首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
瘦肉率对生猪产业来说是一个极其重要的经济指标,而这一指标完全取决于骨骼肌的生长发育。因此,猪骨骼肌生长发育机理的研究是十分必要的。然而,在早期由于各种因素的限制,猪骨骼肌单个基因的研究一直进展缓慢;相反,以小鼠为模型,其骨骼肌单基因的功能研究却取得了较大进展。在这一时期,影响肌决定和肌分化的基因,如MRFs家族和MEF2家族相继被发现,这些基因在猪的肌肉发育中也发挥着同样的作用。然而,这些结果并不能很好地揭示骨骼肌发育过程中复杂的基因间互作关系。随着近年来芯片和测序技术的不断发展,更多人试图从整个转录谱的水平来阐述猪肌肉发育的分子机理,并且也取得了较大的进展。为了对猪骨骼肌生长发育有一个更为清晰的认识,该文将以目前猪骨骼肌生长发育研究结果为基础,同时结合模式动物小鼠骨骼肌单基因的研究成果,对猪的骨骼肌生长发育分子调控机理进行详细的阐述。  相似文献   

4.
骨骼肌的生长发育是影响猪肉产量和品质的重要因素,其受遗传和营养等众多因素的精细调控。MicroRNA (miRNA)是一种长度约为22 nt的非编码RNA,通过与靶基因的mRNA 3′UTR序列结合,调控其转录后的表达发挥作用。近年来,大量的研究表明miRNA参与机体的生长发育、生殖、疾病等多种生命过程。本文对miRNA在猪骨骼肌发育调控中的作用进行了综述,以期为猪的遗传改良提供参考和借鉴。  相似文献   

5.
6.
7.
Histone modifications (methylation and demethylation) regulate gene expression and play a role in cell proliferation and differentiation by their actions on chromatin structure. In this context, we studied the temporal expression profiles of genes acting on histone methylation and demethylation during skeletal muscle proliferation and differentiation. Quantitative real-time PCR was used to quantify the mRNA levels of CARM1 , JARID1A , JMJD2A , LSD1 , PRMT2 , PRMT5 , SMYD1 , SMYD2 , SMYD3 , SETDB1 , Suv39h2 and SUZ12 in foetal skeletal muscle. Our results showed that CARM1 , JARID1A , JMJD2A , SMYD1 and SMYD2 were differentially expressed in embryonic muscles of 33 days post-conception (dpc), 65 dpc and 90 dpc. These 12 genes were mapped to porcine chromosomes (SSC) 2q21–24, 5q25, 6q35, 6q12–21, 6p15, 7q21, 3q21–27, 9q26, 10p16, 4q15–16, 10q14–16 and 12p12 respectively. Taking into account the reported QTL mapping results, gene expression analysis and radiation hybrid mapping results, these results suggest that five genes ( CARM1 , JARID1A , JMJD2A , SMYD1 and SMYD2 ) could be good candidate genes for growth and backfat thickness traits.  相似文献   

8.
微RNA(microRNA,miRNA)是一类在分子进化中十分保守的非编码RNA,长度约22个核苷酸,一般情况下它在转录后水平抑制基因表达。miRNA在细胞增殖、分化、凋亡等诸多生理过程中发挥着重要作用。有些miRNA具有组织特异性表达,其中miR-206是目前发现的唯一在骨骼肌中特异表达的miRNA,它在调节骨骼肌发生过程中扮演重要角色。miR-206表达异常与一些肌肉相关疾病如肌肉营养不良、肌萎缩性侧索硬化症等有关。此外,在Texel羊中,myostatin基因的一个点突变就产生了一个miR-206和miR-1的靶点,抑制了myostain基因的表达,从而产生了双肌表型。因此,miR-206有可能成为治疗肌肉相关疾病和畜禽改良育种的重要候选分子。  相似文献   

