首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calponin is an extensively studied actin-binding protein, but its function is not well understood. Among three isoforms of calponin, h2-calponin is found in both smooth muscle and non-muscle cells. The present study demonstrates that epidermal keratinocytes and fibroblast cells express significant amounts of h2-calponin. The expression of h2-calponin is cell anchorage-dependent. The levels of h2-calponin decrease when cells are rounded up and remain low when cells are prevented from adherence to a culture dish. h2-calponin expression resumes after the floating cells are allowed to form a monolayer in plastic dish. Cell cultures on polyacrylamide gels of different stiffness demonstrated that h2-calponin expression is affected by the mechanical properties of the culture matrix. When cells are cultured on soft gel that applies less traction force to the cell and, therefore, lower mechanical tension in the cytoskeleton, the level of h2-calponin is significantly lower than that in cells cultured on hard gel or rigid plastic dish. Force-expression of h2-calponin enhanced the resistance of the actin filaments to cytochalasin B treatment. Keratinocyte differentiation is accompanied by a mechanical tension-related up-regulation of h2-calponin. Lowering the tension of actin cytoskeleton by inhibiting non-muscle myosin II ATPase decreased h2-calponin expression. In contrast to the mechanical tension regulation of endogenous h2-calponin, the expression of h2-calponin using a cytomegalovirus promotor was independent of the stiffness of culture matrix. The results suggest that h2-calponin represents a novel manifestation of mechanical tension responsive gene regulation that may modify cytoskeleton function.  相似文献   

2.
Hossain MM  Smith PG  Wu K  Jin JP 《Biochemistry》2006,45(51):15670-15683
Calponin is an actin filament-associated regulatory protein, and its h2 isoform is expressed in lung alveolar epithelial cells under postnatal upregulation during lung development corresponding to the commencement of respiratory expansion. Consistent with this correlation to mechanical tension, the expression of h2-calponin in alveolar cells is dependent on substrate stiffness and cytoskeleton tension. The function of h2-calponin in the stability of actin cytoskeleton implicates a role in balancing the strength and compliance of alveoli. An interesting finding is a rapid degradation of h2-calponin in lung after prolonged deflation, which is prevented by inflation of the lung to the in situ expanded volume. Decreasing mechanical tension in cultured alveolar cells by reducing the dimension of culture matrix reproduced the degradation of h2-calponin. Inhibition of myosin II ATPase also resulted in the degradation of h2-calponin in alveolar cells, showing a determining role of the tension in the actin cytoskeleton. Alveolar cells statically cultured on silicon rubber membrane build high tension in the cytoskeleton corresponding to a high expression of h2-calponin. Chronic cyclic stretching of cells on the membrane did not increase but decreased the expression of h2-calponin. This finding suggests that when cellular structure adapts to the stretched dimension, cyclic relaxations periodically release cytoskeleton tension and lower the total amount of tension that the cell senses over time. Therefore, the isometric tension, other than tension dynamics, determines the expression of h2-calponin. The tension regulation of h2-calponin synthesis and degradation demonstrates a novel mechanical regulation of cellular biochemistry.  相似文献   

3.
h2-calponin is found in both smooth muscle and nonmuscle cells, and its function remains to be established. Western blots with specific monoclonal antibodies detected significant expression of h2-calponin in the growing embryonic stomach and urinary bladder and the early pregnant uterus. Although the expression of h1-calponin is upregulated in the stomach and bladder during postnatal development, the expression of h2-calponin is decreased to low levels in quiescent smooth muscle cells. To investigate a hypothesis that h2-calponin regulates the function of the actin cytoskeleton during cytokinesis, a smooth muscle-originated cell line (SM3) lacking calponin was transfected to express either sense or antisense h2-calponin cDNA and the effects on the rates of cell proliferation were examined. Both stable and transient sense cDNA-transfected cells had a significantly decreased proliferation rate compared with the antisense cDNA-transfected or nontransfected cells. Immunofluorescence microscopy showed that the force-expressed h2-calponin was associated with actin-tropomyosin microfilaments. The number of binuclear cells was significantly greater in the sense cDNA-transfected culture, in which h2-calponin was concentrated in a nuclear ring structure formed by actin filaments. The results suggest that h2-calponin may regulate cytokinesis by inhibiting the activity of the actin cytoskeleton.  相似文献   

