首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Repressor Activator Protein 1 (RAP1) of Saccharomyces cerevisiae is an abundant nuclear protein implicated in telomere length maintenance, transactivation, and in the establishment of silent chromatin domains. The RAP1 binding site 5' of the yeast HIS4 gene is also a region of hyperrecombination in meiosis. We report here that as RAP1 binds its recognition consensus, it appears to untwist double-stranded DNA, which we detect as the introduction of a negative supercoil in circularization assays. Coincident with the RAP1-dependent untwisting, we observe stimulation of the association of a single-stranded yeast telomeric sequence with its homologous double-stranded sequence in a supercoiled plasmid. This unusual distortion of the DNA double helix by RAP1 may contribute to the RAP1-dependent enhancement of recombination rates and promote non-duplex strand interactions at telomeres.  相似文献   

2.
C M Price  R Skopp  J Krueger  D Williams 《Biochemistry》1992,31(44):10835-10843
The 51-kDa telomere protein from Euplotes crassus binds to the extreme terminus of macronuclear telomeres, generating a very salt-stable telomeric DNA-protein complex. The protein recognizes both the sequence and the structure of the telomeric DNA. To explore how the telomere protein recognizes and binds telomeric DNA, we have examined the DNA-binding specificity of the purified protein using oligonucleotides that mimic natural and mutant versions of Euplotes telomeres. The protein binds very specifically to the 3' terminus of single-stranded oligonucleotides with the sequence (T4G4) > or = 3 T4G2; even slight modifications to this sequence reduce binding dramatically. The protein does not bind oligonucleotides corresponding to the complementary C4A4 strand of the telomere or to double-stranded C4A4.T4G4-containing sequences. Digestion of the telomere protein with trypsin generates an N-terminal protease-resistant fragment of approximately 35 kDa. This 35-kDa peptide appears to comprise the DNA-binding domain of the telomere protein as it retains most of the DNA-binding characteristics of the native 51-kDa protein. For example, the 35-kDa peptide remains bound to telomeric DNA in 2 M KCl. Additionally, the peptide binds well to single-stranded oligonucleotides that have the same sequence as the T4G4 strand of native telomeres but binds very poorly to mutant telomeric DNA sequences and double-stranded telomeric DNA. Removal of the C-terminal 15 kDa from the telomere protein does diminish the ability of the protein to bind only to the terminus of a telomeric DNA molecule.  相似文献   

3.
Mammalian telomeres consist of long tandem arrays of double-stranded telomeric TTAGGG repeats packaged by the telomeric DNA-binding proteins TRF1 and TRF2. Both contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In a DNA complex of TRF1, only the single Myb-like domain consisting of three helices can bind specifically to double-stranded telomeric DNA. TRF2 also binds to double-stranded telomeric DNA. Although the DNA binding mode of TRF2 is likely identical to that of TRF1, TRF2 plays an important role in the t-loop formation that protects the ends of telomeres. Here, to clarify the details of the double-stranded telomeric DNA-binding modes of TRF1 and TRF2, we determined the solution structure of the DNA-binding domain of human TRF2 bound to telomeric DNA; it consists of three helices, and like TRF1, the third helix recognizes TAGGG sequence in the major groove of DNA with the N-terminal arm locating in the minor groove. However, small but significant differences are observed; in contrast to the minor groove recognition of TRF1, in which an arginine residue recognizes the TT sequence, a lysine residue of TRF2 interacts with the TT part. We examined the telomeric DNA-binding activities of both DNA-binding domains of TRF1 and TRF2 and found that TRF1 binds more strongly than TRF2. Based on the structural differences of both domains, we created several mutants of the DNA-binding domain of TRF2 with stronger binding activities compared to the wild-type TRF2.  相似文献   

