首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Burkholderia territorii, a Gram-negative bacterium, encodes for the ι-class carbonic anhydrase (CA, EC 4.2.1.1) BteCAι, which was recently characterised. It acts as a good catalyst for the hydration of CO2 to bicarbonate and protons, with a kcat value of 3.0 × 105 s−1 and kcat/KM value of 3.9 × 107 M−1 s−1. No inhibition data on this new class of enzymes are available to date. We report here an anion and small molecules inhibition study of BteCAι, which we prove to be a zinc(II)- and not manganese(II)-containing enzyme, as reported for diatom ι-CAs. The best inhibitors were sulphamic acid, stannate, phenylarsonic acid, phenylboronic acid and sulfamide (KI values of 6.2–94 µM), whereas diethyldithiocarbamate, tellurate, selenate, bicarbonate and cyanate were submillimolar inhibitors (KI values of 0.71–0.94 mM). The halides (except iodide), thiocyanate, nitrite, nitrate, carbonate, bisulphite, sulphate, hydrogensulfide, peroxydisulfate, selenocyanate, fluorosulfonate and trithiocarbonate showed KI values in the range of 3.1–9.3 mM.  相似文献   

2.
Recently, inorganic anions and sulphonamides, two of the main classes of zinc-binding carbonic anhydrase inhibitors (CAIs), were investigated for inhibition of the α-class carbonic anhydrase (CA, EC 4.2.1.1) from Neisseria gonorrhoeae, NgCA. As an extension to our previous studies, we report that dithiocarbamates (DTCs) derived from primary or secondary amines constitute a class of efficient inhibitors of NgCA. KIs ranging between 83.7 and 827 nM were measured for a series of 31 DTCs that incorporated various aliphatic, aromatic, and heterocyclic scaffolds. A subset of DTCs were selected for antimicrobial testing against N. gonorrhoeae, and three molecules displayed minimum inhibitory concentration (MIC) values less than or equal to 8 µg/mL. As NgCA was recently validated as an antibacterial drug target, the DTCs may lead to development of novel antigonococcal agents.  相似文献   

3.
Coumarins are known to act as prodrug inhibitors of mammalian α-carbonic anhydrases (CAs, EC 4.2.1.1) but they were not yet investigated for the inhibition of bacterial α-CAs. Here we demonstrate that such enzymes from the bacterial pathogens Neisseria gonorrhoeae (NgCAα) and Vibrio cholerae (VchCAα) are inhibited by a panel of simple coumarins incorporating hydroxyl, amino, ketone or carboxylic acid ester moieties in various positions of the ring system. The nature and the position of the substituents in the coumarin ring were the factors which strongly influenced inhibitory efficacy. NgCAα was inhibited with KIs in the range of 28.6–469.5 µM, whereas VchCAα with KIs in the range of 39.8–438.7 µM. The two human (h)CA isoforms included for comparison reason in the study, hCA I and II, were less prone to inhibition by these compounds, with KIs of 137–948.9 µM for hCA I and of 296.5–961.2 µM for hCA II, respectively. These findings are relevant for discovering coumarin bacterial CA inhibitors with selectivity for the bacterial over human isoform, with potential applications as novel antibacterial agents.  相似文献   

4.
Pathogenic bacteria resistant to most antibiotics, including the methicillin-resistant Staphylococcus aureus (MRSA) represent a serious medical problem. The search for new antiinfectives, possessing a diverse mechanism of action compared to the clinically used antibiotics, has become an attractive research field. S. aureus DNA encodes a β-class carbonic anhydrase, SauBCA. It is a druggable target that can be inhibited by certain aromatic and heterocyclic sulphonamides. Here we investigated inorganic anions and some other small molecules for their inhibition of SauBCA. The halides, nitrite, nitrate, bicarbonate, carbonate, bisulphite, sulphate, stannate, and N,N-diethyldithiocarbamate were submillimolar SauBCA inhibitors with KIs in the range of 0.26 − 0.91 mM. The most effective inhibitors were sulfamide, sulfamate, phenylboronic acid, and phenylarsonic acid with KIs of 7 − 43 µM. Several interesting inhibitors detected here may be considered lead compounds for the development of even more effective derivatives, which should be investigated for their bacteriostatic effects.  相似文献   