4.
GPR84 is a recently de-orphanized member of the G-protein coupled receptor (GPCR) family recognizing medium chain fatty acids, and has been suggested to play important roles in inflammation. Due to the lack of potent and selective GPR84 ligands, the basic knowledge related to GPR84 functions is very limited. In this study, we have characterized the GPR84 activation profile and regulation mechanism in human phagocytes, using two recently developed small molecules that specifically target GPR84 agonistically (ZQ16) and antagonistically (GLPG1205), respectively. Compared to our earlier characterization of the short chain fatty acid receptor FFA2R which is functionally expressed in neutrophils but not in monocytes, GPR84 is expressed in both cell types and in monocyte-derived macrophages. In neutrophils, the GPR84 agonist had an activation profile very similar to that of FFA2R. The GPR84-mediated superoxide release was low in naïve cells, but the response could be significantly primed by TNFα and by the actin cytoskeleton disrupting agent Latrunculin A. Similar to that of FFA2R, a desensitization mechanism bypassing the actin cytoskeleton was utilized by GPR84. All ZQ16-mediated cellular responses were sensitive to GLPG1205, confirming the GPR84-dependency. Finally, our data of in vivo transmigrated tissue neutrophils indicate that both GPR84 and FFA2R are involved in neutrophil recruitment processes in vivo.In summary, we show functional similarities but also some important differences between GPR84 and FFA2R in human phagocytes, thus providing some mechanistic insights into GPR84 regulation in blood neutrophils and cells recruited to an aseptic inflammatory site in vivo.  相似文献   

5.
H2-calponin是一种肌动蛋白细胞骨架结合蛋白,在平滑肌细胞和一些非肌肉细胞中均有表达,并且在发育及重建的组织中高表达。H2-calponin作为一种机械应力的胞内应答因子,受机械应力调节,通过与细胞骨架F-肌动蛋白(F-actin)及多种粘着斑蛋白相互作用,参与细胞力学信号感受与传导,在调节细胞增殖、分化、迁移以及胞质分裂等生理活动中起着重要作用。本文在介绍H2-calponin生化特征的基础上,对其在细胞应力感受及力学信号转导中的作用做一综述。  相似文献   

6.
Previous studies have shown that fibronectin (Fn) enhances phagocytosis and killing of antibody-coated bacteria by neutrophils and macrophages. In an attempt to understand the mechanism of this enhancement, we have investigated the effects of Fn on phagocytosis-related actin organization as well as respiratory burst activity in neutrophils, monocytes and culture-derived macrophages. Employing an NBD-phallacidin flow cytometric analysis of filamentous actin formation, we found that Fn promotes rapid actin polymerization within 30 seconds in neutrophils, monocytes, and macrophages, but not lymphocytes. Enhancement of actin polymerization by Fn was concentration-dependent and mediated by a pertussis toxin- but not cholera toxin- sensitive G protein. Inhibition of protein kinase C by sphingosine (20 μM), calcium influx by verapamil (0.1 mM), or intracellular calcium mobilization by 8-(N, N-diethyl-amino) octyl-3,4,5-trimethoxybenzoate HCI (TMB-8; 0.1 mM) did not block Fn-enhanced actin polymerization in phagocytes. Incubation of neutrophils and macrophages on microtiter plates precoated with Fn suppressed superoxide (O2?) production induced by IgG- and IgA- opsonized group B streptococci. In contrast, Fn significantly enhanced IgA- and IgG-mediated O2? production by freshly isolated monocytes. These data suggest that Fn enhances phagocytosis, presumably through G protein-coupled cytoskeleton reorganization and augments O2? production by circulating monocytes. In contrast, it appears to suppress O2? production by the active phagocytic cells, neutrophils and macrophages. This may result in enhanced phagocytosis and intracellular killing of microorganisms without damaging interstitial tissues. © 1994 Wiley-Liss, Inc.  相似文献   

