首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have used x-ray diffraction to study the interactions between myelin membranes in the sciatic nerve (PNS) and optic nerve (CNS) as a function of pH (2-10) and ionic strength (0-0.18). The period of myelin was found to change in a systematic manner with pH and ionic strength. PNS periods ranged from 165 to 250 A or more, while CNS periods ranged from 150 to 230 A. The native periods were observed only near physiological ionic strength at neutral or alkaline pH. The smallest periods were observed in the pH range 2.5-4 for PNS myelin and pH 2.5-5 for CNS myelin. The minimum period was also observed for PNS myelin after prolonged incubation in distilled water. At pH 4, within these acidic pH ranges, myelin period increased slightly with ionic strength; however, above these ranges, the period increased with pH and decreased with ionic strength. Electron density profiles calculated at different pH and ionic strength showed that the major structural alteration underlying the changes in period was in the width of the aqueous space at the extracellular apposition of membranes; the width of the cytoplasmic space was virtually constant. Assuming that the equilibrium myelin periods are determined by a balance of nonspecific forces/i.e., the electrostatic repulsion force and the van der Walls attractive force, as well as the short-range repulsion force (hydration force, or steric stabilization), then values in the period-dependency curve can be used to define the isoelectric pH and exclusion length of the membrane. The exclusion length, which is related to the minimum period at isoelectric pH, was used to calculate the electrostatic repulsion force given the other forces. The electrostatic repulsion was then used to calculate the surface potential, which in turn was used to calculate the surface charge density (at different pH and ionic strength). We found the negative surface charge increases with pH at constant ionic strength and with ionic strength at constant pH. We suggest that the former is due to deprotonation of the ionizable groups on the surface while the latter is due to ion binding. Interpretation of our data in terms of the chemical composition of myelin is given in the accompanying paper (Inouye and Kirschner, 1988). We also calculated the total potential energy functions for the different equilibrium periods and found that the energy minima became shallower and broader with increasing membrane separation. Finally, it was difficult to account directly for certain structural transitions from a balance of nonspecific forces.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The adsorption of [14C] alkylated glyceraldehyde 3-phosphate dehydrogenase from rabbit muscle to condensed monolayers of phosphatidic acid was investigated under a variety of conditions. 2. The rate constant for association at 20 degrees C depended on ionic strength. At I/2=60mM the rate constant was 0.39min-1. At I/2=260mM it decreased to 0.27min-1. 3. The apparent association constant (Kass.) for adsorption at I/2=60mM was 1.06 X 10(6)M-1 and was strongly influenced by subphase changes in pH and ionic strength. Measurements of Kass. at 20 degrees and 5 degrees C gave a value for the apparent enthalpy change on adsorption of -33kJ-mol-1. Calculations of the apparent change in free energy and apparent entropy change for the adsorption process gave values of -34kJ-mol-1 and +2J-K-1-mol-1 respectively. 4. Decreasing the amount of phosphatidic acid in the monolayer by replacement with phosphatidylcholine caused the shape of the adsorption isotherm to change from apparent hyperbolic to sigmoid. Subphase changes in pH or ionic strength did not affect the shape of the adsorption isotherm. However, adsorption of enzyme on monolayers of 100% phosphatidic acid in the presence of 1mM-CaCl2 was sigmoid in nature. 5. It is concluded that glyceraldehyde 3-phosphate dehydrogenase binds to condensed charged monolayers by multiple electrostatic interactions. At low concentrations of phosphatidic acid in the monolayer or in the presence of Ca2+, this occurs in a two-step process and depends on lateral diffusion of phosphatidic acid for strong binding to take place.  相似文献   

