首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
F. Yildiz    P. Kinay    M. Yildiz    F. Sen    I. Karacali 《Journal of Phytopathology》2005,153(2):94-98
In this study, an integrated approach was evaluated for the control of postharvest decays of mandarin including some pre‐ and post‐harvest treatments under storage conditions. The efficacy of the treatments both as alone and in combination was evaluated during 3 years. Preharvest application of benomyl resulted in significantly less decay of mandarin fruit after storage in 3‐year tests. Calcium chloride (CaCl2), 2,4‐dichlorophenoxyacetic acid (2,4‐D) and gibberellic acid (GA3) as stand‐alone treatments or combinations were not effective in controlling Penicillium and total decay infections on inoculated mandarin. Postharvest application of imazalil (200 μg/ml) in solution heated to 54°C for controlling postharvest green and total decay of mandarin was significantly effective for 3 months under storage conditions. The biocontrol activity of yeast (Metschnikowia pulcherrima) was improved when yeast treatment was combined with imazalil (200 μg/ml) at postharvest. The data suggest that preharvest application of benomyl and postharvest treatments of imazalil, hot water and yeast may reduce postharvest green mould and total decay of mandarin under storage conditions.  相似文献   

2.
This study aims to evaluate the efficacy of hot water and chitosan treatments to control green mould caused by Penicillium digitatum in 'Murcott' tangor. P. digitatum conidial germination and mycelial growth were evaluated in assays in vitro to verify whether chitosan (0.5, 1 and 2%) or hot water (45, 50, and 55°C, for 30 s, 1, 2, and 5 min) acts directly on fungus development. In vivo assays consisted of inoculating the fruit with P. digitatum (105 conidia ml−1) 4 hr before the chitosan and hot water treatments. Subsequently, green mould incidence and severity were evaluated in fruits stored at 25°C/80% RH for 4 days. Also, treatments combining chitosan and hot water were investigated for controlling green mould and the effect on postharvest quality of fruit stored at 5°C/90% RH. The results showed that P. digitatum conidia germination and mycelial growth were significantly reduced by the hot water treatments especially at 50°C/5 min and 55°C/2 or 5 min in the first case and 50 and 55°C/5 min in the second. These two treatments, when applied alone, 1 min dipping in 2% chitosan or hot water at 50°C/5 min, significantly reduced green mould development in fruit kept at 25°C/80% RH or refrigerated. However, the hot water dip combined with chitosan did not improve green mould control on ‘Murcott’ tangor at room temperature or under refrigeration. Besides, chitosan and hot water did not impair fruit quality. Thus, chitosan and hot water could be an alternative to synthetic fungicides to control green mould in citrus while also contributing to a decrease in the postharvest losses of ‘Murcott’ tangor.  相似文献   

3.
Sequential sampling programs for the management of Oriental tobacco budworm, Helicoverpa assulta (Guenee), on red hot peppers were developed using the data of damaged pepper fruits by H. assulta. Taylor's power law indicated that the damaged pepper fruits were distributed randomly in hot pepper fields. A fixed-precision-level sequential sampling plan for classifying fruit damage density levels at a critical density of 2 damaged fruits per plant was developed to assist in decision making. The sequential classification sampling plan was evaluated using the operating characteristic (OC) and the average sample size (ASN) curves. The OC and ASN curves indicated that this sampling plan was robust and properly classified the population density. A resampling simulation demonstrated that average actual sampling precision value at D = 0.25 was ≤ 0.25. With sequential sampling for classifying the damaged fruit levels in terms of a critical density, sample size was fixed to 18 plants. The fixed-precision-level sequential sampling plan developed in this study should greatly enhance the monitoring efficacy and provide practical solutions suitable for reliable decision-making process in the management of H. assulta.  相似文献   

