首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A chloroplast fraction from Chlamydomonas reinhardii cells can oxidize NADH in the light, unlike chloroplasts of higher plants. The Chlamydomonas preparation catalyzes electron flow from NADH to methylviologen or ferredoxin to evolve hydrogen (in the presence of a hydrogenase) or take up oxygen. The NADH photooxidation is sensitive to rotenone, dibromothymoquinone and dicyclohexylcarbodiimide. This suggests that a rotenone sensitive NADH dehydrogenase is coupled on the plastoquinone reduction site of the potosynthetic electron flow system. On sonication of the particles NADH photooxidation is lost but may be restored by a protein fraction from an acetone extract plus plastocyanin.Abbreviations DAD diaminodurene - DCCD dicyclohexylcarbodiimide - DCMU (3,3-dichlorphenyl)-N·N dimethyl urea - DBMIB dibromothymoquinone - DNP-INT dinitro-phenylether of 2-iodo-4-nitrothymol - MV methylviologen - chl chlorophyll Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

3.
Zhi Y  Shoujun H  Yuanzhou S  Haijun L  Yume X  Kai Y  Xianwei L  Xueli Z 《FEBS letters》2012,586(19):3013-3017
Interleukin-6 (IL-6) induced STAT3 activation is viewed as crucial for multiple tumor growth and metastasis, including colon cancer. However, the molecular mechanisms remain largely unexplored. Here, we show that expression of ubiquitin-specific protease 7 (USP7), a deubiquitylating enzyme, is decreased in STAT3-positive tumors. IL-6 administration or transfection of a constitutively activated STAT3 in SW480 cells also repressed USP mRNA expression. Using luciferase reporter and ChIP assay, we found that STAT3 bound to the promoter region of USP7 and inhibited its activity through recruiting HDAC1. As a result of the decline of USP7 expression, endogenous P53 protein level was decreased. Thus, our results suggest a previously unknown STAT3-USP7-P53 molecular network controlling colon cancer development.

Structured summary of protein interactions:

STAT3physically interacts with HDAC1 by anti bait coimmunoprecipitation (View interaction)  相似文献   

4.
The role of the extracellular matrix in cutaneous morphogenesis is poorly understood. Here, we describe the essential role of laminin-10 (alpha5beta1gamma1) in hair follicle development. Laminin-10 was present in the basement membrane of elongating hair germs, when other laminins were downregulated, suggesting a role for laminin-10 in hair development. Treatment of human scalp xenografts with antibodies to laminin-10, or its receptor beta1 integrin, produced alopecia. E16.5 Lama5 -/- mouse skin, lacking laminin-10, contained fewer hair germs compared with controls, and after transplantation, Lama5 -/- skin showed a failure of hair germ elongation followed by complete hair follicle regression. Lama5 -/- skin showed defective basement membrane assembly, without measurable increases in anoikis. Instead, Lama5 -/- skin showed decreased expression of early hair markers including sonic hedgehog and Gli1, implicating laminin-10 in developmental signaling. Intriguingly, treatment of Lama5 -/- skin with purified laminin-10 corrected basement membrane defects and restored hair follicle development. We conclude that laminin-10 is required for hair follicle development and report the first use of exogenous protein to correct a cutaneous developmental defect.  相似文献   

5.
6.
Haspin-catalyzed histone H3 threonine 3 (Thr3) phosphorylation facilitates chromosomal passenger complex (CPC) docking at centromeres, regulating indirectly chromosome behavior during somatic mitosis. It is not fully known about the expression and function of H3 with phosphorylated Thr3 (H3T3-P) during meiosis in oocytes. In this study, we investigated the expression and sub-cellular distribution of H3T3-P, as well as its function in mouse oocytes during meiotic division. Western blot analysis revealed that H3T3-P expression was only detected after germinal vesicle breakdown (GVBD), and gradually increased to peak level at metaphase I (MI), but sharply decreased at metaphase II (MII). Immunofluorescence showed H3T3-P was only brightly labeled on chromosomes after GVBD, with relatively high concentration across the whole chromosome axis from pro-metaphase I (pro-MI) to MI. Specially, H3T3-P distribution was exclusively limited to the local space between sister centromeres at MII stage. Haspin inhibitor, 5-iodotubercidin (5-ITu), dose- and time-dependently blocked H3T3-P expression in mouse oocytes. H3T3-P inhibition delayed the resumption of meiosis (GVBD) and chromatin condensation. Moreover, the loss of H3T3-P speeded up the meiotic transition to MII of pro-MI oocytes in spite of the presence of non-aligned chromosomes, even reversed MI-arrest induced with Nocodazole. The inhibition of H3T3-P expression distinguishably damaged MAD1 recruitment on centromeres, which indicates the spindle assembly checkpoint was impaired in function, logically explaining the premature onset of anaphase I. Therefore, Haspin-catalyzed histone H3 phosphorylation is essential for chromatin condensation and the following timely transition from meiosis I to meiosis II in mouse oocytes during meiotic division.  相似文献   