3.
We have correlated membrane structure and interactions in shiverer sciatic nerve myelin with its biochemical composition. Analysis of x-ray diffraction data from shiverer myelin swollen in water substantiates our previous localization of an electron density deficit in the cytoplasmic half of the membrane. The density loss correlates with the absence of the major myelin basic proteins and indicates that in normal myelin, the basic protein is localized to the cytoplasmic apposition. As in normal peripheral myelin, hypotonic swelling in the shiverer membrane arrays occurs in the extracellular space between membranes; the cytoplasmic surfaces remain closely apposed notwithstanding the absence of basic protein from this region. Surprisingly, we found that the interaction at the extracellular apposition of shiverer membranes is altered. The extracellular space swells to a greater extent than normal when nerves are incubated in distilled water, treated at a reduced ionic strength of 0.06 in the range of pH 4-9, or treated at constant pH (4 or 7) in the range of ionic strengths 0.02-0.20. To examine the biochemical basis of this difference in swelling, we compared the lipid composition of shiverer and normal myelin. We find that sulfatides, hydroxycerebroside, and phosphatidylcholine are 20-30% higher than normal; nonhydroxycerebroside and sphingomyelin are 15-20% lower than normal; and ethanolamine phosphatides, phosphatidylserine, and cholesterol show little or no change. A higher concentration of negatively charged sulfatides at the extracellular surface likely contributes to an increased electrostatic repulsion and greater swelling in shiverer. The cytoplasmic surfaces of the apposed membranes of normal and shiverer myelins did not swell apart appreciably in the pH and ionic strength ranges expected to produce electrostatic repulsion. This stability, then, clearly does not depend on basic protein. We propose that P0 glycoprotein molecules form the stable link between apposed cytoplasmic membrane surfaces in peripheral myelin.  相似文献   

4.
Disappearance of Ca2+-induced phase separation in phosphatidylserine-phosphatidylcholine membrane has been studied under several conditions by monitoring electron spin resonance spectrum of spin-labeled phosphatidylcholine. The membranes were prepared in Millipore filters. Electron micrographs of the pre parations showed formation of multilayered structures lined on the pore surface. The phase separation was disappeared when the membrane was soaked in non-buffered salt solution (100 ml KCl, pH 5.5). It was markedly contrasting that when the bathing salt solution was buffered no disappearance was observed. Disappearance of the phase separation was also observed when the Ca2+-treated membrane was transferred to acidic salt solutions (less than or equal to pH 2.5) or to low ionic strength media (less than or equal to mM) buffered at pH 5.5, and then to the buffered salt solution (100 mM KCl, pH 5.5). These are due to replacement of Ca2+ by proton, proton-induced separation, followed by disappearance of the phase separation in the buffered salt solution. Biological significance of the competition between Ca2+ and proton for the phase separation or domain formation in the membranes was emphasized.  相似文献   

5.
Electrostatic interactions can have a significant impact on protein transmission through semipermeable membranes. Experimental data for the transport of bovine serum albumin (BSA) through a polyethersulfone ultrafiltration membrane were obtained in different salt solutions over a range of pH and salt concentrations. Net BSA charge under the same conditions was evaluated from mobility data measured by capillary electrophoresis. The results show that specific ionic composition, in addition to solution pH and ionic strength, can strongly affect the rate of protein transport through semipermeable ultrafiltration membranes. The effects of different ions on BSA sieving are due primarily to differences in ion binding to the protein, which leads to significant differences in the net protein charge at a given pH and ionic strength. This effect could be described in terms of an effective protein radius, which accounts for the electrostatic exclusion of the charged protein from the membrane pores. These results provide important insights into the nature of the electrostatic interactions in membrane systems.  相似文献   

6.
Complex formation between horse heart cytochrome c (cyt c) and bovine cytochrome c oxidase (cco) incorporated into a supported planar egg phosphatidylcholine membrane containing varying amounts of cardiolipin (CL) (0-20 mol%) has been studied under low (10 mM) and medium (160 mM) ionic strength conditions by surface plasmon resonance (SPR) spectroscopy. Both specific and nonspecific modes of cyt c binding are observed. The dissociation constant of the specific interaction between cyt c and cco increases from approximately 6.5 microM at low ionic strength to 18 microM at medium ionic strength, whereas the final saturation level of bound protein is independent of salt concentration and corresponds to approximately 53% of the total cco molecules present in the membrane. This suggests a 1:1 binding stoichiometry between the two proteins. The nonspecific binding component is governed by electrostatic interactions between cyt c and the membrane lipids and results in a partially ionic strength-reversible protein-membrane association. Thus, hydrophobic interactions between cyt c and the membrane, which are the predominant mode of binding in the absence of cco, are greatly suppressed. Both the amount of nonspecifically bound protein and the binding affinity can be varied over a broad range by changing the ionic strength and the extent of CL incorporation into the membrane. Under conditions approximating the physiological state in the mitochondrion (i.e., 20 mol% CL and medium ionic strength), 1-1.5 cyt c molecules are bound to the lipid phase per molecule of cco, with a dissociation constant of 0.1 microM. The possible physiological significance of these observations is discussed.  相似文献   

