首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The features of the two types of short-term light-adaptations of photosynthetic apparatus, State 1/State 2 transitions, and non-photochemical fluorescence quenching of phycobilisomes (PBS) by orange carotene-protein (OCP) were compared in the cyanobacterium Synechocystis sp. PCC 6803 wild type, CK pigment mutant lacking phycocyanin, and PAL mutant totally devoid of phycobiliproteins. The permanent presence of PBS-specific peaks in the in situ action spectra of photosystem I (PSI) and photosystem II (PSII), as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 690 nm (PSII) and 725 nm (PSI) showed that PBS are constitutive antenna complexes of both photosystems. The mutant strains compensated the lack of phycobiliproteins by higher PSII content and by intensification of photosynthetic linear electron transfer. The detectable changes of energy migration from PBS to the PSI and PSII in the Synechocystis wild type and the CK mutant in State 1 and State 2 according to the fluorescence excitation spectra measurements were not registered. The constant level of fluorescence emission of PSI during State 1/State 2 transitions and simultaneous increase of chlorophyll fluorescence emission of PSII in State 1 in Synechocystis PAL mutant allowed to propose that spillover is an unlikely mechanism of state transitions. Blue–green light absorbed by OCP diminished the rout of energy from PBS to PSI while energy migration from PBS to PSII was less influenced. Therefore, the main role of OCP-induced quenching of PBS is the limitation of PSI activity and cyclic electron transport under relatively high light conditions.  相似文献   

2.
Cyanobacteria use chlorophyll and phycobiliproteins to harvest light. The resulting excitation energy is delivered to reaction centers (RCs), where photochemistry starts. The relative amounts of excitation energy arriving at the RCs of photosystem I (PSI) and II (PSII) depend on the spectral composition of the light. To balance the excitations in both photosystems, cyanobacteria perform state transitions to equilibrate the excitation energy. They go to state I if PSI is preferentially excited, for example after illumination with blue light (light I), and to state II after illumination with green-orange light (light II) or after dark adaptation. In this study, we performed 77-K time-resolved fluorescence spectroscopy on wild-type Synechococcus elongatus 7942 cells to measure how state transitions affect excitation energy transfer to PSI and PSII in different light conditions and to test the various models that have been proposed in literature. The time-resolved spectra show that the PSII core is quenched in state II and that this is not due to a change in excitation energy transfer from PSII to PSI (spill-over), either direct or indirect via phycobilisomes.  相似文献   

3.
Picosecond fluorescence kinetics of wild-type (WT) and mutant cells of Synechocystis sp. PCC 6803, were studied at the ensemble level with a streak-camera and at the cell level using fluorescence-lifetime-imaging microscopy (FLIM). The FLIM measurements are in good agreement with the ensemble measurements, but they (can) unveil variations between and within cells. The BE mutant cells, devoid of photosystem II (PSII) and of the light-harvesting phycobilisomes, allowed the study of photosystem I (PSI) in vivo for the first time, and the observed 6-ps equilibration process and 25-ps trapping process are the same as found previously for isolated PSI. No major differences are detected between different cells. The PAL mutant cells, devoid of phycobilisomes, show four lifetimes: ∼20 ps (PSI and PSII), ∼80 ps, ∼440 ps, and 2.8 ns (all due to PSII), but not all cells are identical and variations in the kinetics are traced back to differences in the PSI/PSII ratio. Finally, FLIM measurements on WT cells reveal that in some cells or parts of cells, phycobilisomes are disconnected from PSI/PSII. It is argued that the FLIM setup used can become instrumental in unraveling photosynthetic regulation mechanisms in the future.  相似文献   

4.
Cyanobacterial Acclimation to Photosystem I or Photosystem II Light   总被引:9,自引:4,他引:5       下载免费PDF全文
The organization and function of the photochemical apparatus of Synechococcus 6301 was investigated in cells grown under yellow and red light regimes. Broadband yellow illumination is absorbed preferentially by the phycobilisome (PBS) whereas red light is absorbed primarily by the chlorophyll (Chl) pigment beds. Since PBSs are associated exclusively with photosystem II (PSII) and most of the Chl with photosystem I (PSI), it follows that yellow and red light regimes will create an imbalance of light absorption by the two photosystems. The cause and effect relationship between light quality and photosystem stoichiometry in Synechococcus was investigated. Cells grown under red light compensated for the excitation imbalance by synthesis/assembly of more PBS-PSII complexes resulting in high PSII/PSI = 0.71 and high bilin/Chl = 1.30. The adjustment of the photosystem stoichiometry in red light-grown cells was necessary and sufficient to establish an overall balanced absorption of red light by PSII and PSI. Cells grown under yellow light compensated for this excitation imbalance by assembly of more PSI complexes, resulting in low PSII/PSI = 0.27 and low bilin/Chl = 0.42. This adjustment of the photosystem stoichiometry in yellow light-grown cells was necessary but not quite sufficient to balance the absorption of yellow light by the PBS and the Chl pigment beds. A novel excitation quenching process was identified in yellow light-grown cells which dissipated approximately 40% of the PBS excitation, thus preventing over-excitation of PSII under yellow light conditions. It is hypothesized that State transitions in O2 evolving photosynthetic organisms may serve as the signal for change in the stoichiometry of photochemical complexes in response to light quality conditions.  相似文献   