9.
The Olfactomedin-like 3 (OLFML3) gene has matrix-related function involved in embryonic development. MicroRNA-155 (miR-155), 21- to 23-nucleotides (nt) noncoding RNA, regulated myogenesis by target mRNA. Our LongSAGE analysis suggested that OLFML3 gene was differently expressed during muscle development in pig. In this study, we cloned the porcine OLFML3 gene and detected its tissues distribution in adult Tongcheng pigs and dynamical expression in developmental skeletal muscle (12 prenatal and 10 postnatal stages) from Landrace (lean-type) and Tongcheng (obese-type) pigs. Subsequently, we analyzed the interaction between OLFML3 and miR-155. The OLFML3 was abundantly expressed in liver and pancreas, moderately in lung, small intestine and placenta, and weakly in other tissues and postnatal muscle. There were different dynamical expression patterns between Landrace and Tongcheng pigs during prenatal skeletal muscle development. The OLFML3 was down-regulated (33-50 days post coitus, dpc), subsequently up-regulated (50-70 dpc), and then down-regulated (70-100 dpc) in Landrace pigs, while in Tongcheng pigs, it was down-regulated (33-50 dpc), subsequently up-regulated (50-55 dpc) and then down-regulated (55-100 dpc). There was higher expression in Tongcheng than Landrace in prenatal muscle from 33 to 60 dpc, and opposite situation from 65 to 100 dpc. Dual luciferase assay and real time PCR documented that OLFML3 expression was regulated by miR-155 at mRNA level. Our research indicated that OLFML3 gene may affect prenatal skeletal muscle development and was regulated by miR-155. These finding will help understanding biological function and expression regulation of OLFML3 gene in mammal animals.  相似文献   

10.
11.
12.
13.
Recently, we detected a novel membrane protein, mitsugumin29 (MG29), in the triads in rabbit skeletal muscle cells and suggested important roles for this membrane protein in the formation of the sarcoplasmic reticulum (SR) networks and triads in muscle cells. In the present study, we examined the development of skeletal muscle cells in MG29-deficient mice to try to determine the roles played by MG29 in the formation of the SR networks and triads. Ultrastructural observations revealed some morphological abnormalities in these mice, such as incomplete formation of the SR networks, an irregular running of the transverse tubule and a partial defect in the triads at the A-I junctional region. These ultrastructural abnormalities occurred during early myogenesis and were preserved until the adult stage. The possible roles for MG29 in the formation of SR networks and triads in skeletal muscle cells are discussed in the light of these observations.  相似文献   

14.
Role of innervation on the embryonic development of skeletal muscle   总被引:1,自引:0,他引:1  
Summary The extent to which the motor innervation regulates the embryonic development of skeletal muscle was investigated by comparing changes in normal, aneural, and paralyzed superior oblique muscle of the duck embryo. The muscle was made aneural by permanently destroying the trochlear motor neurons with electrocautery on day 7 i.e., three days prior to innervation. Embryos were paralyzed by daily application of -bungarotoxin onto the chorioallantoic membrane from day 10 onwards. The differentiation of myoblasts and myotubes in the aneural muscle was severely affected and did not progress to the myofiber stage. A mass of dead cells in the aneural muscle was replaced by connective tissue. Although the differentiation of myoblasts and myotubes was also retarded in the paralyzed muscle, numerous muscle cells progressed to the myofiber stage. Neuromuscular junctions of normal ultrastructure were seen in all paralyzed muscles. Degeneration of some cells in the paralyzed muscle occurred but there was no evidence of a massive wave of cell death similar to that observed in the aneural muscle. These observations suggest that both the trophic factors from the nerve and the nerve-evoked muscle activity are essential for the execution of the developmental program of the muscle. Trophic factors may play a larger role in differentiation, and maintenance of the muscle than muscle activity.Supported by a grant from the Muscular dystrophy Association and a grant from NIHWe are grateful to Beth McBride and Greg Oblak for their technical assistance  相似文献   

15.
16.
microRNA在肌肉发育中的功能研究进展   总被引:1,自引:0,他引:1  
microRNA(miRNA)是一类非编码的小RNA分子,它通过对靶mRNA的翻译抑制和降解对基因表达起负调节作用。现在人们已经清楚地知道miRNA参与了增殖、分化、凋亡、发育等许多生物过程。一些miRNA在肌肉中特异表达,参与肌肉发育。该文重点介绍了参与肌肉发育的miRNA。已有证据表明肌肉miRNA在肌肉的增殖和分化过程中起了重要的调节作用,miRNA的调节异常和肌肉疾病有关。因此,miRNA是一类新的肌肉调控因子,它有可能成为畜禽肉产量提高和肌肉相关疾病治疗的新型靶标。  相似文献   