7.
Combinatorial mutagenesis and in vivo selection experiments previously afforded functional variants of the AroH class Bacillus subtilis chorismate mutase lacking the otherwise highly conserved active site residue Arg(90). Here, we present a detailed kinetic and crystallographic study of several such variants. Removing the arginine side chain (R90G and R90A) reduced catalytic efficiency by more than 5 orders of magnitude. Reintroducing a positive charge to the active site through lysine substitutions restored more than a factor of a thousand in k(cat). Remarkably, the lysine could be placed at position 90 or at the more remote position 88 provided a sterically suitable residue was present at the partner site. Crystal structures of the double mutants C88S/R90K and C88K/R90S show that the lysine adopts an extended conformation that would place its epsilon-ammonium group within hydrogen-bonding distance of the ether oxygen of bound chorismate in the transition state. These results provide support for the hypothesis that developing negative charge in the highly polarized transition state is stabilized electrostatically by a strategically placed cation. The implications of this finding for the mechanism of all natural chorismate mutases and for the design of artificial catalysts are discussed.  相似文献   

8.
Zheng W  Gorre N  Shen Y  Noda T  Ogawa W  Lundin E  Liu K 《EMBO reports》2010,11(11):890-895
Maternal effect factors derived from oocytes are important for sustaining early embryonic development before the major wave of embryonic genome activation (EGA). In this study, we report a two-cell-stage arrest of embryos lacking maternal 3-phosphoinositide-dependent protein kinase 1 as a result of suppressed EGA. Concurrent deletion of maternal Pten completely rescued the suppressed EGA and embryonic progression through restored AKT signalling, which fully restored the fertility of double-mutant females. Our study identifies maternal phosphatidylinositol 3-kinase signalling as a new maternal effect factor that regulates EGA and preimplantation embryogenesis in mice.  相似文献   

9.
Mitochondrial NADH fluorescence has been a useful tool in evaluating mitochondrial energetics both in vitro and in vivo. Mitochondrial NADH fluorescence is enhanced several-fold in the matrix through extended fluorescence lifetimes (EFL). However, the actual binding sites responsible for NADH EFL are unknown. We tested the hypothesis that NADH binding to Complex I is a significant source of mitochondrial NADH fluorescence enhancement. To test this hypothesis, the effect of Complex I binding on NADH fluorescence efficiency was evaluated in purified protein, and in native gels of the entire porcine heart mitochondria proteome. To avoid the oxidation of NADH in these preparations, we conducted the binding experiments under anoxic conditions in a specially designed apparatus. Purified intact Complex I enhanced NADH fluorescence in native gels approximately 10-fold. However, no enhancement was detected in denatured individual Complex I subunit proteins. In the Clear and Ghost native gels of the entire mitochondrial proteome, NADH fluorescence enhancement was localized to regions where NADH oxidation occurred in the presence of oxygen. Inhibitor and mass spectroscopy studies revealed that the fluorescence enhancement was specific to Complex I proteins. No fluorescence enhancement was detected for MDH or other dehydrogenases in this assay system, at physiological mole fractions of the matrix proteins. These data suggest that NADH associated with Complex I significantly contributes to the overall mitochondrial NADH fluorescence signal and provides an explanation for the well established close correlation of mitochondrial NADH fluorescence and the metabolic state.  相似文献   