5.
A β-class carbonic anhydrase (CA, EC 4.2.1.1) was cloned from the genome of the Monogenean platyhelminth Gyrodactylus salaris, a parasite of Atlantic salmon. The new enzyme, GsaCAβ has a significant catalytic activity for the physiological reaction, CO2 + H2O ⇋ HCO3 + H+ with a kcat of 1.1 × 105 s−1 and a kcat/Km of 7.58 × 106 M−1 × s−1. This activity was inhibited by acetazolamide (KI of 0.46 µM), a sulphonamide in clinical use, as well as by selected inorganic anions and small molecules. Most tested anions inhibited GsaCAβ at millimolar concentrations, but sulfamide (KI of 81 µM), N,N-diethyldithiocarbamate (KI of 67 µM) and sulphamic acid (KI of 6.2 µM) showed a rather efficient inhibitory action. There are currently very few non-toxic agents effective in combating this parasite. GsaCAβ is subsequently proposed as a new drug target for which effective inhibitors can be designed.  相似文献   

6.
The α-class carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogens Neisseria gonorrhoeae (NgCAα) and Vibrio cholerae (VchCAα) were investigated for their inhibition by a panel of phenols and phenolic acids. Mono-, di- and tri-substituted phenols incorporating additional hydroxyl/hydroxymethyl, amino, acetamido, carboxyl, halogeno and carboxyethenyl moieties were included in the study. The best NgCAα inhibitrs were phenol, 3-aminophenol, 4-hydroxy-benzylalcohol, 3-amino-4-chlorophenol and paracetamol, with KI values of 0.6–1.7 µM. The most effective VchCAα inhibitrs were phenol, 3-amino-4-chlorophenol and 4-hydroxy-benzyl-alcohol, with KI values of 0.7–1.2 µM. Small changes in the phenol scaffold led to drastic effects on the bacterial CA inhibitory activity. This class of underinvestigated bacterial CA inhibitors may thus lead to effective compounds for fighting drug resistant bacteria.  相似文献   

7.
Bovine adrenal zona fasciculata (AZF) cells express a noninactivating K+ current (IAC) that is inhibited by adrenocorticotropic hormone and angiotensin II at subnanomolar concentrations. Since IAC appears to set the membrane potential of AZF cells, these channels may function critically in coupling peptide receptors to membrane depolarization, Ca2+ entry, and cortisol secretion. IAC channel activity may be tightly linked to the metabolic state of the cell. In whole cell patch clamp recordings, MgATP applied intracellularly through the patch electrode at concentrations above 1 mM dramatically enhanced the expression of IAC K+ current. The maximum IAC current density varied from a low of 8.45 ± 2.74 pA/pF (n = 17) to a high of 109.2 ± 26.3 pA/pF (n = 6) at pipette MgATP concentrations of 0.1 and 10 mM, respectively. In the presence of 5 mM MgATP, IAC K+ channels were tonically active over a wide range of membrane potentials, and voltage-dependent open probability increased by only ∼30% between −40 and +40 mV. ATP (5 mM) in the absence of Mg2+ and the nonhydrolyzable ATP analog AMP-PNP (5 mM) were also effective at enhancing the expression of IAC, from a control value of 3.7 ± 0.1 pA/pF (n = 3) to maximum values of 48.5 ± 9.8 pA/pF (n = 11) and 67.3 ± 23.2 pA/pF (n = 6), respectively. At the single channel level, the unitary IAC current amplitude did not vary with the ATP concentration or substitution with AMP-PNP. In addition to ATP and AMP-PNP, a number of other nucleotides including GTP, UTP, GDP, and UDP all increased the outwardly rectifying IAC current with an apparent order of effectiveness: MgATP > ATP = AMP-PNP > GTP = UTP > ADP >> GDP > AMP and ATP-γ-S. Although ATP, GTP, and UTP all enhanced IAC amplitude with similar effectiveness, inhibition of IAC by ACTH (200 pM) occurred only in the presence of ATP. As little as 50 μM MgATP restored complete inhibition of IAC, which had been activated by 5 mM UTP. Although the opening of IAC channels may require only ATP binding, its inhibition by ACTH appears to involve a mechanism other than hydrolysis of this nucleotide. These findings describe a novel form of K+ channel modulation by which IAC channels are activated through the nonhydrolytic binding of ATP. Because they are activated rather than inhibited by ATP binding, IAC K+ channels may represent a distinctive new variety of K+ channel. The combined features of IAC channels that allow it to sense and respond to changing ATP levels and to set the resting potential of AZF cells, suggest a mechanism where membrane potential, Ca2+ entry, and cortisol secretion could be tightly coupled to the metabolic state of the cell through the activity of IAC K+ channels.  相似文献   