4.
Abstract

Effect of modified atmospheres (MAs) containing CO2 at 20, 40, 60 and 80% or containing N2 at 97 and 98% on the mortality of Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) sixth instar larvae was studied to determine the LT values at 30?°C. The respiration rates of untreated and treated larvae with 60% CO2 and/or 98% N2 at LT50 were measured using Q-Box RP1LP low range respirometry package. Total protein and triglycerides of treated and untreated larvae were assayed. Complete larval mortality was recorded after 72 and 144?h of treatment with 60% CO2 and 98% N2, respectively. Calculated LT50 values were 39.3 at 60% CO2 and 87.5?h at 98% N2 MAs. Respiration quotient (RQ) in the light of consumed O2 and produced CO2 of untreated larvae was 1.0 while it was 0.85 at 60% CO2 and 0.72 at 98% N2. Duration time necessary for produced CO2 curve to reach the maximum point (2000?ppm) was significantly shorter at untreated larvae (27.64?min) in comparison with that recorded at CO2 (35.48?min) which also significantly less than that obtained at N2 (98.54?min). At all treatments, total protein was decreased while triglycerides were increased in comparison with control.  相似文献   

5.
Fruit of soursop, Annona muricata L., showed increased CO2 production 2 days after harvest, preceding the respiratory increase that coincided with autocatalytic ethylene evolution and other ripening phenomena. Experiments to alter gas exchange patterns of postharvest fruit parts and tissue cylinders had little success.

The respiratory quotient of tissue discs was near unity throughout development. 2,4-Dinitrophenol uncoupled respiration more effectively than carbonylcyanide m-chlorophenylhydrazone; 0.4 millimolar KCN stimulated, 4 millimolar salicylhydroxamic acid slightly inhibited, and their combination strongly inhibited respiration, as did 10 millimolar NaN3. Tricarboxylic acid cycle members and ascorbate were more effective substrates than sugars, but acetate and glutarate strongly inhibited.

Disc respiration showed the same early peak as whole fruit respiration; this peak is thus an inherent characteristic of postharvest development and cannot be ascribed to differences between ovaries of the aggregatetype fruit. The capacity of the respiratory apparatus did not change during this preclimacteric peak, but the contents of rate-limiting malate and citrate increased after harvest.

It is concluded that the preclimacteric rise in CO2 evolution reflects increased mitochondrial respiration because of enhanced supply of carboxylates as a substrate, probably induced by detachment from the tree. The second rise corresponds with the respiration during ripening of other climacteric fruits.

  相似文献   

6.
Horticultural crop production and changes in physiological aspects during the growing season may be affected by climate change factors (CC), which include increased temperature and the associated doubling or tripling of atmospheric CO2 concentrations. However, the potential effects are complex and many parameters might impact on the observed effects. To evaluate the effects of CC, the growth, yield, fruit characteristics, photosynthetic traits, and morphological characteristics of hot peppers were investigated. The hot peppers were grown under two CC scenarios, with the Representative Concentration Pathway (RCP) of 4.5 (Temp.; +3.4°C, CO2 conc.; 540 μmol/mol, Precipitation +17.3%) and RCP 8.5 (Temp.; +6.0°C and CO2 conc.; 940 μmol/mol, Precipitation +20.3%), respectively, using extreme weather simulators. This was compared with existing weather conditions occurring in Jeonju, South Korea in terms of air temperature, relative humidity, radiation, and precipitation. Overall, the plant height showed the highest under moderate CC conditions (RCP 4.5) among all the treatments tested. The number of leaves in the RCP 8.5 condition showed 7,739/plants, which was 2.2 times higher than that of the control. In addition, fruit shape was shortened and percentage dry matter was also the highest. The yield of hot pepper in the CC RCP 4.5 and 8.5 conditions were decreased by 21.5% and 89.2% when compared with that of the control, respectively. The days to harvest in the condition of CC scenarios were shortened from 5 to 13 compared with that of control, predominantly due to the increased air temperature. The results indicated that the severe RCP CC scenarios made reduction in the yields and negative affection on the fruit qualities. Overall, hot pepper was tolerant of mild CC scenarios of temperature × CO2 but was significantly affected by more extreme CC interacting parameter concentrations (or similar).  相似文献   