7.
The CD11b/CD18 integrin (complement receptor 3, CR3) is a surface receptor on monocytes, neutrophils, macrophages and dendritic cells that plays a crucial role in several immunological processes including leukocyte extravasation and phagocytosis. The minor allele of a non-synonymous CR3 polymorphism (rs1143679, conversation of arginine to histidine at position 77: R77H) represents one of the strongest genetic risk factor in human systemic lupus erythematosus, with heterozygosity (77R/H) being the most common disease associated genotype. Homozygosity for the 77H allele has been reported to reduce adhesion and phagocytosis in human monocytes and monocyte-derived macrophages, respectively, without affecting surface expression of CD11b. Herein we comprehensively assessed the influence of R77H on different CR3-mediated activities in monocytes, neutrophils, macrophages and dendritic cells. R77H did not alter surface expression of CD11b including its active form in any of these cell types. Using two different iC3b-coated targets we found that the uptake by heterozygous 77R/H macrophages, monocytes and neutrophils was significantly reduced compared to 77R/R cells. Allele-specific transduced immortalized macrophage cell lines demonstrated that the minor allele, 77H, was responsible for the impaired phagocytosis. R77H did not affect neutrophil adhesion, neutrophil transmigration in vivo or Toll-like receptor 7/8-mediated cytokine release by monocytes or dendritic cells with or without CR3 pre-engagement by iC3b-coated targets. Our findings demonstrate that the reduction in CR3-mediated phagocytosis associated with the 77H CD11b variant is not macrophage-restricted but demonstrable in other CR3-expressing professional phagocytic cells. The association between 77H and susceptibility to systemic lupus erythematosus most likely relates to impaired waste disposal, a key component of lupus pathogenesis.  相似文献   

8.
9.
IL-4 abrogates the IFN-gamma-mediated activation of peripheral blood monocytes (M. Lehn, W. Y. Weiser, S. E. Engelhorn, S. Gillis, and H. G. Remold, 1989, J. Immunol. 143, 3020). In contrast, in colostral macrophages IL-4 fails to inhibit IFN-gamma-induced increase of H2O2 production and of antileishmanial activity. Flow cytometric analysis shows that the number of IL-4 receptors (IL-4R) is 2.4 times higher on colostral macrophages than on peripheral blood monocytes and that 23% of the colostral macrophages have detectable IL-4R in contrast to 2% of the blood monocytes. Thus, colostral macrophages are functionally different from peripheral blood monocytes in their response to IL-4 and in the numbers of IL-4R. This difference could reflect specific requirements for their protective performance in the neonatal intestine.  相似文献   

10.
Mice with a targeted truncation in the gene encoding tissue factor of blood coagulation (TF) to eliminate the cytosolic domain and carrying a neo(R) cassette in intron 5 unexpectedly displayed severe spontaneous thrombosis in various vascular beds. Thrombosis was observed in heterozygous TF(+/neo) mice, causing death of over 50% of adults within 36 weeks of birth, and fulminantly exacerbating in pregnant females. Homozygous TF(neo/neo) mice were more severely affected and died within 7 weeks after birth. These TF(neo) mice primarily synthesized a mutant mRNA aberrantly spliced from exon 5 to neo(R), encoding an apparently non-vesicle-binding soluble TF lacking both the transmembrane and cytosolic domain, but still capable of blood coagulation induction. This severe thrombotic phenotype associated with the presence of a non-anchored soluble TF variant underscores the recently recognized significance of circulating TF for thrombus formation and development.  相似文献   