5.
《BBA》2020,1861(10):148255
Cyanobacteria can rapidly regulate the relative activity of their photosynthetic complexes photosystem I and II (PSI and PSII) in response to changes in the illumination conditions. This process is known as state transitions. If PSI is preferentially excited, they go to state I whereas state II is induced either after preferential excitation of PSII or after dark adaptation. Different underlying mechanisms have been proposed in literature, in particular i) reversible shuttling of the external antenna complexes, the phycobilisomes, between PSI and PSII, ii) reversible spillover of excitation energy from PSII to PSI, iii) a combination of both and, iv) increased excited-state quenching of the PSII core in state II. Here we investigated wild-type and mutant strains of Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 using time-resolved fluorescence spectroscopy at room temperature. Our observations support model iv, meaning that increased excited-state quenching of the PSII core occurs in state II thereby balancing the photochemistry of photosystems I and II.  相似文献   

6.
Fluorescence lifetime imaging microscopy (FLIM) is a technique that visualizes the excited state kinetics of fluorescence molecules with the spatial resolution of a fluorescence microscope. We present a scanningless implementation of FLIM based on a time- and space-correlated single photon counting (TSCSPC) method employing a position-sensitive quadrant anode detector and wide-field illumination. The standard time-correlated photon counting approach leads to picosecond temporal resolution, making it possible to resolve complex fluorescence decays. This allows parallel acquisition of time-resolved images of biological samples under minimally invasive low-excitation conditions (<10mW/cm2). In this way unwanted photochemical reactions induced by high excitation intensities and distorting the decay kinetics are avoided. Comparably low excitation intensities are practically impossible to achieve with a conventional laser scanning microscope, where focusing of the excitation beam into a tight spot is required. Therefore, wide-field FLIM permits to study Photosystem II (PS II) in a way so far not possible with a laser scanning microscope. The potential of the wide-field TSCSPC method is demonstrated by presenting FLIM measurements of the fluorescence dynamics of photosynthetic systems in living cells of the chlorophyll d-containing cyanobacterium Acaryochloris marina.  相似文献   

7.
Li D  Xie J  Zhao J  Xia A  Li D  Gong Y 《Biochimica et biophysica acta》2004,1608(2-3):114-121
State transitions induced by light and redox were investigated by observing the 77 K fluorescence spectra for the intact cells of Spirulina platensis. To clarify if phycobilisomes (PBSs) take part in the state transition, the contributions of PBSs to light-induced state transition were studied in untreated cells and the cells treated by betaine which fixed PBSs firmly on the thylakoid membranes. It was observed that the betaine-treated cells did not show any light-induced state transition. This result definitely confirmed that the light-induced excitation energy regulation between the two photosystems is mainly dependent on a spatial movement of PBSs on the thylakoid membranes, which makes PBS cores partially decoupled from photosystem II (PSII) while PBS rods more strongly coupled with photosystem I (PSI) during the transition from state 1 to state 2. On the other hand, an energy exchange between the two photosystems was observed in both untreated and betaine-treated cells during redox-induced state transition. These observations suggested that two different mechanisms were involved in the light-induced state transition and the redox-induced one. The former involves only a physical movement of PBSs, while the latter involves not only the movement of PBS but also energy spillover from PSII to PSI. A model for light-induced state transition was proposed based on the current results as well as well known knowledge.  相似文献   