8.
Different 2,4-thiazolidinedione-tethered coumarins 5a–b, 10a–n and 11a–d were synthesised and evaluated for their inhibitory action against the cancer-associated hCAs IX and XII, as well as the physiologically dominant hCAs I and II to explore their selectivity. Un-substituted phenyl-bearing coumarins 10a, 10 h, and 2-thienyl/furyl-bearing coumarins 11a–c exhibited the best hCA IX (KIs between 0.48 and 0.93 µM) and hCA XII (KIs between 0.44 and 1.1 µM) inhibitory actions. Interestingly, none of the coumarins had any inhibitory effect on the off-target hCA I and II isoforms. The sub-micromolar compounds from the biochemical assay, coumarins 10a, 10 h and 11a–c, were assessed in an in vitro antiproliferative assay, and then the most potent antiproliferative agent 11a was tested to explore its impact on the cell cycle phases and apoptosis in MCF-7 breast cancer cells to provide more insights into the anticancer activity of these compounds.  相似文献   

9.
We investigated the catalytic activity and inhibition of the β-class carbonic anhydrase (CA, EC 4.2.1.1) CahB1, from the relict cyanobacterium Coleofasciculus chthonoplastes (previously denominated Microcoleus chthonoplastes). The enzyme showed good activity as a catalyst for the CO2 hydration, with a kcat of 2.4 × 105 s−1 and a kcat/Km of 6.3 × 107 M−1 s−1. A range of inorganic anions and small molecules were investigated as inhibitors of CahB1. Perchlorate and tetrafluoroborate did not inhibit the enzyme (KIs >200 mM) whereas selenate and selenocyanide were ineffective inhibitors too, with KIs of 29.9–48.61 mM. The halides, pseudohalides, carbonate, bicarbonate, trithiocarbonate and a range of heavy metal ions-containing anions were submillimolar–millimolar inhibitors (KIs in the range of 0.15–0.90 mM). The best CahB1 inhibitors were N,N-diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KIs in the range of 8–75 μM, whereas acetazolamide inhibited the enzyme with a KI of 76 nM. This is the first kinetic and inhibition study of a cyanobacterial CA. As these enzymes are widespread in many cyanobacteria, being crucial for the carbon concentrating mechanism which assures substrate to RubisCO for the CO2 fixation by these organisms, a detailed kinetic/inhibition study may be essential for a better understanding of this superfamily of metalloenzymes and for potential biotechnological applications in biomimetic CO2 capture processes.  相似文献   

10.
A novel lipase, SCNL, was isolated from Staphylococcus caprae NCU S6 strain in the study. The lipase was purified to homogeneity with a yield of 6.13% and specific activity of 502.76 U/mg, and its molecular weight was determined to be approximately 87 kDa. SCNL maintained above 80% of its initial activity at a wide range of temperatures (20–50 °C) and pH values (6–11), with an optimal temperature at 40 °C and optimal pH at 9.0 with p-nitrophenyl palmitate as a substrate. SCNL exhibited a higher residual activity than the other staphylococcal lipases in the presence of common enzyme inhibitors and commercial detergents. The lipase activity was enhanced by organic solvents (isooctane, glycerol, DMSO and methanol) and metal ions (Na+, Ba2+, Ca2+, and Mn2+). The Km and Vmax values of SCNL were 0.695 mM and 262.66 s−1 mM−1, respectively. The enzyme showed a preference for p-NP stearate, tributyrin and canola oil. These biochemical features of SCNL suggested that it may be an excellent novel lipase candidate for industrial and biotechnological applications.  相似文献   

11.
The Santalum peroxidase was extracted from the leaves and precipitated with double volume of chilled acetone. The optimum percent relative activity for the Santalum peroxidase was observed at pH 5.0 and 50 °C temperature. The Santalum peroxidase per cent relative activity was stimulated in the presence of phenolic compounds like ferrulic acid and caffeic acids; however, indole-3-acetic acid (IAA) and protocatechuic acid act as inhibitors. All divalent cations Fe2+, Mn2+, Mg2+, Cu2+ and Zn2+ stimulate the relative activity of the Santalum peroxidase at concentration of 2.0 μM. Amino acids like L-alanine and L-valine activate the per cent relative activity, while L-proline and DL-methionine showed moderate inhibition for the Santalum peroxidase. However, a very low a concentration of cysteine acts as a strong inhibitor of Santalum peroxidase at the concentration of 0.4 mM. Native polyacrylamide gel electrophoresis (Native-PAGE) was performed for isoenzyme determination and two bands were observed. Km and Vmax values were calculated from Lineweaver-Burk graph. The apparent Vmax/Km value for O-dianisidine and H2O2 were 400 and 5.0 × 105 Units/min/mL respectively.  相似文献   