11.
Phagocytosis and the microbicidal functions of neutrophils require dynamic changes of the actin cytoskeleton. We have investigated the role of gelsolin, a calcium-dependent actin severing and capping protein, in peripheral blood neutrophils from gelsolin-null (Gsn-) mice. The phagocytosis of complement opsonized yeast was only minimally affected. In contrast, phagocytosis of IgG-opsonized yeast was reduced close to background level in Gsn- neutrophils. Thus, gelsolin is essential for efficient IgG- but not complement-mediated phagocytosis. Furthermore, attachment of IgG-opsonized yeast to Gsn- neutrophils was reduced ( approximately 50%) but not to the same extent as ingestion ( approximately 73%). This was not due to reduced surface expression of the Fcgamma-receptor or its lateral mobility. This suggests that attachment and ingestion of IgG-opsonized yeast by murine neutrophils are actin-dependent and gelsolin is important for both steps in phagocytosis. We also investigated granule exocytosis and several steps in phagosome processing, namely the formation of actin around the phagosome, translocation of granules, and activation of the NADPH-oxidase. All these functions were normal in Gsn- neutrophils. Thus, the role of gelsolin is specific for IgG-mediated phagocytosis. Our data suggest that gelsolin is part of the molecular machinery that distinguishes complement and IgG-mediated phagocytosis. The latter requires a more dynamic reorganization of the cytoskeleton.  相似文献   

12.
13.
The role of the cytosolic domain of tissue factor (TF) in signal transduction and gene regulation was studied in mice with a targeted deletion of the 18 carboxy-terminal intracellular amino acids. This deletion was introduced in exon 6 along with a floxed neo(R) selection cassette in intron 5 using homologous recombination in embryonic stem cells. Removal of the floxed neo(R) cassette by in vivo Cre-mediated loxP recombination yielded TF(+/deltaCT) and TF(deltaCT/deltaCT) mice. In contrast to TF(-/-) mice, TF(+/deltaCT) and TF(deltaCT/deltaCT) mice displayed normal embryonic development, survival, fertility, and blood coagulation. Factor VIIa or factor Xa stimulation produced similar p44/42 MAPK activation in TF(+/+) and TF(deltaCT/deltaCT) fibroblasts. These data, based on expression of a TF(deltaCT) molecule from the endogenous TF locus, provide conclusive proof that the cytosolic domain of TF is not essential for signal transduction in embryogenesis and in physiological postnatal processes.  相似文献   

14.
Cell cycle checkpoints are evolutionarily conserved signaling pathways that uphold genomic integrity. Complete inactivation of the mouse checkpoint gene Hus1 results in chromosomal instability, genotoxin hypersensitivity, and embryonic lethality. To determine the functional consequences of partial Hus1 impairment, we generated an allelic series in which Hus1 expression was incrementally reduced by combining a hypomorphic Hus1 allele, Hus1(neo), with either wild-type or null (Hus1(Delta1)) alleles. Primary Hus1(neo/Delta1) embryonic fibroblasts exhibited spontaneous chromosomal abnormalities and underwent premature senescence, while higher Hus1 expression in Hus1(neo/neo) cells allowed for normal proliferation. Antioxidant treatment almost fully suppressed premature senescence in Hus1(neo/Delta1) cultures, suggesting a critical role for Hus1 in oxidative stress responses. Treatment of Hus1(neo/neo) and Hus1(neo/Delta1) cells with the DNA adducting agent benzo(a)pyrene dihydrodriol epoxide resulted in a loss of cell viability that was associated with S-phase DNA damage checkpoint failure. Likewise, the DNA polymerase inhibitor aphidicolin triggered increased cell death, chromosomal aberrations, and H2AX phosphorylation, a marker for double-stranded DNA breaks, in Hus1(neo/neo) and Hus1(neo/Delta1) cultures compared to controls. Despite these pronounced genome maintenance defects in cultured Hus1(neo/Delta1) and Hus1(neo/neo) cells, mice of the same genotypes were born at expected frequencies and appeared grossly normal. A significant increase in micronucleus formation was observed in peripheral blood cells from Hus1(neo/Delta1) mice, but reduced Hus1 expression did not cause an elevated predisposition to spontaneous tumor development or accelerate tumorigenesis in p53-deficient mice. These results identify differential effects of altered Hus1 gene dosage on genome maintenance during in vitro culture, genotoxic stress responses, embryonic development, and adult homeostasis.  相似文献   