8.
《BBA》2003,1607(1):5-17
Photosynthetic organisms exposed to a dynamic light environment exhibit complex transients of photosynthetic activities that are strongly dependent on the temporal pattern of the incident irradiance. In a harmonically modulated light of intensity I≈const.+sin(ωt), chlorophyll fluorescence response consists of a steady-state component, a component modulated with the angular frequency of the irradiance ω and several upper harmonic components (2ω, 3ω and higher). Our earlier reverse engineering analysis suggests that the non-linear response can be caused by a negative feedback regulation of photosynthesis. Here, we present experimental evidence that the negative feedback regulation of the energetic coupling between phycobilisome and Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC6803 indeed results in the appearance of upper harmonic modes in the chlorophyll fluorescence emission. Dynamic changes in the coupling of the phycobilisome to PSII are not accompanied by corresponding antiparallel changes in the Photosystem I (PSI) excitation, suggesting a regulation limited to PSII. Strong upper harmonic modes were also found in the kinetics of the non-photochemical quenching (NPQ) of chlorophyll fluorescence, of the P700 redox state and of the CO2 assimilation in tobacco (Nicotiana tabaccum) exposed to harmonically modulated light. They are ascribed to negative feedback regulation of the reactions of the Calvin-Benson cycle limiting the photosynthetic electron transport. We propose that the observed non-linear response of photosynthesis may also be relevant in a natural light environment that is modulated, e.g., by ocean waves, moving canopy or by varying cloud cover. Under controlled laboratory conditions, the non-linear photosynthetic response provides a new insight into dynamics of the regulatory processes.  相似文献   

9.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The ΔrbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between QA and QB, whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of ΔrbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 ‘dark rise’ in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in ΔrbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the ΔrbcL mutant under growth conditions. This protective capacity was rapidly exceeded in ΔrbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

10.
Temperature-dependent fluorescence for intact cells of cyanobacterium Spirulina platensis was detected to search for the connection of the phycobilisome (PBS) with Photosystem I (PSI) and Photosystem II (PSII). Some interesting results were obtained from the deconvoluted fluorescence components of C-phycocyanin (C-PC), allophycocyanin (APC), PSI and PSII as well as the fluorescence spectra of the intact cells at room temperature (RT=25 degrees C) and 0 degrees C. It was observed that, compared to those at RT, both of the fluorescence components for PSI and APC increased, whereas those for PSII and C-PC decreased at 0 degrees C with excitation at 580 nm, that is, the fluorescence for C-PC is not synchronous with that for APC, and the fluorescence fluctuation for PSI is not synchronous with that for PSII. On the other hand, the decrease in C-PC fluorescence is synchronous with the increase in PSI fluorescence, and the increase in APC fluorescence is synchronous with the decrease in PSII fluorescence. Therefore, it can be readily deduced that PBS should be coupled not only with PSII through the terminal acceptors in the APC core but also with PSI through C-PC in PBS rods at physiological condition, while at 0 degrees C, a migration of a PBS makes the APC partially detached from PSII but the C-PC more efficiently coupled with PSI. The results provide good evidences for "mobile PBS" model and "parallel connection" model but not for the "spillover" model.  相似文献   

11.

PAM fluorescence of leaves of cherry laurel (Prunus laurocerasus L.) was measured simultaneously in the spectral range below 700 nm (sw) and above 700 nm (lw). A high-sensitivity photodiode was employed to measure the low intensities of sw fluorescence. Photosystem II (PSII) performance was analyzed by the saturation pulse method during a light response curve with subsequent dark phase. The sw fluorescence was more variable, resulting in higher PSII photochemical yields compared to lw fluorescence. The variations between sw and lw data were explained by different levels of photosystem I (PSI) fluorescence: the contribution of PSI fluorescence to minimum fluorescence (F0) was calculated to be 14% at sw wavelengths and 45% at lw wavelengths. With the results obtained, the validity of an earlier method for the quantification of PSI fluorescence (Genty et al. in Photosynth Res 26:133–139, 1990, https://doi.org/10.1007/BF00047085) was reconsidered. After subtracting PSI fluorescence from all fluorescence levels, the maximum PSII photochemical yield (FV/FM) in the sw range was 0.862 and it was 0.883 in the lw range. The lower FV/FM at sw wavelengths was suggested to arise from inactive PSII reaction centers in the outermost leaf layers. Polyphasic fluorescence transients (OJIP or OI1I2P kinetics) were recorded simultaneously at sw and lw wavelengths: the slowest phase of the kinetics (IP or I2P) corresponded to 11% and 13% of total variable sw and lw fluorescence, respectively. The idea that this difference is due to variable PSI fluorescence is critically discussed. Potential future applications of simultaneously recording fluorescence in two spectral windows include studies of PSI non-photochemical quenching and state I–state II transitions, as well as measuring the fluorescence from pH-sensitive dyes simultaneously with chlorophyll fluorescence.