7.
Liu Z  Scheirs J  Heckel DG 《Oecologia》2012,168(2):459-469
Much attention has been paid to the question of the relative importance of female behaviour versus larval feeding capacities in determining the host range of herbivorous insects. Host-use trade-offs displayed by generalist and specialist sister species of the genus Helicoverpa were evaluated to examine the relationship between maternal choice and offspring performance. The prediction of optimal oviposition theory, that females will choose to lay eggs on plants on which their offspring perform best as larvae, was tested by measuring oviposition preference and larval performance of Helicoverpa armigera and H. assulta on tobacco, sunflower, and hot pepper. These two measures were more highly correlated in the specialist H. assulta. Both species exhibited the same oviposition preference ranking: tobacco > sunflower > hot pepper. H. armigera larvae preferred sunflower, followed by tobacco and hot pepper; while H. assulta larvae preferred tobacco to sunflower and hot pepper, consistent with their mothers’ oviposition preference. Duration of the total period from egg to adult emergence for each species was significantly shorter on the host plant preferred by the larvae. H. assulta had shorter larval duration and higher relative growth rate than H. armigera on tobacco and hot pepper, and vice versa for sunflower, indicating species differences in host utilization. Thus, while only the specialist H. assulta displayed the predicted optimal oviposition pattern, females of both species show the least preference for the plant on which their offspring perform worst. Selection for optimal oviposition may be stronger on the specialist, which has fewer choices and lower lifetime fecundity than the generalist.  相似文献   

8.
The CO2 production of individual larvae of Apis mellifera carnica, which were incubated within their cells at a natural air humidity of 60–80%, was determined by an open-flow gas analyzer in relation to larval age and ambient temperature. In larvae incubated at 34 °C the amount of CO2 produced appeared to fall only moderately from 3.89±1.57 µl mg–1 h–1 in 0.5-day-old larvae to 2.98±0.57 µl mg–1 h–1 in 3.5-day-old larvae. The decline was steeper up to an age of 5.5 days (0.95±1.15 µl mg–1 h–1). Our measurements show that the respiration and energy turnover of larvae younger than about 80 h is considerably lower (up to 35%) than expected from extrapolations of data determined in older larvae. The temperature dependency of CO2 production was determined in 3.5-day-old larvae, which were incubated at temperatures varying from 18 to 38 °C in steps of 4 °C. The larvae generated 0.48±0.03 µl mg–1 h–1 CO2 at 18 °C, and 3.97±0.50 µl mg–1 h–1 CO2 at 38 °C. The temperature-dependent respiration rate was fitted to a logistic curve. We found that the inflection point of this curve (32.5 °C) is below the normal brood nest temperature (33–36 °C). The average Q10 was 3.13, which is higher than in freshly emerged resting honeybees but similar to adult bees. This strong temperature dependency enables the bees to speed up brood development by achieving high temperatures. On the other hand, the results suggest that the strong temperature dependency forces the bees to maintain thermal homeostasis of the brood nest to avoid delayed brood development during periods of low temperature.Abbreviations m body mass - R rate of development or respiration - TI inflexion point of a logistic (sigmoid) curve - TL lethal temperature - TO temperature of optimum (maximum) developmentCommunicated by G. Heldmaier  相似文献   

9.
Tomato fruit (Lycopersicon esculentum Mill. var. V. R. Moscow) harvested at the mature green stage were ripened by treatments with ethylene, oxygen, and oxygen plus ethylene. Treatments were made under dark and light conditions. Ethylene increased the ripening and respiration rates of the tomatoes. The fruit treated with ethylene had a general increase in beta carotene and lycopene when compared with untreated controls. The per cent acid was variable from year to year in the fruit treated with ethylene. The fruit ripened in ethylene had higher concentrations of citric acid than did the untreated controls. Treatments with oxygen decreased the reducing sugars and at the high concentrations used, had no effect on the rate of lycopene synthesis. Light treatments increased the per cent acid, reducing sugars, and color of the ripened fruit. The increase in color was related to an increase in both beta carotene and lycopene. Light treatment seemed to decrease the respiration rate of the fruit not treated with ethylene. Studies usingC14O2 showed that this may be due to utilization of CO2 evolved from respiration by the green fruit in photosynthesis.  相似文献   