10.
The importance of the mitochondrial electron transport chain in photosynthesis was studied using the tobacco (Nicotiana sylvestris) mutant CMSII, which lacks functional complex I. Rubisco activities and oxygen evolution at saturating CO(2) showed that photosynthetic capacity in the mutant was at least as high as in wild-type (WT) leaves. Despite this, steady-state photosynthesis in the mutant was reduced by 20% to 30% at atmospheric CO(2) levels. The inhibition of photosynthesis was alleviated by high CO(2) or low O(2). The mutant showed a prolonged induction of photosynthesis, which was exacerbated in conditions favoring photorespiration and which was accompanied by increased extractable NADP-malate dehydrogenase activity. Feeding experiments with leaf discs demonstrated that CMSII had a lower capacity than the WT for glycine (Gly) oxidation in the dark. Analysis of the postillumination burst in CO(2) evolution showed that this was not because of insufficient Gly decarboxylase capacity. Despite the lower rate of Gly metabolism in CMSII leaves in the dark, the Gly to Ser ratio in the light displayed a similar dependence on photosynthesis to the WT. It is concluded that: (a) Mitochondrial complex I is required for optimal photosynthetic performance, despite the operation of alternative dehydrogenases in CMSII; and (b) complex I is necessary to avoid redox disruption of photosynthesis in conditions where leaf mitochondria must oxidize both respiratory and photorespiratory substrates simultaneously.  相似文献   

11.
Signal transduction pathways play important roles in virus infection, replication, and associated pathogenesis. Some of the best understood cell signaling networks are crucial to virus infections such the mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), protein kinase C (PKC), and the WNT/β-catenin pathways. Glycogen synthase kinase-3 (GSK-3) is a lesser known signaling molecule in the field of virus research. Interestingly, GSK-3 forms the crux of multiple cell signaling pathways. However, recent studies indicate that GSK-3 may perform key roles in the response to viral infection, replication and pathogenesis. The effects of activated or inactivated forms of GSK-3 on virus infection are still not yet clearly understood phenomenon. The comprehension of the molecular mechanisms underlying the regulation of GSK-3-associated signaling pathways in terms of different stages of virus replication could be important not only to understand the pathogenesis of virus, but also possibly leading to new therapeutic targets. This review will focus on recent advances in understanding the roles of GSK-3 on viral replication, pathogenesis and the immune responses.  相似文献   

12.
Migratory connectivity can have important consequences for individuals, populations and communities. We argue that most consequences not only depend on which sites are used but importantly also on when these are used and suggest that the timing of migration is characterised by synchrony, phenology, and consistency. We illustrate the importance of these aspects of timing for shaping the consequences of migratory connectivity on individual fitness, population dynamics, gene flow and community dynamics using examples from throughout the animal kingdom. Exemplarily for one specific process that is shaped by migratory connectivity and the timing of migration – the transmission of parasites and the dynamics of diseases – we underpin our arguments with a dynamic epidemiological network model of a migratory population. Here, we quantitatively demonstrate that variations in migration phenology and synchrony yield disease dynamics that significantly differ from a time‐neglecting case. Extending the original definition of migratory connectivity into a spatio‐temporal concept can importantly contribute to understanding the links migratory animals make across the globe and the consequences these may have both for the dynamics of their populations and the communities they visit throughout their journeys. Synthesis Migratory connectivity quantifies the links migrant animals make across the globe and these can have manifold consequences – from individual fitness, population dynamics, gene flow to transmission of pathogens and parasites. We show through the use of empirical examples and a conceptual model that these consequences not only depend on which sites are used but importantly also on when these are used. Therefore, we specify three dimensions of migration timing – phenology, synchrony and consistency, which describe the timing of migration 1) relative to development of key resources; 2) relative to the migration of other individuals; and 3) relative to previous migration events. Each of these dimensions can alter the consequences, but typically through different mechanisms.  相似文献   

13.
14.
We have combined the use of mouse genetic strains and the mouse-into-chicken chimera system to determine precisely the sequence of forelimb colonization by presomitic mesoderm (PSM)-derived myoblasts and angioblasts, and the possible role of this latter cell type in myoblast guidance. By creating a new Flk1/Pax3 double reporter mouse line, we have established the precise timetable for angioblast and myoblast delamination/migration from the somite to the limb bud. This timetable was conserved when mouse PSM was grafted into a chicken host, which further validates the experimental model. The use of Pax3(GFP/GFP) knockout mice showed that establishment of vascular endothelial and smooth muscle cells (SMCs) is not compromised by the absence of Pax3. Of note, Pax3(GFP/GFP) knockout mouse PSM-derived cells can contribute to aortic, but not to limb, SMCs that are derived from the somatopleure. Finally, using the Flk1(lacZ)(/)(lacZ) knockout mouse, we show that, in the absence of angioblast and vascular network formation, myoblasts are prevented from migrating into the limb. Taken together, our study establishes for the first time the time schedule for endothelial and skeletal muscle cell colonization in the mouse limb bud and establishes the absolute requirement of endothelial cells for myoblast delamination and migration to the limb. It also reveals that cells delaminating from the somites display marked differentiation traits, suggesting that if a common progenitor exists, its lifespan is extremely short and restricted to the somite.  相似文献   