7.
Fluorescein-PE is a fluorescence probe that is used as a membrane label or a sensor of surface associated processes. Fluorescein-PE fluorescence intensity depends not only on bulk pH, but also on the local electrostatic potential, which affects the local membrane interface proton concentration. The pH sensitivity and hydrophilic character of the fluorescein moiety was used to detect conformational changes at the lipid bilayer surface. When located in the dipalmitoylphosphatidylcholine (DPPC) bilayer, probe fluorescence depends on conformational changes that occur during phase transitions. Relative fluorescence intensity changes more at pretransition than at the main phase transition temperature, indicating that interface conformation affects the condition in the vicinity of the membrane. Local electrostatic potential depends on surface charge density, the local dielectric constant, salt concentration and water organisation. Initial increase in fluorescence intensity at temperatures preceding that of pretransition can be explained by the decreased value of the dielectric constant in the lipid polar headgroups region related in turn to decreased water organisation within the membrane interface. The abrupt decrease in fluorescence intensity at temperatures between 25 degrees C and 35 degrees C (DPPC pretransition) is likely to be caused by an increased value of the electrostatic potential, induced by an elevated value of the dielectric constant within the phosphate group region. Further increase in the fluorescence intensity at temperatures above that of the gel-liquid phase transition correlates with the calculated decreased surface electrostatic potential. Above the main phase transition temperature, fluorescence intensity increase at a salt concentration of 140 mM is larger than with 14 mM. This results from a sharp decline of the electrostatic potential induced by the phosphocholine dipole as a function of distance from the membrane surface.  相似文献   

8.
S K Gibson  J H Parkes  P A Liebman 《Biochemistry》1999,38(34):11103-11114
Phosphorylation reduces the lifetime and activity of activated G protein-coupled receptors, yet paradoxically shifts the metarhodopsin I-II (MI-MII) equilibrium (K(eq)) of light-activated rhodopsin toward MII, the conformation that activates G protein. In this report, we show that phosphorylation increases the apparent pK for MII formation in proportion to phosphorylation stoichiometry. Decreasing ionic strength enhances this effect. Gouy-Chapman theory shows that the change in pK is quantitatively explained by the membrane surface potential, which becomes more negative with increasing phosphorylation stoichiometry and decreasing ionic strength. This lowers the membrane surface pH compared to the bulk pH, increasing K(eq) and the rate of MII formation (k(1)) while decreasing the back rate constant (k(-)(1)) of the MI-MII relaxation. MII formation has been observed to depend on bulk pH with a fractional stoichiometry of 0.6-0.7 H(+)/MII. We find that the apparent fractional H(+) dependence is an artifact of altering the membrane surface charge during a titration, resulting in a fractional change in membrane surface pH compared to bulk pH. Gouy-Chapman calculations of membrane pH at various phosphorylation levels and ionic strengths suggest MII formation behavior consistent with titration of a single H(+) binding site with 1:1 stoichiometry and an intrinsic pK of 6.3 at 0.5 degrees C. We show evidence that suggests this same site has an intrinsic pK of 5.0 prior to light activation and its protonation before activation greatly enhances the rate of MII formation.  相似文献   