4.
Cdc13 is an essential protein from Saccharomyces cerevisiae that caps telomeres by protecting the C-rich telomeric DNA strand from degradation and facilitates telomeric DNA replication by telomerase. In vitro, Cdc13 binds TG-rich single-stranded telomeric DNA with high affinity and specificity. A previously identified domain of Cdc13 encompassing amino acids 451–694 (the 451–694 DBD) retains the single-stranded DNA-binding properties of the full-length protein; however, this domain contains a large unfolded region identified in heteronuclear NMR experiments. Trypsin digestion and MALDI mass spectrometry were used to identify the minimal DNA-binding domain (the 497–694 DBD) necessary and sufficient for full DNA-binding activity. This domain was completely folded, and the N-terminal unfolded region removed was shown to be dispensable for function. Using affinity photocrosslinking to site-specifically modified telomeric single-stranded DNA, the 497–694 DBD was shown to contact the entire 11mer required for high-affinity binding. Intriguingly, both domains bound single-stranded telomeric DNA with much greater affinity than the full-length protein. The full-length protein exhibited the same rate of dissociation as both domains, however, indicating that the full-length protein contains a region that inhibits association with single-stranded telomeric DNA.  相似文献   

5.
The E1 helicase of papillomaviruses is required for replication of the viral double-stranded DNA genome, in conjunction with cellular factors. DNA replication is initiated at the viral origin by the assembly of E1 monomers into oligomeric complexes that have unwinding activity. In vivo, this process is catalyzed by the viral E2 protein, which recruits E1 specifically at the origin. For bovine papillomavirus (BPV) E1 a minimal DNA-binding domain (DBD) has been identified N-terminal to the enzymatic domain. In this study, we characterized the DBD of human papillomavirus 11 (HPV11), HPV18, and BPV E1 using a quantitative DNA binding assay based on fluorescence anisotropy. We found that the HPV11 DBD binds DNA with an affinity and sequence requirement comparable to those of the analogous domain of BPV but that the HPV18 DBD has a higher affinity for nonspecific DNA. By comparing the DNA-binding properties of a dimerization-defective protein to those of the wild type, we provide evidence that dimerization of the HPV11 DBD occurs only on two appropriately positioned E1 binding-sites and contributes approximately a 10-fold increase in binding affinity. In contrast, the HPV11 E1 helicase purified as preformed hexamers binds DNA with little sequence specificity, similarly to a dimerization-defective DBD. Finally, we show that the amino acid substitution that prevents dimerization reduces the ability of a longer E1 protein to bind to the origin in vitro and to support transient HPV DNA replication in vivo, but has little effect on its ATPase activity or ability to oligomerize into hexamers. These results are discussed in light of a model of the assembly of replication-competent double hexameric E1 complexes at the origin.  相似文献   

6.
7.
TRF1 is a dimer and bends telomeric DNA.   总被引:25,自引:0,他引:25  
A Bianchi  S Smith  L Chong  P Elias    T de Lange 《The EMBO journal》1997,16(7):1785-1794
  相似文献   

8.
The essential protein Cdc13p binds the single-stranded telomeric 3' overhangs in Saccharomyces cerevisiae and takes part in the regulation of telomere length. The DNA-binding domain (DBD) of Cdc13p is structurally established by an oligonucleotide/oligosaccharide-binding (OB)-fold domain. The sequence homolog in Saccharomyces castellii (scasCDC13) was characterized previously, and the full-length protein was found to bind telomeric DNA specifically. Here, the DBD of scasCdc13p was defined to the central part (402-658) of the protein. The region necessary for forming the scasCdc13p-DBD is larger than the minimal DBD of S. cerevisiae Cdc13p. Deletion of this extended DBD region from the full-length protein completely abolished the DNA binding, indicating the importance of the extended region for the correct formation of a binding-competent DBD. The scasCdc13p-DBD bound the same 8-mer minimal binding site as the full-length protein, but an extension of the target site in the 3' end increased the stability of the DNA-protein complex. Significantly, scasCdc13p-DBD showed a retained high sequence specific binding, where the four nucleotides of most importance for the sequence specificity are highly conserved in eukaryotic telomeric repeats. Thus, the unique single-stranded DNA-binding properties of the full-length protein are entirely retained within the isolated scasCdc13p-DBD.  相似文献   