  相似文献   

12.
The effect of anthocyanic cells of the epidermal layer was investigated on photosynthetic activity of the higher plant Tradescantia pallida. To determine the possible indirect role of anthocyanin in photosynthesis, analysis was done on intact leaves and leaves where anthocyanic epidermal layer was removed. Energy dissipation processes related to Photosystem II (PSII) and Photosystem I (PSI) activity was done using simultaneously Chlorophyll a (Chl a) fluorescence and P700 transmittance signals change. In anthocyanic epidermal-less leaves, PSII photochemical activity was more decreased in dependence to increasing light irradiance exposure. We found that photoinhibition of PSII decreased PSI activity by reducing the electron flow toward PSI, especially under high light intensities. Under those conditions, it resulted in the accumulation of oxidized PSI reaction centers, which was stronger in leaves where the anthocyanic epidermal layer was removed. In conclusion, our results showed that the anthocyanic epidermal layer had a photoprotective effect only on the PSII and not on the PSI of T. pallida leaves, supporting the role of anthocyanin pigments in the regulation of photosynthesis for excess absorbed light irradiance.  相似文献   

13.
14.
Light state transition is a physiological function of oxygenic organisms to balance the excitation of photosystem II (PSII) and photosystem I (PSI), hence a prerequisite of oxygen-evolving photosynthesis. For cyanobacteria, phycobilisome (PBS) movement during light state transition has long been expected, but never observed. Here the dynamic behavior of PBS movement during state transition in cyanobacterium Synechocystis PCC6803 is experimentally detected via time-dependent fluorescence fluctuation. Under continuous excitation of PBSs in the intact cells, time-dependent fluorescence fluctuations resemble “damped oscillation” mode, which indicates dynamic searching of a PBS in an “overcorrection” manner for the “balance” position where PSII and PSI are excited equally. Based on the parallel model, it is suggested that the “damped oscillation” fluorescence fluctuation is originated from a collective movement of all the PBSs to find the “balance” position. Based on the continuous fluorescence fluctuation during light state transition and also variety of solar spectra, it may be deduced that light state transition of oxygen-evolution organisms is a natural behavior that occurs daily rather than an artificial phenomenon at extreme light conditions in laboratory.  相似文献   

15.
《BBA》2023,1864(4):148993
Phycobilisomes (PBSs), which are huge pigment-protein complexes displaying distinctive color variations, bind to photosystem cores for excitation-energy transfer. It is known that isolation of supercomplexes consisting of PBSs and photosystem I (PSI) or PBSs and photosystem II is challenging due to weak interactions between PBSs and the photosystem cores. In this study, we succeeded in purifying PSI-monomer-PBS and PSI-dimer-PBS supercomplexes from the cyanobacterium Anabaena sp. PCC 7120 grown under iron-deficient conditions by anion-exchange chromatography, followed by trehalose density gradient centrifugation. The absorption spectra of the two types of supercomplexes showed apparent bands originating from PBSs, and their fluorescence-emission spectra exhibited characteristic peaks of PBSs. Two-dimensional blue-native (BN)/SDS-PAGE of the two samples showed a band of CpcL, which is a linker protein of PBS, in addition to PsaA/B. Since interactions of PBSs with PSI are easily dissociated during BN-PAGE using thylakoids from this cyanobacterium grown under iron-replete conditions, it is suggested that iron deficiency for Anabaena induces tight association of CpcL with PSI, resulting in the formation of PSI-monomer-PBS and PSI-dimer-PBS supercomplexes. Based on these findings, we discuss interactions of PBSs with PSI in Anabaena.  相似文献   

16.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   

17.
State transitions in cyanobacteria are a physiological adaptation mechanism that changes the interaction of the phycobilisomes with the Photosystem I and Photosystem II core complexes. A random mutagenesis study in the cyanobacterium Synechocystis sp. PCC6803 identified a gene named rpaC which appeared to be specifically required for state transitions. rpaC is a conserved cyanobacterial gene which was tentatively suggested to code for a novel signal transduction factor. The predicted gene product is a 9-kDa integral membrane protein. We have further examined the role of rpaC by overexpressing the gene in Synechocystis 6803 and by inactivating the ortholog in a second cyanobacterium, Synechococcus sp. PCC7942. Unlike the Synechocystis 6803 null mutant, the Synechococcus 7942 null mutant is unable to segregate, indicating that the gene is essential for cell viability in this cyanobacterium. The Synechocystis 6803 overexpressor is also unable to segregate, indicating that the cells can only tolerate a limited gene copy number. The non-segregated Synechococcus 7942 mutant can perform state transitions but shows a perturbed phycobilisome-Photosystem II interaction. Based on these results, we propose that the rpaC gene product controls the stability of the phycobilisome-Photosystem II supercomplex, and is probably a structural component of the complex.  相似文献   