9.
The mechanism of interaction between cytochrome c and a solid-supported planar phosphatidylcholine membrane containing varying amounts of cardiolipin (0-20 mol%) has been studied over a wide range of protein concentrations (0-450 microM) and ionic strength conditions (10-150 mM), by direct measurement of protein binding using surface plasmon resonance (SPR) spectroscopy. The results demonstrate that cytochrome c binds to such phospholipid membranes in two distinct phases characterized by very different (approximately one order of magnitude) affinity constants. The second phase is dependent upon the prior occurrence of the first binding process. Although the binding affinities for both modes of binding are highly sensitive to both the cardiolipin concentration and the ionic strength of the buffer solution, indicating that electrostatic forces are involved in these processes, binding cannot be reversed by salt addition or by dilution. Furthermore, the final saturation levels of adsorbed protein are independent of ionic strength and cardiolipin concentration. These observations suggest that binding involves more than a simple electrostatic interaction. Invariance in the shapes of the SPR spectra indicates that no major structural transitions occur in the proteolipid membrane due to cytochrome c binding, i.e., the bilayer character of the lipid phase appears to be preserved during these interactions. Based on these results, a model of the lipid membrane-cytochrome c interaction is proposed that involves varying degrees of protein unfolding and subsequent binding to the membrane interior via hydrophobic forces.  相似文献   

10.
The pK(a) values of most histidines in small peptides and in myoglobin increase on average by 0.30 unit between 0.02 and 1.5 M NaCl [Kao et al. (2000) Biophys. J. 79, 1637]. The DeltapK(a) values reflect primarily the ionic strength dependence of the solvation energy; screening of Coulombic interactions contributes only in a minor way. This implies that Coulombic interactions are weak, or that attractive and repulsive contributions to the pK(a) values are balanced. To distinguish experimentally between these two possibilities, and to further characterize the magnitude and salt sensitivity of surface electrostatic interactions in proteins, the salt dependence of pK(a) values of histidines in staphylococcal nuclease was measured by (1)H NMR spectroscopy. Three of the four histidines titrated with significantly depressed pK(a) values, and the salt sensitivity of all histidine pK(a) values was substantial. In three cases, the pK(a) values increased by a full unit between 0.01 and 1.5 M KCl. Anion-specific effects were found; the pK(a) values measured under equivalent ionic strengths in SCN(-) and SO(4)(2-) were higher than in Cl(-); the order of the sensitivity of pK(a) values to anions was SCN(-) > Cl(-) > SO(4)(2-). Structure-based pK(a) calculations with continuum methods were performed to interpret the measured effects structurally and to test their ability to capture the experimental behavior. Calculations in which the protein interior was treated empirically with a dielectric constant of 20 reproduced the pK(a) values and their dependence on the concentration of Cl(-). According to the calculations, the pK(a) values are depressed because of unfavorable self-energies and repulsive Coulombic interactions. Their striking salt sensitivity reflects screening of weak, repulsive, Coulombic interactions among charges separated by more than 10 A. Long-range Coulombic interactions on the surfaces of proteins are weak, but they can add up to produce substantial electrostatic effects when positive and negative charges are not balanced.  相似文献   

11.
The phosphatidylcholine exchange protein from bovine liver catalyzes the transfer of phosphatidylcholine between rat liver mitochondria and sonicated liposomes. The effect of changes in the liposomal lipid composition and ionic composition of the medium on the transfer have been determined. In addition, it has been determined how these changes affected the electrophoretic mobility i.e. the surface charge of the membrane particles involved. Transfer was inhibited by the incorporation of negatively charged phosphatidic acid, phosphatidylserine, phosphatidylglycerol and phosphatidylinositol into the phosphatidylcholine-containing vesicles; zwitterionic phosphatidyl-ethanolamine had much less of an inhibitory effect while positively charged stearylamine stimulated. The cation Mg2+ and, to a lesser extent, K+ overcame the inhibitory effect exerted by phosphatidic acid, in that concentration range where these ions neutralized the negative surface charge most effectively. Under conditions where Mg2+ and K+ affected the membrane surface charge relatively little inhibition was observed. In measuring the protein-mediated transfer between a monolayer and vesicles consisting of only phosphatidylcholine, cations inhibited the transfer in the order La3+ greater than Mg2+ larger than or equal to Ca2+ greater than K+ = Na+. Inhibition was not related to the ionic strength, and very likely reflects an interference of these cations with an electrostatic interaction between the exchange protein and the polar head group of phosphatidylcholine.  相似文献   