9.
In Saccharomyces cerevisiae, the Ku heterodimer contributes to telomere maintenance as a component of telomeric chromatin and as an accessory subunit of telomerase. How Ku binding to double-stranded DNA (dsDNA) and to telomerase RNA (TLC1) promotes Ku's telomeric functions is incompletely understood. We demonstrate that deletions designed to constrict the DNA-binding ring of Ku80 disrupt nonhomologous end-joining (NHEJ), telomeric gene silencing, and telomere length maintenance, suggesting that these functions require Ku's DNA end-binding activity. Contrary to the current model, a mutant Ku with low affinity for dsDNA also loses affinity for TLC1 both in?vitro and in?vivo. Competition experiments reveal that wild-type Ku binds dsDNA and TLC1 mutually exclusively. Cells expressing the mutant Ku are deficient in nuclear accumulation of TLC1, as expected from the RNA-binding defect. These findings force reconsideration of the mechanisms by which Ku assists in recruiting telomerase to natural telomeres and broken chromosome ends. PAPERCLIP:  相似文献   

10.
Activation of poly(ADP-ribose) polymerase-1 (PARP-1) is an immediate cellular reaction to DNA strand breakage as induced by alkylating agents, ionizing radiation, or oxidants. The resulting formation of protein-bound poly(ADP-ribose) facilitates survival of proliferating cells under conditions of DNA damage probably via its contribution to DNA base excision repair. In this study, we investigated the association of the amino-terminal DNA binding domain of human PARP-1 (hPARP-1 DBD) with a 5' recessed oligonucleotide mimicking a telomeric DNA end. We used the fluorescence of the Trp residues naturally occurring in the zinc finger domain of hPARP-1 DBD. Fluorescence intensity and fluorescence anisotropy measurements consistently show that the binding stoichiometry is two proteins per DNA molecule. hPARP-1 was found to bind the 5' recessed DNA end with a binding constant of approximately 10(14) M(-2) if a cooperative binding model is assumed. These results indicate that hPARP-1 DBD dimerizes during binding to the DNA target site. A footprint experiment shows that hPARP-1 DBD is asymmetrically positioned at the junction between the double-stranded and the single-stranded telomeric repeat. The largest contribution to the stability of the complex is given by nonionic interactions. Moreover, time-resolved fluorescence measurements are in line with the involvement of one Trp residue in the stacking interaction with DNA bases. Taken together, our data open new perspectives for interpretation of the selective binding of hPARP-1 to the junction between double- and single-stranded DNA.  相似文献   

11.
We have identified a rice gene encoding a DNA-binding protein that specifically recognizes the telomeric repeat sequence TTTAGGG found in plants. This gene, which we refer to as RTBP1 (rice telomere-binding protein 1), encodes a polypeptide with a predicted molecular mass of 70 kDa. RTBP1 is ubiquitously expressed in various organs and binds DNA with two or more duplex TTTAGGG repeats. The predicted protein sequence includes a single domain at the C terminus with extensive homology to Myb-like DNA binding motif. The Myb-like domain of RTBP1 is very closely related to that of other telomere-binding proteins, including TRF1, TRF2, Taz1p, and Tbf1p, indicating that DNA-binding domains of telomere-binding proteins are well conserved among evolutionarily distant species. To obtain precise information on the sequence of the DNA binding site recognized by RTBP1, we analyzed the sequence-specific binding properties of the isolated Myb-like domain of RTBP1. The isolated Myb-like domain was capable of sequence-specific DNA binding as a homodimer. Gel retardation analysis with a series of mutated telomere probes revealed that the internal GGGTTT sequence in the two-telomere repeats is critical for binding of Myb-like domain of RTBP1, which is consistent with the model of the TRF1.DNA complex showing that base-specific contacts are made within the sequence GGGTTA. To the best of our knowledge, RTBP1 is the first cloned gene in which the product is able to bind double-stranded telomeric DNA in plants. Because the Myb-like domain appears to be a significant motif for a large class of proteins that bind the duplex telomeric DNA, RTBP1 may play important roles in plant telomere function in vivo.  相似文献   

12.
Truncated sequences of human telomeric DNA can readily assemble to form parallel stranded quadruplexes containing A- and G-tetrads. The formation of an A-tetrad is highly context-dependent and the relationship between the formation of an A-tetrad and the glycosidic torsion angle of the adenosine residues implicated has not been completely clarified so far. In order to give a further insight in this issue we synthesized the modified oligomers d(ABrGGGT) and d(TABrGGGT), two different truncations of the human telomeric sequence containing a 8-bromoadenosine residue, named ABr. NMR data show that both the modified oligomers are able to perfectly fold into highly symmetric quadruplexes with all strands parallel to each other. Molecular modeling studies were performed on both [d(ABrGGGT)]4 and [d(TABrGGGT)]4, indicating that a bulky substituent, such as a bromine atom at the C8 position of adenines, can force the glycosidic bond to adopt a syn conformation, stabilizing the resulting quadruplexes.  相似文献   