10.
Plant secondary compounds not only play an important role in plant defense, but have been a driving force for host adaptation by herbivores. Capsaicin (8-methyl-N-vanillyl-6-nonenamide), an alkaloid found in the fruit of Capsicum spp. (Solanaceae), is responsible for the pungency of hot pepper fruits and is unique to the genus. The oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae), is a specialist herbivore feeding on solanaceous plants including Capsicum annuum, and is one of a very few insect herbivores worldwide capable of feeding on hot pepper fruits. To determine whether this is due in part to an increased physiological tolerance of capsaicin, we compared H. assulta with another specialist on Solanaceae, Heliothis subflexa, and four generalist species, Spodoptera frugiperda, Heliothis virescens, Helicoverpa armigera, and Helicoverpa zea, all belonging to the family Noctuidae. When larvae were fed capsaicin-spiked artificial diet for the entire larval period, larval mortality increased in H. subflexa and H. zea but decreased in H. assulta. Larval growth decreased on the capsaicin-spiked diet in four of the species, was unaffected in H. armigera and increased in H. assulta. Food consumption and utilization experiments showed that capsaicin decreased relative consumption rate (RCR), relative growth rate (RGR) and approximate digestibility (AD) in H. zea, and increased AD and the efficiency of conversion of ingested food (ECI) in H. armigera; whereas it did not significantly change any of these nutritional indices in H. assulta. The acute toxicity of capsaicin measured by injection into early fifth instar larvae was less in H. assulta than in H. armigera and H. zea. Injection of high concentrations produced abdominal paralysis and self-cannibalism. Injection of sub-lethal doses of capsaicin resulted in reduced pupal weights in H. armigera and H. zea, but not in H. assulta. The results indicate that H. assulta is more tolerant to capsaicin than the other insects tested, suggesting that this has facilitated expansion of its host range within Solanaceae to Capsicum after introduction of the latter to the Old World about 500 years ago. The increased larval survival and growth due to chronic dietary exposure to capsaicin suggests further adaptation of H. assulta to that compound, the mechanisms of which remain to be investigated.  相似文献   

11.
Summary Carbon dioxide effluxes from plants, litter and soil were measured in two mixed-grassland sites in Saskatchewan, Canada. Ecosystems at both locations were dominated by Agropyron dasystachyum (Hook.) Scribn. Respiration rates of intact and experimentally-modified systems were measured in field chambers using alkali-absorption. Removal of green leaves, dead leaves, and litter from a wet sward reduced respiration to as low as 58% of the rate in an intact system. In a dry sward green shoots were the only significant above-ground source of CO2.Carbon dioxide effluxes from different parts of A. dasystachyum plants, and from soil samples were measured in laboratory vessels at 20° using alkali-absorption. Respiration of green leaves (1.46 mg CO2 g-1 h-1) was significantly higher than microbial respiration in moist, dead leaf samples (0.79 mg CO2 g-1 h-1) or litter (0.75 mg CO2 g-1 h-1). Microbial respiration in air-dried, dead plant material was very low. Average repiration rates of roots separated from soil cores (0.24 mg CO2 g-1 h-1) were lower than many values reported in the literature, probably because the root population sampled included inactive, suberized and senescent roots. Root respiration was estimated to be 17–26% of total CO2 efflux from intact cores.Laboratory data and field measurements of environmental conditions and plant biomass were combined in order to reconstruct the CO2 efflux from the shoot-root-soil system. Reconstructed rates were 1.3 to 2.3 times as large as field measured rates, apparently because of stimulation to respiration caused by the experimental manipulations. The standing dead and litter fractions contributed 26% and 23% of the total CO2 efflux in a wet sward. Both field-measured and reconstructed repiration values suggest that in situ decomposition of standing dead material under moist conditions can be a significant part of carbon balance in mixed grassland.  相似文献   

12.
Summary Dark respiration and photosynthetic carbon dioxide refixation in purple and green Picea abies cones were investigated from budbreak to cone maturity. The rate of dark respiration per unit dry weight and CO2 refixation capacity decreased during cone maturation. At the beginning of the growing season, photosynthetic CO2 refixation could reduce the amount of CO2 released by respiration in green and purple cones by 50% and 40%, respectively. The seasonal performance of the components of the cone carbon balance was calculated using information on the seasonal course of respiration, refixation capacity and the light response curves of cone photosynthesis, as well as the actual light and temperature regime in the field. The daily gain of CO2 refixation reached 28%–34% of respiration in green and 22%–26% in purple cones during the first month of their growth, but decreased later in the season. Over the entire growth period refixation reduced carbon costs of cone production in both cone colour polymorphs by 16%–17%.  相似文献   