12.
Resonance energy transfer between anthrylvinyl-labeled phosphatidylcholine as a donor and heme moiety of cytochrome c (cyt c) as an acceptor has been employed to explore the protein binding to model membranes, composed of phosphatidylcholine and cardiolipin (CL). The existence of two types of protein-lipid complexes has been hypothesized where either deprotonated or partially protonated CL molecules are responsible for cyt c attachment to bilayer surface. To quantitatively describe cyt c membrane binding, the adsorption model based on scaled particle and double layer theories has been employed, with potential-dependent association constants being treated as a function of acidic phospholipid mole fraction, degree of CL protonation, ionic strength, and surface coverage. Multiple arrays of resonance energy transfer data obtained under conditions of varying pH, ionic strength, CL content, and protein/lipid molar ratio have been analyzed in terms of the model of energy transfer in two-dimensional systems combined with the adsorption model allowing for area exclusion and electrostatic effects. The set of recovered model parameters included effective protein charge, intrinsic association constants, and heme distance from the bilayer midplane for both types of protein-lipid complexes. Upon increasing CL mole fraction from 10 to 20 mol % (the value close to that characteristic of the inner mitochondrial membrane), the binding equilibrium dramatically shifted toward cyt c association with partially protonated CL species. The estimates of heme distance from bilayer center suggest shallow bilayer location of cyt c at physiological pH, whereas at pH below 6.0, the protein tends to insert into membrane core.  相似文献   

13.
Ionic properties of didodecanoylphosphatidylglycerol (C12PG), didodecanolyphosphatidyl-l'-propanol (C12PP), di-(12-methyl, 13-methyl)-pentadecanoylphosphatidylglycerols (C15PG) and dihexadecanoylphosphatidylglycerol (C16PG) have been studied at the air-water interface using titration experiments at constant ionic strength and film expansion experiments at constant pH, with Li+, Na+, K+ and Cs+ in the subphase. For each lipid, the apparent pK in the surface is strongly dependent on the subphase salt concentration and differs from expected intrinsic pK in the bulk. Discrimination between alkaline cations is observed. These results can be accounted for by strong surface potentials, which are satisfactorily calculated by using the Gouy and Chapman theory of the diffuse double layer. The comparison of C12PP and PG expansion data shows the importance of the glycerol residue of PG ionic properties, favouring penetration of cations in the films. Lipids in the liquid-crystalline state, such as C12-and C15PG, do not interact with alkaline cations as does C16PG in the gel phase. In particular, film condensations bring about a clear-cut discrimination between Na+ and K+. Results are discussed with regard to cation penetration and the structure of water at the interface. The importance on membrane functions of these strong surface potentials generated by PG monolayers is suggested.  相似文献   

14.
The binding of Ca2+ to monolayers and bilayers of phosphatidylserine has been investigated as a function of pH, ionic strength (NaCl concentration) and Ca2+ concentration using surface and colloid chemical techniques. The molar ratio of lipid to bound calcium decreases to 2 as the Ca2+ concentration is increased to about 0.1 mM. At [Ca2+] greater than 0.1 mM a 1:1 complex is formed. The apparent binding constant Ka ranges from about approximately 10(6) - 10(4) l/mol depending on the Ca2+ concentration. After allowing for electrostatic effects and neighbour group interactions, the intrinsic binding constant Ki of the phosphorylserine polar group at pH 7 (I = 0.01 M), where it carries a net negative charge of one, is approximately 10(4) l/mol; consistent values for Ki were obtained using several independent approaches. Ka for Ca2+ binding decreases with increasing NaCl concentration because the monovalent cations compete with Ca2+ for the same binding site. Na+ and K+ are equally effective in displacing 45Ca2+ adsorbed to monolayers of phosphatidylserine, both with respect to the kinetics and the equilibrium of the displacement. Ka for the reaction between phosphatidylserine and monovalent cations is about 10(3)-fold smaller than that of Ca2+. An investigation of the binding of Mn2+ to phosphatidylserine by both surface chemical and nuclear magnetic resonance methods shows that this cation has a similar binding constant to that of Ca2+. The Ca2+-binding capabilities of monolayers containing only carboxyl groups (i.e. arachidic acid) and phosphodiester groups (i.e. dicetyl phosphate) have also been determined; the apparent pK for the - COOH group in monolayers is larger than or equal to 9 and that for the phosphodiester group is less than 4. Since these groups do not retain the same pK values when they are in close proximity in the phosphorylserine group, the relative contributions of the two groups to the binding of Ca2+ to phosphatidylserine is not obvious.  相似文献   