15.
NOX is the catalytic subunit of NADPH oxidase, the superoxide-generating enzyme. Among several isoforms of NOX, NOX4 is abundantly expressed in various tissues. To clarify the mechanisms of constitutive and ubiquitous expression of NOX4, the promoter activities of the human NOX4 gene were analyzed by reporter assays. The 5'-flanking and non-coding regions of the human NOX4 gene are known to contain multiple GC bases. Among them, three GC-boxes containing putative Sp/Klf-binding sites, which were not found in rodent genes, were suggested to be essential for the basal expression of the NOX4 gene in SH-SY5Y and HEK293 cells. Electrophoresis mobility shift assays demonstrated that Sp1 and Sp3 could bind to GC-boxes at positions -239/-227 and +69/+81 in these cells. Chromatin immunoprecipitation assays showed that Sp1 and Sp3 could also bind to GC-boxes at positions -239/-227 and +69/+81 in vivo. The promoter activity of the NOX4 gene was reduced in SH-SY5Y and HEK293 cells by transfection of an anti-Sp3 short hairpin RNA-expression plasmid. Taken together, these results suggest that Sp3 plays a key role in the expression of NOX4 in various cell lineages in humans.  相似文献   

16.
17.
18.
19.
Nicotine, the main alkaloid produced by Nicotiana tabacum and other Solanaceae, is very toxic and may be a leading toxicant causing preventable disease and death, with the rise in global tobacco consumption. Several different microbial pathways of nicotine metabolism have been reported: Arthrobacter uses the pyridine pathway, and Pseudomonas, like mammals, uses the pyrrolidine pathway. We identified and characterized a novel 6-hydroxy-3-succinoyl-pyridine (HSP) hydroxylase (HspB) using enzyme purification, peptide sequencing, and sequencing of the Pseudomonas putida S16 genome. The HSP hydroxylase has no known orthologs and converts HSP to 2,5-dihydroxy-pyridine and succinic semialdehyde, using NADH. (18)O(2) labeling experiments provided direct evidence for the incorporation of oxygen from O(2) into 2,5-dihydroxy-pyridine. The hspB gene deletion showed that this enzyme is essential for nicotine degradation, and site-directed mutagenesis identified an FAD-binding domain. This study demonstrates the importance of the newly discovered enzyme HspB, which is crucial for nicotine degradation by the Pseudomonas strain.  相似文献   

20.
Prolongation of cell survival through prevention of apoptosis is considered to be a significant factor leading to anabolic responses in bone. The current studies were carried out to determine the role of the small GTPase, RhoA, in osteoblast apoptosis, since RhoA has been found to be critical for cell survival in other tissues. We investigated the effects of inhibitors and activators of RhoA signaling on osteoblast apoptosis. In addition, we assessed the relationship of this pathway to parathyroid hormone (PTH) effects on apoptotic signaling and cell survival. RhoA is activated by geranylgeranylation, which promotes its membrane anchoring. In serum‐starved MC3T3‐E1 osteoblastic cells, inhibition of geranylgeranylation with geranylgeranyl transferase I inhibitors increased activity of caspase‐3, a component step in the apoptosis cascade, and increased cell death. Dominant negative RhoA and Y27632, an inhibitor of the RhoA effector Rho kinase, also increased caspase‐3 activity. A geranylgeranyl group donor, geranylgeraniol, antagonized the effect of the geranylgeranyl tranferase I inhibitor GGTI‐2166, but could not overcome the effect of the Rho kinase inhibitor. PTH 1‐34, a potent anti‐apoptotic agent, completely antagonized the stimulatory effects of GGTI‐2166, dominant negative RhoA, and Y27632, on caspase‐3 activity. The results suggest that RhoA signaling is essential for osteoblastic cell survival but that the survival effects of PTH 1‐34 are independent of this pathway. J. Cell. Biochem. 106: 896–902, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号