12.
The phosphoinositide 3-kinases (PI3K/Akt) dependent signaling pathway plays an important role in cardiac function, specifically cardiac contractility. We have reported that sepsis decreases myocardial Akt activation, which correlates with cardiac dysfunction in sepsis. We also reported that preventing sepsis induced changes in myocardial Akt activation ameliorates cardiovascular dysfunction. In this study we investigated the role of PI3K/Akt on cardiomyocyte function by examining the role of PI3K/Akt-dependent signaling on [Ca2+]i, Ca2+ transients and membrane Ca2+ current, ICa, in cultured murine HL-1 cardiomyocytes. LY294002 (1–20 μM), a specific PI3K inhibitor, dramatically decreased HL-1 [Ca2+]i, Ca2+ transients and ICa. We also examined the effect of PI3K isoform specific inhibitors, i.e. α (PI3-kinase α inhibitor 2; 2–8 nM); β (TGX-221; 100 nM) and γ (AS-252424; 100 nM), to determine the contribution of specific isoforms to HL-1 [Ca2+]i regulation. Pharmacologic inhibition of each of the individual PI3K isoforms significantly decreased [Ca2+]i, and inhibited Ca2+ transients. Triciribine (1–20 μM), which inhibits AKT downstream of the PI3K pathway, also inhibited [Ca2+]i, and Ca2+ transients and ICa. We conclude that the PI3K/Akt pathway is required for normal maintenance of [Ca2+]i in HL-1 cardiomyocytes. Thus, myocardial PI3K/Akt-PKB signaling sustains [Ca2+]i required for excitation-contraction coupling in cardiomyoctyes.  相似文献   

13.
Sulphonamides and their isosteres are classical inhibitors of the carbonic anhydrase (CAs, EC 4.2.1.1) metalloenzymes. The protozoan pathogen Trichomonas vaginalis encodes two such enzymes belonging to the β-class, TvaCA1 and TvaCA2. Here we report the first sulphonamide inhibition study of TvaCA1, with a series of simple aromatic/heterocyclic primary sulphonamides as well as with clinically approved/investigational drugs for a range of pathologies (diuretics, antiglaucoma, antiepileptic, antiobesity, and antitumor drugs). TvaCA1 was effectively inhibited by acetazolamide and ethoxzolamide, with KIs of 391 and 283 nM, respectively, whereas many other simple or clinically used sulphonamides were micromolar inhibitors or did not efficiently inhibit the enzyme. Finding more effective TvaCA1 inhibitors may constitute an innovative approach for fighting trichomoniasis, a sexually transmitted infection, caused by T. vaginalis.  相似文献   

14.
To discover novel scaffolds as leads against dementia, a series of δ-aryl-1,3-dienesulfonyl fluorides with α-halo, α-aryl and α-alkynyl were assayed for ChE inhibitory activity, in which compound A10 was identified as a selective BuChE inhibitor (IC50 = 0.021 μM for eqBChE, 3.62 μM for hBuChE). SAR of BuChE inhibition showed: (i) o- > m- > p-; –OCH3 > –CH3 > –Cl (–Br) for δ-aryl; (ii) α-Br > α-Cl, α-I. Compound A10 exhibited neuroprotective, BBB penetration, mixed competitive inhibitory effect on BuChE (Ki = 29 nM), and benign neural and hepatic safety. Treatment with A10 could almost entirely recover the Aβ1-42-induced cognitive dysfunction to the normal level, and the assessment of total amount of Aβ1-42 confirmed its anti-amyloidogenic profile. Therefore, the potential BuChE inhibitor A10 is a promising effective lead for the treatment of AD.  相似文献   