15.
The release of the internal content of negatively charged phosphatidylcholine/phosphatidylserine vesicles under the influence of high density lipoprotein was studied. Under standard conditions (the same composition outside and inside the compartment) the leakage of negative liposomes increased significantly. However, a high internal concentration of calcein provoked a sealing effect, exhibited both in sucrose and in calcein release. This sealing effect is not related to the size of vesicles, the fluidity of the membrane, the distribution of phosphatidylserine molecules, or the membrane potential. Our data indicate that surface potential influences this effect, probably in addition to a lateral pressure effect such as with cholesterol. The surface potential, as measured by the water-lipid partition coefficient of fatty acids, is strongly affected by internal ionic strength when liposomes contain calcein as well as other polyanions (6-carboxyfluorescein, sodium citrate).  相似文献   

16.
R E Overfield  C A Wraight 《Biochemistry》1980,19(14):3322-3327
The oxidation of cytochrome c2 by photosynthetic reaction center isolated from Rhodopseudomonas sphaeroides and incorporated into unilamellar phosphatidylcholine vesicles was found to be kinetically similar to that observed earlier for reaction centers in low detergent solution [Overfield, R.E., Wraight, C.A., & DeVault, D. (1979) FEBS Lett. 105, 137-142]. At low ionic strength the kinetics were biphasic. The fast phase indicated the formation of a cytochrome-reaction center complex with an apparent binding constant, KB, of about 10(5) M-1. However, KB decreased dramatically with increasing salt concentration, and no fast oxidation was detectable in 0.1 M NaCl. The slow cytochrome oxidation was first order in both cytochrome and reaction centers and, thus, second order overall. Deviations from theoretical second-order behavior were observed when the rate of the first-order back reaction of the primary photoproducts was significant compared to the cytochrome oxidation. This can cause serious overestimation of the second-order rate constant. The slow oxidation of cytochrome c2 by reaction centers in phosphatidylcholine vesicles exhibited a 40% lower encounter frequency than with the solubilized reaction center. This was attributed to the much lower diffusion coefficient of the reaction center in the vesicle membrane than in solution. No effects of diminished dimensionality were detected with neutral vesicles. An activation energy of 8.0 +/- 0.4 kcal x mol-1 was determined for the slow phase of cytochrome c2 oxidation by reaction centers in solution and in vesicles of several different phosphatidylcholines, including dimyristoylphosphatidylcholine above and below its phase transition temperature. Thus, the physical state of the lipid did not appear to affect any rate-limiting steps leading to cytochrome oxidation. The ionic strength dependence of the slow kinetics of oxidation of cytochromes c and c2 confirmed the electrostatic nature of the cytochrome-reaction center interaction, and the pH dependence indicated the titration of a group or groups, important to this interaction, at pH 9.5.  相似文献   

17.
Interaction of substance P with electrically neutral, planar lipid bilayers prepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and with anionic bilayers prepared from mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine and brain phosphatidylserine was measured using the capacitance minimization method for monitoring the membrane surface potential caused by the positive charges and electric dipole moment of adsorbed peptide. Substance P bound to the electrically neutral bilayers from 9 mM KCl (buffered to pH 5.5 with 2.0 mM 2-(N-morpholino)ethanesulfonate) with a maximal binding density of about 1 x 10(-2) molecules per nm2 and a dissociation constant of about 2 x 10(-4) M. Measurement of the surface potential at different ionic strengths (shielding of surface charges) allowed distinction between the fixed-charge surface potential and a dipole potential. Ascribing this dipole potential to membrane-bound substance P would imply an effective dipole moment normal to the bilayer surface of about 20 Debye per molecule. Magnitude and polarity are consistent with an alpha-helical domain at the C-terminal end of substance P which is oriented normal to the surface of the membrane, and inserted so as to be inaccessible to the aqueous phase. Consistent measurements were obtained with anionic membranes at low substance P concentrations (10(-7)-10(-6) M; pH 7.2). They indicated electrostatic accumulation of the triply charged peptide on the surface of the membrane followed by hydrophobic interaction with the same parameters as for neutral membranes. The results agree with the membrane structure of substance P determined with infrared attenuated total reflection spectroscopy, circular dichroism measurements, and thermodynamic estimations.  相似文献   

