi-0 compared to Col-0. We then assessed whether low humidity affects endogenous ABA levels in Cvi-0. In response to low humidity, Cvi-0 had much higher ABA levels than Col-0. However, epidermal peels experiments showed that Cvi-0 stomata were insensitive to ABA. Measurements of organic and inorganic ions in Cvi-0 guard cell protoplasts indicated an over-accumulation of osmoregulatory anions (malate and Cl). This irregular anion homeostasis in the guard cells may explain the constitutive stomatal opening phenotypes of the Cvi-0 ecotype, which lacks high [CO2]-induced and low humidity-induced stomatal closure.  相似文献   

13.
14.
15.
Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.  相似文献   

16.
Three spring wheat genotypes, susceptible, moderately resistant or resistant to Pyrenophora tritici-repentis (tan spot fungus) were exposed to charcoal-filtered air and to approx. 80, 160, 240 (g m?3 ozone for five consecutive days (7 h per day). Visible leaf injury on seedling plants (three-leaf stage) was only observed after fumigation with 160 or 240 (g m?3 O3. Amount of injury was four-fold and 10-fold on the susceptible genotype when compared to resistant or moderately resistant genotype at the two highest concentration of ozone, respectively. Genotypic differences to O3 tolerance were detected at the seedling growth stage (three-leaf stage) and flowering stage but not at the stem elongation stage. A significant increase in tan spot lesion area was observed only on O3 predisposed second top most leaves of the susceptible genotype at all the three levels of ozone. Predisposition did not enhance tan spot development in resistant and moderately resistant genotypes. In a test with 12 wheat genotypes, a highly significant positive correlation (r = 0· 986, p < 0· 0001) was observed between ozone sensitivity (percent leaf area damaged due to 240 (g m?3 ozone exposure) and tan spot development (mm2 lesion area) following inoculation with P. tritici-repentis. It indicates that wheat genotypes resistant to the tan spot fungus might be tolerant to ozone damage.  相似文献   

17.
Difference between effects of sulfur dioxide (SO2) and ozone (O3) on groundnut plants (Arachis hypogaea L.) was studied by use of an exposure system of enzymatically-isolated mesophyll cells. SO2 inhibited photosynthesis of intact groundnut leaves but induced no visible injury on leaves. SO2 also inhibited photosynthesis of isolated mesophyll cells but did not kill the cells, suggesting that SO2 inhibits photosynthesis by attacking rather specifically the photosynthetic apparatus in chloroplasts. O3 inhibited photosynthesis of intact leaves and at the same time induced visible injury corresponding to the extent of photosynthesis inhibition. O3 also inhibited photosynthesis of isolated mesophyll cells and killed the cells to the extent corresponding to photosynthesis inhibition, suggesting that O3 inhibits photosynthesis not directly by attacking the photosynthetic apparatus but indirectly by killing cells. Since the response of intact leaves to each pollutant resembled that of isolated mesophyll cells, the difference between responses of intact leaves to both pollutants may considerably reflect that of mesophyll cells.  相似文献   

18.
Jasmonic acid signaling modulates ozone-induced hypersensitive cell death   总被引:15,自引:0,他引:15  
Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.  相似文献   

19.
Soil cadmium (Cd) contamination is becoming a matter of great global concern. The identification of plants differentially sensitive to Cd excess is of interest for the selection of genotype adaptive to grow and develop in polluted areas and capable of ameliorating or reducing the negative environmental effects of this toxic metal. The two poplar clones I-214 (Populus × canadensis) and Eridano (Populus deltoides × maximowiczii) are, respectively, tolerant and sensitive to ozone (O3) exposure. Because stress tolerance is mediated by an array of overlapping defence mechanisms, we tested the hypothesis that these two clones differently sensitive to O3 stress factor also exhibit different tolerance to Cd. With this purpose, an outdoor pot experiment was designed to study the responses of I-214 and Eridano to the distribution of different Cd solutions enriched with CdCl2 (0, 50 and 150 μM) for 35 days. Changes in leaf area, biomass allocation and Cd uptake, photosynthesis, chlorophyll fluorescence, leaf concentration of nutrients and pigments, hydrogen peroxide (H2O2) and nitric oxide (NO) production and thiol compounds were investigated. The two poplar clones showed similar sensitivity to excess Cd in terms of biomass production, photosynthesis activity and Cd accumulation, though physiological and biochemical traits revealed different defence strategies. In particular, Eridano maintained in any Cd treatment the number of its constitutively wider blade leaves, while the number of I-214 leaves (with lower size) was reduced. H2O2 increased 4.5- and 13-fold in I-214 leaves after the lowest (L) and highest (H) Cd treatments, respectively, revealing the induction of oxidative burst. NO, constitutively higher in I-214 than Eridano, progressively increased in both clones with the enhancement of Cd concentration in the substrate. I-214 showed a more elevated antioxidative capacity (GSH/GSSG) and higher photochemical efficiency of PSII (Fv/Fm) and de-epoxidation degree of xantophylls-cycle (DEPS). The glutathione pool was not affected by Cd treatment in both clones, while non-protein thiols and phytochelatins were reduced at L Cd treatment in I-214. Overall, these two clones presented high adaptability to Cd stress and are both suitable to develop and growth in environments contaminated with this metal, thus being promising for their potential use in phytoremediation programmes.  相似文献   

20.
我国地表臭氧生态环境效应研究进展   总被引:18,自引:1,他引:18  
针对当前我国大部分地区夏季出现的高浓度地表臭氧污染,综述了目前在地表臭氧的生态环境效应方面取得的研究进展及未来的研究展望。主要进展包括地表臭氧的污染水平,及其对植物的影响机制,具体包括地表臭氧对植物叶片的表观伤害、光合固碳能力、植物源挥发性有机化合物(BVOCs)释放、土壤微生物和土壤温室气体排放等方面的影响;在此基础上,提出了减少臭氧生态环境效应的管理措施。此外,对我国未来的研究进行了展望,建议加强在农田和森林布设臭氧浓度监测点、开展多因子同时存在的交互作用、气孔臭氧吸收量-响应(生物量或产量)关系以及臭氧对地下生态过程累积效应的长期定位等方面的研究,以期为我国地表臭氧污染的生态环境效应研究起到一定的推动作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号