13.
Telomeres are the specialized structures at the end of linear chromosomes and terminate with a single-stranded 3' overhang of the G-rich strand. The primary role of telomeres is to protect chromosome ends from recombination and fusion and from being recognized as broken DNA ends. This protective function can be achieved through association with specific telomere-binding proteins. Although proteins that bind single-stranded G-rich overhang regulate telomere length and telomerase activity in mammals and lower eukaryotes, equivalent factors have yet to be identified in plants. Here we have identified proteins capable of interacting with the G-rich single-stranded telomeric repeat from the Arabidopsis extracts by affinity chromatography. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis indicates that the isolated protein is a chloroplast RNA-binding protein (and a truncated derivative). The truncated derivative, which we refer to as STEP1 (single-stranded telomere-binding protein 1), binds specifically the single-stranded G-rich plant telomeric DNA sequences but not double-stranded telomeric DNA. Unlike the chloroplast-localized full-length RNA-binding protein, STEP1 localizes exclusively to the nucleus, suggesting that it plays a role in plant telomere biogenesis. We also demonstrated that the specific binding of STEP1 to single-stranded telomeric DNA inhibits telomerase-mediated telomere extension. The evidence presented here suggests that STEP1 is a telomere-end binding protein that may contribute to telomere length regulation by capping the ends of chromosomes and thereby repressing telomerase activity in plants.  相似文献   

14.
Bacillus subtilis LrpC is a sequence-independent DNA-binding and DNA-bending protein, which binds both single-stranded (ss) and double-stranded (ds) DNA and facilitates the formation of higher order protein–DNA complexes in vitro. LrpC binds at different sites within the same DNA molecule promoting intramolecular ligation. When bound to separate molecules, it promotes intermolecular ligation, and joint molecule formation between a circular ssDNA and a homologous ssDNA-tailed linear dsDNA. LrpC binding showed a higher affinity for 4-way (Holliday) junctions in their open conformation, when compared with curved dsDNA. Consistent with these biochemical activities, an lrpC null mutant strain rendered cells sensitive to DNA damaging agents such as methyl methanesulfonate and 4-nitroquinoline-1-oxide, and showed a segregation defect. These findings collectively suggest that LrpC may be involved in DNA transactions during DNA repair and recombination.  相似文献   

15.
The double-stranded telomeric repeat-binding protein (TRP) AtTRP1 is isolated from Arabidopsis thaliana. Using gel retardation assays, we defined the C-terminal 97 amino acid residues, Gln464 to Val560 (AtTRP1(464-560)), as the minimal structured telomeric repeat-binding domain. This region contains a typical Myb DNA-binding motif and a C-terminal extension of 40 amino acid residues. The monomeric AtTRP1(464-560) binds to a 13-mer DNA duplex containing a single repeat of an A.thaliana telomeric DNA sequence (GGTTTAG) in a 1:1 complex, with a K(D) approximately 10(-6)-10(-7) M. Nuclear magnetic resonance (NMR) examination revealed that the solution structure of AtTRP1(464-560) is a novel four-helix tetrahedron rather than the three-helix bundle structure found in typical Myb motifs and other TRPs. Binding of the 13-mer DNA duplex to AtTRP1(464-560) induced significant chemical shift perturbations of protein amide resonances, which suggests that helix 3 (H3) and the flexible loop connecting H3 and H4 are essential for telomeric DNA sequence recognition. Furthermore, similar to that in hTRF1, the N-terminal arm likely contributes to or stabilizes DNA binding. Sequence comparisons suggested that the four-helix structure and the involvement of the loop residues in DNA binding may be features unique to plant TRPs.  相似文献   