18.
Triton X-100 (in concentrations which did not cause a significant solubilization of membrane material) caused aggregation of the intramembrane particles of human erythrocyte ghosts.Ghosts from which the extrinsic proteins had been removed by alkali treatment showed a temperature-induced aggregation of the particles. With virtually no spectrin present, the particles in these stripped ghosts could still be aggregated by manipulations with ionic strength and pH, or by the addition of calcium.Recombinant vesicles were made from a Triton X-100 extract and a mixture of phospholipids with a composition which resembled that of the inner monolayer of erythrocyte membrane. In these recombinants the same manipulations with ionic strength and pH and the addition of calcium caused a rearrangement of the particles, resulting in the appearance of particle-free areas. In recombinants prepared from a Trixon X-100 extract and egg phosphatidylcholine the lateral distribution of the particles was not altered by these manipulations.It is concluded that in the erythrocyte membrane the intramembrane particles can be aggregated by effects of external agents on lipid components. In this light the role of spectrin in stabilizing the membrane by interactions with lipids in the inner monolayer is discussed.  相似文献   

19.
Triton X-100 (in concentrations which did not cause a significant solubilization of membrane material) caused aggregation of the intramembrane particles of human erythrocyte ghosts. Ghosts from which the extrinsic proteins had been removed by alkali treatment showed a temperature-induced aggregation of the particles. With virtually no spectrin present, the particles in these stripped ghosts could still be aggregated by manipulations with ionic strength and pH, or by the addition of calcium. Recombinant vesicles were made from a Triton X-100 extract and a mixture of phospholipids with a composition which resembled that of the inner monolayer of erythrocyte membrane. In these recombinants the same manipulations with ionic strength and pH and the addition of calcium caused a rearrangement of the particles, resulting in the appearance of particle-free areas. In recombinants prepared from a Triton X-100 extract and egg phosphatidylcholine the lateral distribution of the particles was not altered by these manipulations. It is concluded that in the erythrocyte membrane the intramembrane particles can be aggregated by effects of external agents on lipid components. In this light the role of spectrin in stabilizing the membrane by interactions with lipids in the inner monolayer is discussed.  相似文献   

20.
The electrophoretic mobilities of multilamellar phosphatidylserine vesicles were measured in solutions containing monovalent cations, and the xi potentials, the electrostatic potentials at the hydrodynamic plane of shear, were calculated from the Helmholtz--Smoluchowski equation. In the presence of 0.1 M lithium, sodium, ammonium, potassium, rubidium, cesium, tetraethylammonium, and tetramethylammonium chloride, the xi potentials were -60, -62, -72, -73, -77, -80, -82, and -91 mV, respectively. Similar results were obtained with phosphatidylglycerol vesicles; different results were obtained with cardiolipin, phosphatidylinositol, and phosphatidic acid vesicles. The phosphatidylserine results are interpreted in terms of the Stern equation, a combination of the Gouy equation from the theory of the diffuse double layer, the Boltzmann relation, and the Langmuir adsorption isotherm. Evidence is presented that suggests the hydrodynamic plane of shear is 2 A from the surface of the membrane in solutions containing the alkali metal cations. With this assumption, the intrinsic association constants of the above monovalent cations with phosphatidylserine are 0.8, 0.6, 0.17, 0.15, 0.08, 0.05, 0.03, and 0 M-1, respectively. The validity of this approach was tested in two ways. First, the xi potentials of vesicles formed from mixtures of phosphatidylserine and a zwitterionic lipid, phosphatidylcholine, were measured in solutions containing different concentrations of sodium. All the data could be described by the Stern equation if the "relaxation" of the ionic atmosphere, which is predicted by classic electrostatic and hydrodynamic theory to occur at low salt concentrations and high potentials, was circumvented by using only large (diameter greater than 13 micrometers) vesicles for these measurements. Second, the fluorescent probe 2-(p-toluidinyl)naphthalene-6-sulfonate was used to estimate the potential at the surface of phosphatidylserine and phosphatidylglycerol vesicles sonicated in 0.1 M NaCl. Reasonable agreement with the predicted values of the surface potential was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号