13.
The daily variations in the in situ CO2 exchange of the reproductive organs of Durio zibethinus trees, growing in an experimental field at University Putra Malaysia (UPM), were examined at different growth stages. Reproductive organs emerged on the leafless portions of branches inside the crown. The photon flux densities (PFD) in the chambers used for the measurements were less than 100 mol m–2 s–1 and were 40% of the PFD outside of the crown. The daytime net respiration rate and the nighttime dark respiration rate were higher at the time of flower initiation and during the mixed stages, when flower buds, flowers, and fruit coexist, than at the flower bud stage. The net respiration rate was lower than the daytime dark respiration rate at given temperatures, especially at the flower bud and fruit stages. Conversely, the net respiration rate was similar to the daytime dark respiration rate at the mixed stage. Photosynthetic CO2 refixation reduced the daily respiratory loss by 17, 5, 0.3, and 24% at the flower bud, flower initiation, mixed, and fruit stages, respectively.  相似文献   

14.
The β-carbonic anhydrases (β-CAs) are a diverse but structurally related group of zinc-metalloenzymes found in eubacteria, plant chloroplasts, red and green algae, and in the Archaea. The enzyme catalyzes the rapid interconversion of CO2 and H2O to HCO3 and H+, and is believed to be associated with metabolic enzymes that consume or produce CO2 or HCO3. For many organisms, β-CA is essential for growth at atmospheric concentrations of CO2. Of the five evolutionarily distinct classes of carbonic anhydrase, β-CA is the only one known to exhibit allosterism. Here we review the structure and catalytic mechanism of β-CA, including the structural basis for allosteric regulation.  相似文献   

15.
Development, survivorship, pupal weight, oviposition, and life table parameters of the oriental tobacco budworm, Helicoverpa assulta Guenée, were evaluated in the laboratory on an artificial diet, pepper (Capsicum frutescens L.), and tobacco (Nicotiana tobacum L.). We found that the average developmental time of immature stages was longest on tobacco (36.2 d), intermediate on pepper (34.4 d), and shortest on artificial diet (33.5 d). Immature survival from egg to pupa varied from 31% on tobacco, 43% on pepper, and 74% on artificial diet. Pupal weight ranged from 197.4 mg/pupa on tobacco, 233.1 mg/pupa on pepper and 253.4 mg/pupa on artificial diet. The average numbers of eggs laid by adults reared as larvae on the artificial diet, pepper, or tobacco were 614, 421 and 334 eggs/female, respectively. Numbers of remaining eggs in ovaries of the adult females reared as larvae on the artificial diet, pepper, or tobacco were 16, 26, and 42 eggs/female, respectively. The longevity of adult females developed from larvae reared on the three diets was not significantly different, whereas the longevity of male adults from the larvae reared on artificial diet was longer (16.8 d) than that for males reared on tobacco (13.8 d) and pepper (13.3 d). The intrinsic, finite, gross, and net rates of increase were highest for females reared as larvae on artificial diet, lowest for females emerging from larvae reared on tobacco, and intermediate for females emerging from larvae reared on pepper. Generation times and doubling time of H. assulta were shortest for larvae fed artificial diet, intermediate from larvae reared on pepper, and longest from larvae reared on tobacco. We concluded that the artificial diet was the most suitable larval diet of H. assulta followed by pepper, and tobacco.  相似文献   

16.
Gas exchange studies were conducted on two shrub species found in cool shrub-steppe communities of the American West, big sagebrush (Artemisia tridentata subsp. tridentata Nutt.) and broom snakeweed (Gutierrezia sarothrae [Pursh] Britt. and Rusby), with a goal of evaluating characteristics and relative contributions of green stem and leaf material to total shoot CO2 exchange at different temperatures. Variations in tissue temperature exerted a pronounced effect on CO2 exchange—net photosynthesis and dark respiration—of green stems and leaves of both species. Definite temperature optima of net photosynthesis were noted, and dark respiration rates consistently increased with increases in temperature. Green stems of both species exhibited sizable dark respiration rates, although stem rates at all temperatures were lower than corresponding leaf rates. Artemisia tridentata did not exhibit sizeable green stem net photosynthesis even under conditions of optimal temperature and water availability, and leaf net photosynthesis rates were much lower than those of G. sarothrae. However, A. tridentata in general possessed a greater leaf biomass than G. sarothrae. Green stems of G. sarothrae exhibited considerable rates of net photosynthesis under both optimal and sub-optimal temperature and water availability conditions. A higher optimum temperature of net photosynthesis was noted for stems than for leaves of G. sarothrae. The adaptive significance of these interspecific differences in CO2 exchange characteristics is discussed.  相似文献   