17.
N6-methyladenosine (m6A) is one of the most widespread and highly conserved chemical modifications in cellular RNAs of eukaryotic genomes. Owing to the development of high-throughput m6A sequencing, the functions and mechanisms of m6A modification in development and diseases have been revealed. Recent studies have shown that RNA m6A methylation plays a critical role in skeletal muscle development, which regulates myoblast proliferation and differentiation, and muscle regeneration. Exploration of the functions of m6A modification and its regulators provides a deeper understanding of the regulatory mechanisms underlying skeletal muscle development. In the present review, we aim to summarize recent breakthroughs concerning the global landscape of m6A modification in mammals and examine the biological functions and mechanisms of enzymes regulating m6A RNA methylation. We describe the interplay between m6A and other epigenetic modifications and highlight the regulatory roles of m6A in development, especially that of skeletal muscle. m6A and its regulators are expected to be targets for the treatment of human muscle-related diseases and novel epigenetic markers for animal breeding in meat production.  相似文献   

18.
Muscle development in domesticated animals is important for meat production. Furthermore, intramuscular fat content is an important trait of meat intended for consumption. Here, we examined differences in the expression of factors related to myogenesis, adipogenesis and skeletal muscle growth during fetal muscle development of lean (Yorkshire) and obese (Chenghua) pig breeds. At prenatal days 50 (d50) and 90 (d90), muscles and sera were collected from pig fetuses. Histology revealed larger diameters and numbers of myofibers in Chenghua pig fetuses than those in Yorkshire pig fetuses at d50 and d90. Yorkshire fetuses had higher serum concentrations of myostatin (d90), a negative regulator for muscle development, and higher mRNA expression of the growth hormone receptor Ghr (d90), myogenic MyoG (d90) and adipogenic LPL (d50). By contrast, Chenghua fetuses exhibited higher serum concentration of growth hormone (d90), and higher mRNA expression of myogenic MyoD (d90) as well as adipogenic PPARG and FABP4 (d50). Our results revealed distinct expression patterns in the two pig breeds at each developmental stage before birth. Compared with Chenghua pigs, development and maturation of fetal skeletal muscles may occur earlier in Yorkshire pigs, but the negative regulatory effects of myostatin may suppress muscle development at the later stage.  相似文献   

19.
李新云  付亮亮  程会军  赵书红 《遗传》2017,39(11):1046-1053
MicroRNA (miRNA)是一类长度大约为22 bp的小分子非编码RNA,广泛存在于哺乳动物中,部分miRNA表达具有时空和组织特异性。哺乳动物中miRNA主要通过与靶基因3° UTR区结合抑制其翻译,调控机体生物学功能。miRNA在哺乳动物骨骼肌发育中发挥重要调节作用。哺乳动物骨骼肌发育是一个复杂的生物学过程,包括骨骼肌干细胞增殖、迁移、分化,成肌细胞增殖、分化、肌管融合,肌纤维肥大,能量代谢,纤维类型转换等。miRNA参与骨骼肌发育的各个环节,通过靶向各个时期的关键因子调控骨骼肌发育。本文对miRNA在骨骼肌发育中的调控作用进行了综述,以期为深入理解骨骼肌发育规律提供参考。  相似文献   

20.
Regenerative potential of human skeletal muscle during aging   总被引:3,自引:0,他引:3  
In this study, we have investigated the consequences of aging on the regenerative capacity of human skeletal muscle by evaluating two parameters: (i) variation in telomere length which was used to evaluate the in vivo turn-over and (ii) the proportion of satellite cells calculated as compared to the total number of nuclei in a muscle fibre. Two skeletal muscles which have different types of innervation were analysed: the biceps brachii, a limb muscle, and the masseter, a masticatory muscle. The biopsies were obtained from two groups: young adults (23 +/- 1.15 years old) and aged adults (74 +/- 4.25 years old). Our results showed that during adult life, minimum telomere lengths and mean telomere lengths remained stable in the two muscles. The mean number of myonuclei per fibre was lower in the biceps brachii than in the masseter but no significant change was observed in either muscle with increasing age. However, the number of satellite cells, expressed as a proportion of myonuclei, decreased with age in both muscles. Therefore, normal aging of skeletal muscle in vivo is reflected by the number of satellite cells available for regeneration, but not by the mean number of myonuclei per fibre or by telomere lengths. We conclude that a decrease in regenerative capacity with age may be partially explained by a reduced availability of satellite cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号