18.
State transitions in the green alga Chlamydomonas reinhardtii serve to balance excitation energy transfer to photosystem I (PSI) and to photosystem II (PSII) and possibly play a role as a photoprotective mechanism. Thus, light-harvesting complex II (LHCII) can switch between the photosystems consequently transferring more excitation energy to PSII (state 1) or to PSI (state 2) or can end up in LHCII-only domains. In this study, low-temperature (77 K) steady-state and time-resolved fluorescence measured on intact cells of Chlamydomonas reinhardtii shows that independently of the state excitation energy transfer from LHCII to PSI or to PSII occurs on two main timescales of <15 ps and ∼100 ps. Moreover, in state 1 almost all LHCIIs are functionally connected to PSII, whereas the transition from state 1 to a state 2 chemically locked by 0.1 M sodium fluoride leads to an almost complete functional release of LHCIIs from PSII. About 2/3 of the released LHCIIs transfer energy to PSI and ∼1/3 of the released LHCIIs form a component designated X-685 peaking at 685 nm that decays with time constants of 0.28 and 5.8 ns and does not transfer energy to PSI or to PSII. A less complete state 2 was obtained in cells incubated under anaerobic conditions without chemical locking. In this state about half of all LHCIIs remained functionally connected to PSII, whereas the remaining half became functionally connected to PSI or formed X-685 in similar amounts as with chemical locking. We demonstrate that X-685 originates from LHCII domains not connected to a photosystem and that its presence introduces a change in the interpretation of 77 K steady-state fluorescence emission measured upon state transitions in Chalamydomonas reinhardtii.  相似文献   

19.
Light modulation of the ability of three artificial quinones, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2,6-dichloro-p-benzoquinone (DCBQ), and tetramethyl-p-benzoquinone (duroquinone), to quench chlorophyll (Chl) fluorescence photochemically or non-photochemically was studied to simulate the functions of endogenous plastoquinones during the thermal phase of fast Chl fluorescence induction kinetics. DBMIB was found to suppress by severalfold the basal level of Chl fluorescence (Fo) and to markedly retard the light-induced rise of variable fluorescence (Fv). After irradiation with actinic light, Chl fluorescence rapidly dropped down to the level corresponding to Fo level in untreated thylakoids and then slowly declined to the initial level. DBMIB was found to be an efficient photochemical quencher of energy in Photosystem II (PSII) in the dark, but not after prolonged irradiation. Those events were owing to DBMIB reduction under light and its oxidation in the dark. At high concentrations, DCBQ exhibited quenching behaviours similar to those of DBMIB. In contrast, duroquinone demonstrated the ability to quench Fv at low concentration, while Fo was declined only at high concentrations of this artificial quinone. Unlike for DBMIB and DCBQ, quenched Fo level was attained rapidly after actinic light had been turned off in the presence of high duroquinone concentrations. That finding evidenced that the capacity of duroquinone to non-photochemically quench excitation energy in PSII was maintained during irradiation, which is likely owing to the rapid electron transfer from duroquinol to Photosystem I (PSI). It was suggested that DBMIB and DCBQ at high concentration, on the one hand, and duroquinone, on the other hand, mimic the properties of plastoquinones as photochemical and non-photochemical quenchers of energy in PSII under different conditions. The first model corresponds to the conditions under which the plastoquinone pool can be largely reduced (weak electron release from PSII to PSI compared to PSII-driven electron flow from water under strong light and weak PSI photochemical capacity because of inactive electron transport on its reducing side), while the second one mimics the behaviour of the plastoquinone pool when it cannot be filled up with electrons (weak or moderate light and high photochemical competence of PSI).  相似文献   

20.
《BBA》2014,1837(2):264-269
Photosystem II (PSII) is the pigment–protein complex which converts sunlight energy into chemical energy by catalysing the process of light-driven oxidation of water into reducing equivalents in the form of protons and electrons. Three-dimensional structures from x-ray crystallography have been used extensively to model these processes. However, the crystal structures are not necessarily identical to those of the solubilised complexes. Here we compared picosecond fluorescence of solubilised and crystallised PSII core particles isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The fluorescence of the crystals is sensitive to the presence of artificial electron acceptors (K3Fe(CN)3) and electron transport inhibitors (DCMU). In PSII with reaction centres in the open state, the picosecond fluorescence of PSII crystals and solubilised PSII is indistinguishable. Additionally we compared picosecond fluorescence of native PSII with PSII in which Ca2 in the oxygen evolving complex (OEC) is biosynthetically replaced by Sr2 +. With the Sr2 + replaced OEC the average fluorescence decay slows down slightly (81 ps to 85 ps), and reaction centres are less readily closed, indicating that both energy transfer/trapping and electron transfer are affected by the replacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号