15.
We investigated the cloning, catalytic activity and anion inhibition of the β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogen Legionella pneumophila. Two such enzymes, lpCA1 and lpCA2, were found in the genome of this pathogen. These enzymes were determined to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3) × 105 s−1 and kcat/KM values of (4.7–8.5) × 107 M−1 s−1. A set of inorganic anions and small molecules was investigated to identify inhibitors of these enzymes. Perchlorate and tetrafluoroborate were not acting as inhibitors (KI >200 mM), whereas sulfate was a very weak inhibitor for both lpCA1 and lpCA2 (KI values of 77.9–96.5 mM). The most potent lpCA1 inhibitors were cyanide, azide, hydrogen sulfide, diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KI values ranging from 6 to 94 μM. The most potent lpCA2 inhibitors were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, with KI values ranging from 2 to 13 μM. As these enzymes seem to be involved in regulation of phagosome pH during Legionella infection, inhibition of these targets may lead to antibacterial agents with a novel mechanism of action.  相似文献   

16.
We here report a study on the activation of the ι-class bacterial CA from Burkholderia territorii (BteCAι). This protein was recently characterised as a zinc-dependent enzyme that shows a significant catalytic activity (kcat 3.0 × 105 s−1) for the physiological reaction of CO2 hydration to bicarbonate and protons. Some amino acids and amines, among which some proteinogenic derivatives as well as histamine, dopamine and serotonin, showed efficient activating properties towards BteCAι, with activation constants in the range 3.9–13.3 µM. L-Phe, L-Asn, L-Glu, and some pyridyl-alkylamines, showed a weaker activating effect towards BteCAι, with KA values ranging between 18.4 µM and 45.6 µM. Nowadays, no information is available on active site architecture, metal ion coordination and catalytic mechanism of members of the ι-group of CAs, and this study represents another contribution towards a better understanding of this still uncharacterised class of enzymes.  相似文献   

17.
A β-carbonic anhydrases (CAs, EC 4.2.1.1) was recently cloned, purified and characterized kinetically in the pathogen Clostridium perfringens. We report here the first inhibition study of this enzyme (CpeCA). CpeCA was poorly inhibited by iodide and bromide, and was inhibited with KIs in the range of 1–10 mM by a range of anions such as (thio)cyanate, azide, bicarbonate, nitrate, nitrite, hydrogensulfite, hydrogensulfide, stannate, tellurate, pyrophosphate, divanadate, tetraborate, peroxydisulfate, sulfate, iminodisulfonate and fluorosulfonate. Better inhibitory power, with KIs of 0.36–1.0 mM, was observed for cyanide, carbonate, selenate, selenocyanide, trithiocarbonate and diethyldithiocarbamate, whereas the best CpeCA inhibitors were sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, which had KIs in the range of 7–75 μM. This study thus provides the basis for developing better clostridial enzyme inhibitors with potential as antiinfectives with a new mechanism of action.  相似文献   

18.
We investigated the catalytic activity and inhibition of the δ-class carbonic anhydrase (CA, EC 4.2.1.1) from the marine diatom Thalassiosira weissflogii, TweCA. The enzyme, obtained by cloning the synthetic gene, was an efficient catalyst for the CO2 hydration, its physiological reaction, with a kcat of 1.3 × 105 s−1 and a kcat/KM of 3.3 × 107 M−1 s−1. A range of inorganic anions and small molecules were investigated as inhibitors of TweCA. Chloride and sulfate did not inhibit the enzyme (KIs >200 mM) whereas other halides and pseudohalides were submillimolar–millimolar inhibitors (KIs in the range of 0.93–8.3 mM). The best TweCA inhibitors were hydrogen sulfide, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KIs in the range of 9–90 μM, whereas acetazolamide inhibited the enzyme with a KI of 83 nM. This is the first kinetic and inhibition study of a δ-class CA. However, these enzymes are widespread in the marine phytoplankton, being present in haptophytes, dinoflagellates, diatoms, and chlorophytic prasinophytes, contributing to the CO2 fixation by sea organisms. A phylogenetic analysis with all five genetic families of CAs showed that α- and δ-CAs are evolutionarily more related to each other with respect to the γ-CAs, although these three families clustered all together. On the contrary, the β- and ζ-CAs are also related to each other but phylogenetically much more distant from the α-, γ and δ-CA cluster. Thus, the study of δ-CAs is essential for better understanding this superfamily of metalloenzymes and their potential biotechnological applications in biomimetic CO2 capture processes, as these enzymes are part of the carbon concentrating mechanism used by many photosynthetic organisms.  相似文献   

19.