16.
Proteins promoting homologous pairing could be involved in various fundamental biological processes. Previously we detected two mammalian nuclear proteins of 100 and 75 kDa able to promote homologous DNA pairing. Here we report isolation and characterisation of the human (h) 100-kDa DNA-pairing protein, hPOMp100, from HeLa nuclei. The peptide sequences of hPOMp100 revealed identity to the human splicing factor PSF and a DNA-binding subunit of p100/p52 heterodimer of unknown function. Bacterially expressed PSF promotes DNA pairing identical to that of hPOMp100. hPOMp100/PSF binds not only RNA but also both single-stranded (ss) and double-stranded (ds) DNA and facilitates the renaturation of complementary ssDNAs. More important, the protein promotes the incorporation of a ss oligonucleotide into a homologous superhelical dsDNA, D-loop formation. A D-loop is the first heteroduplex DNA intermediate generated between recombining DNA molecules. Moreover, this reaction could be implicated in re-establishing stalled replication forks. Consistent with this hypothesis, DNA-pairing activity of hPOMp100/PSF is associated with cellular proliferation. Significantly, phosphorylation of hPOMp100/PSF by protein kinase C inhibits its binding to RNA but stimulates its binding to DNA and D-loop formation and may represent a regulatory mechanism to direct this multifunctional protein to DNA metabolic pathways.  相似文献   

17.
beta-d-Glucosylhydroxymethyluracil, also called base J, is an unusual modified DNA base conserved among Kinetoplastida. Base J is found predominantly in repetitive DNA and correlates with epigenetic silencing of telomeric variant surface glycoprotein genes. We have previously found a J-binding protein (JBP) in Trypanosoma, Leishmania, and Crithidia. We have now characterized the binding properties of recombinant JBP from Crithidia using synthetic J-DNA substrates that contain the glycosylated base in various DNA sequences. We find that JBP recognizes base J only when presented in double-stranded DNA but not in single-stranded DNA or in an RNA:DNA duplex. It also fails to interact with free glucose or free base J. JBP is unable to recognize nonmodified DNA or intermediates of J synthesis, suggesting that JBP is not directly involved in J biosynthesis. JBP binds J-DNA with high affinity (K(d) = 40-140 nm) but requires at least 5 bp flanking the glycosylated base for optimal binding. The nature of the flanking sequence affects binding because J in a telomeric sequence binds JBP with higher affinity than J in another sequence known to contain J in trypanosome DNA. We conclude that JBP is a structure-specific DNA-binding protein. The significance of these results in relation to the biological role and mechanism of action of J modification in kinetoplastids is discussed.  相似文献   

18.
Telomere integrity is essential to maintain genome stability, and telomeric dysfunctions are associated with cancer and aging pathologies. In human, the shelterin complex binds TTAGGG DNA repeats and provides capping to chromosome ends. Within shelterin, RAP1 is recruited through its interaction with TRF2, and TRF2 is required for telomere protection through a network of nucleic acid and protein interactions. RAP1 is one of the most conserved shelterin proteins although one unresolved question is how its interaction may influence TRF2 properties and regulate its capacity to bind multiple proteins. Through a combination of biochemical, biophysical and structural approaches, we unveiled a unique mode of assembly between RAP1 and TRF2. The complete interaction scheme between the full-length proteins involves a complex biphasic interaction of RAP1 that directly affects the binding properties of the assembly. These results reveal how a non-DNA binding protein can influence the properties of a DNA-binding partner by mutual conformational adjustments.  相似文献   

19.
Truncated sequences of human telomeric DNA can readily assemble to form parallel stranded quadruplexes containing A- and G-tetrads. The formation of an A-tetrad is highly context-dependent and the relationship between the formation of an A-tetrad and the glycosidic torsion angle of the adenosine residues implicated has not been completely clarified so far. In order to give a further insight in this issue we synthesized the modified oligomers d(ABrGGGT) and d(TABrGGGT), two different truncations of the human telomeric sequence containing a 8-bromoadenosine residue, named ABr. NMR data show that both the modified oligomers are able to perfectly fold into highly symmetric quadruplexes with all strands parallel to each other. Molecular modeling studies were performed on both [d(ABrGGGT)]4 and [d(TABrGGGT)]4, indicating that a bulky substituent, such as a bromine atom at the C8 position of adenines, can force the glycosidic bond to adopt a syn conformation, stabilizing the resulting quadruplexes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号