17.
An understanding of fruit gas exchange is necessary to determine the carbon balance in grapevines, but little attention has been paid to the relationships among fruit respiration, plant water status and genetic variability. The effect of plant water status and genotype on cluster respiration was studied over two seasons (2013 and 2014) under field conditions using a whole cluster respiration chamber. Whole cluster CO2 fluxes were measured in growing grapevines at hard-green, veraison and ripening stages under irrigated and non-irrigated conditions, and under light and dark conditions in two grapevine varieties, Tempranillo and Grenache. A direct relationship between cluster CO2 efflux and plant water status was found at hard-green stage. Genotype influenced the fruit CO2 efflux that resulted in higher carbon losses in Tempranillo than in Grenache. Fruit respiration rates decreased from the first berry developmental stages to ripening stage. The integration of fruit respiration rates under light and dark conditions showed the magnitude of fruit carbon losses and gains as well as interesting variety and environmental conditions effects on those processes.  相似文献   

18.
Summary The photosynthetic capacity and carbon metabolism of the fruits of Isomeris arborea (Capparidaceae), an evergreen shrub endemic to the desert and coastal habitats of Southern California and Baja California, are described. The inflated structure of the pods of I. arborea provides a model system for experimental studies of fruit photosynthesis in native plants since the gas concentration of the internal space can be manipulated and monitored separately from the external pod environment. CO2 released by seed respiration is partially contained in the inner gas space of the pods, resulting in an elevated CO2 environment inside the fruit (500 to 4000 mol mol–1 depending on the stage of fruit development). A portion of this CO2 is assimilated by the inner layers of the pericarp, but a larger fraction leaks out. The photosynthetic layers of the pericarp use two different sources of CO2: the exocarp fixes exogenous CO2 while the endocarp fixes CO2 released by seed respiration into the pod cavity. Even though the total weight of the fruit increases during development, the combined rates of fixation of externally and internally supplied CO2 remained constant (10–11 mol CO2 pod–1 h–1). After the pods attain maximum volume, the major change in gas exchange that takes place during fruit growth is a gradual increase in the amount of respiratory CO2 released by the seeds. This shifts the CO2 balance of the fruit from positive, in young fruits, to negative in mature fruits. Pericarp photosynthesis helped support not only the cost of fruit maintenance, but also the cost of fruit growth, particularly during the first stages of fruit development. During later fruiting stages insufficient carbon is fixed to fully supply either respiration or growth.  相似文献   

19.
Mature intact `Bartlett' pear fruit (Pyrus communis L.) were stored under a continuous flow of air or air + 10% CO2 for 4 days at 20°C. Fruit kept under elevated CO2 concentrations exhibited reduced respiration (O2 consumption) and ethylene evolution rates, and remained firmer and greener than fruit stored in air. Protein content, fructose 1,6-bisphosphate levels, and ATP:phosphofructokinase and PPi:phosphofructokinase activities declined, while levels of fructose 6-phosphate and fructose 2,6-bisphosphate increased in fruit exposed to air + 10% CO2. These results are discussed in light of a possible inhibitory effect of CO2 at the site of action of both phosphofructokinases in the glycolytic pathway, which could account, at least in part, for the observed reduction in respiration.  相似文献   

20.
The effect of ozone on the respiration of three species of adult stored-product Coleoptera was tested in an air-tight flask. Sitophilus oryzae (L.), Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst) adults were exposed to atmosphere containing 0.1, 0.2 or 0.4 μg/ml initial ozone at 23–25 °C and 50% r.h. Carbon dioxide (CO2) production reflected the respiration rates of insects and was determined with a gas chromatograph (GC). The experiments showed that the effects of ozone on respiration had two distinct phases. Phase 1 involved a lower respiration rate of the adult stored-product Coleoptera under ozone atmosphere and reflected the need for insects to reduce ozone toxicity. After 1 h, CO2 production of S. oryzae was 3.19, 2.63, 2.27 and 1.99 μl/mg for the ozone concentration of 0, 0.1, 0.2 and 0.4 μg/ml, respectively. The results also showed that there were decreases in the rate of respiration in R. dominica and T. castaneum with an increase in ozone concentration. During phase 2, respiration of S. oryzae, R. dominica, and T. castaneum adults treated with ozone increased as the ozone degraded to oxygen. After 7 h, the effect of ozone on CO2 production, relative to the control, changed from a decrease to an increase. The findings in relation to control strategies were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号