Background

Pulmonary system dysfunction is a hallmark of cystic fibrosis (CF) disease. In addition to impaired cystic fibrosis transmembrane conductance regulator protein, dysfunctional β2-adrenergic receptors (β2AR) contribute to low airway function in CF. Recent observations suggest CF may also be associated with impaired cardiac function that is demonstrated by attenuated cardiac output (Q), stroke volume (SV), and cardiac power (CP) at both rest and during exercise. However, β2AR regulation of cardiac and peripheral vascular tissue, in-vivo, is unknown in CF. We have previously demonstrated that the administration of an inhaled β-agonist increases SV and Q while also decreasing SVR in healthy individuals. Therefore, we aimed to assess cardiac and peripheral hemodynamic responses to the selective β2AR agonist albuterol in individuals with CF.

Methods

18 CF and 30 control (CTL) subjects participated (ages 22 ± 2 versus 27 ± 2 and BSA = 1.7 ± 0.1 versus 1.8 ± 0.0 m2, both p < 0.05). We assessed the following at baseline and at 30- and 60-minutes following nebulized albuterol (2.5mg diluted in 3.0mL of normal saline) inhalation: 12-lead ECG for HR, manual sphygmomanometry for systolic and diastolic blood pressure (SBP and DBP, respectively), acetylene rebreathe for Q and SV. We calculated MAP = DBP + 1/3(SBP–DBP); systemic vascular resistance (SVR) = (MAP/Q)•80; CP = Q•MAP; stroke work (SW) = SV•MAP; reserve (%change baseline to 30- or 60-minutes). Hemodynamics were indexed to BSA (QI, SVI, SWI, CPI, SVRI).

Results

At baseline, CF demonstrated lower SV, SVI, SW, and SWI but higher HR than CTL (p < 0.05); other measures did not differ. At 30-minutes, CF demonstrated higher HR and SVRI, but lower Q, SV, SVI, CP, CPI, SW, and SWI versus CTL (p < 0.05). At 60-minutes, CF demonstrated higher HR, SVR, and SVRI, whereas all cardiac hemodynamics were lower than CTL (p < 0.05). Reserves of CP, SW, and SVR were lower in CF versus CTL at both 30 and 60-minutes (p < 0.05).

Conclusions

Cardiac and peripheral hemodynamic responsiveness to acute β2AR stimulation via albuterol is attenuated in individuals with CF, suggesting β2AR located in cardiac and peripheral vascular tissue may be dysfunctional in this population.  相似文献   

20.
The serine/threonine protein kinases CDK2 and GSK-3β are key oncotargets in breast cancer cell lines, therefore, in the present study three series of oxindole-benzofuran hybrids were designed and synthesised as dual CDK2/GSK-3β inhibitors targeting breast cancer (5a–g, 7a–h, and 13a–b). The N1-unsubstituted oxindole derivatives, series 5, showed moderate to potent activity on both MCF-7 and T-47D breast cancer cell lines. Compounds 5d–f showed the most potent cytotoxic activity with IC50 of 3.41, 3.45 and 2.27 μM, respectively, on MCF-7 and of 3.82, 4.53 and 7.80 μM, respectively, on T-47D cell lines, in comparison to the used reference standard (staurosporine) IC50 of 4.81 and 4.34 μM, respectively. On the other hand, the N1-substituted oxindole derivatives, series 7 and 13, showed moderate to weak cytotoxic activity on both breast cancer cell lines. CDK2 and GSK-3β enzyme inhibition assay of series 5 revealed that compounds 5d and 5f are showing potent dual CDK2/GSK-3β inhibitory activity with IC50 of 37.77 and 52.75 nM, respectively, on CDK2 and 32.09 and 40.13 nM, respectively, on GSK-3β. The most potent compounds 5d–f caused cell cycle arrest in the G2/M phase in MCF-7 cells inducing cell apoptosis because of the CDK2/GSK-3β inhibition. Molecular docking studies showed that the newly synthesised N1-unsubstituted oxindole hybrids have comparable binding patterns in both CDK2 and GSK-3β. The oxindole ring is accommodated in the hinge region interacting through hydrogen bonding with the backbone CO and NH of the key amino acids Glu81 and Leu83, respectively, in CDK2 and Asp133 and Val135, respectively, in GSK-3β. Whereas, in series 7 and 13, the N1-substitutions on the oxindole nucleus hinder the compounds from achieving these key interactions with hinge region amino acids what rationalises their moderate to low anti-proliferative activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号