15.
The mechanism of tissue injury at the cellular level by following the chemiluminescence response of various phagocytes in E. coli induced experimental pyelonephritis in mice was investigated. There was a marked increase in the capacity of various phagocytic cells viz; renal neutrophils and macrophages peritoneal macrophages, blood monocytes and neutrophils to produce reactive oxygens species through the respiratory burst activity as monitored by the chemiluminescence response. The chemiluminescence response was observed to be increased significantly (p less than 0.001) with increasing days post infection in all phagocytic cells. However, the quantity of total reactive oxygen species produced per million cells was much more in the renal and peritoneal macrophages as compared to blood monocytes and neutrophils. The peak chemiluminescence response time was observed to be decreased from 4 to 2 minutes with the progression of the diseases. The implications of these findings have been discussed.  相似文献   

16.
Highlights? Cnn2 is expressed in NCCs and required for their migration in frogs and chicks ? Cnn2 is inactivated by noncanonical Wnt signaling ? Loss of Cnn2 causes a switch from cortical actin to central stress fibers ? Cnn2 polarizes the actin cytoskeleton downstream of PCP  相似文献   

17.
Recent studies have shown that normal human alveolar macrophages and blood monocytes, as well as HL-60 and U937 monocyte cell lines, newly express IL-2R after stimulation with rIFN-gamma or LPS. In addition, macrophages transiently express IL-2R in vivo during immunologically mediated diseases such as pulmonary sarcoidosis and allograft rejection. We therefore investigated in vitro factors that modulate macrophage expression of IL-2R. IL-2R were induced on normal alveolar macrophages, blood monocytes, and HL-60 cells using rIFN-gamma (24 to 48 h at 240 U/ml), and cells were cultured for an additional 12 to 24 h with rIL-2 (100 U/ml), recombinant granulocyte-macrophage CSF (rGM-CSF, 1000 U/ml), rGM-CSF plus indomethacin (2 X 10(-6) M), PGE2 (0.1 to 10 ng/ml), 1 X 10(-6) M levels of caffeine, theophylline, and dibutyryl cyclic AMP, or medium alone. IL-2R expression was quantitated by cell ELISA (HL-60 cells) or determined by immunoperoxidase staining (alveolar macrophages, blood monocytes, and HL-60 cells), using anti-Tac and other CD25 mAb. PGE production was assayed by RIA. We found greater than 95% of alveolar macrophages, monocytes, and HL-60 cells expressed IL-2R after rIFN-gamma treatment and remained IL-2R+ in the presence of IL-2R or medium alone. By comparison, greater than 95% of cells induced to express IL-2R became IL-2R- after addition of rGM-CSF, and the culture supernatants from GM-CSF-treated cells contained increased levels of PGE. This inhibition of macrophage IL-2R expression by rGM-CSF was blocked by indomethacin, and IL-2R+ macrophages became IL-2R- after addition of PGE2 alone. These findings indicate GM-CSF down-regulates IL-2R expression by human macrophages via induction of PGE synthesis. Moreover, a similar down-regulation of IL-2R expression was seen after stimulation with caffeine, theophylline, or dibutyryl cyclic AMP. Hence, GM-CSF, PGE, and other pharmacologic agents that act to increase intracellular levels of cAMP may play a modulatory role, antagonistic to that of IFN-gamma on cellular expression of IL-2R by human inflammatory macrophages in vivo.  相似文献   

18.
Zhang JY  Zou ZS  Huang A  Zhang Z  Fu JL  Xu XS  Chen LM  Li BS  Wang FS 《PloS one》2011,6(3):e17484

Background

Extensive mononuclear cell infiltration is strongly correlated with liver damage in patients with chronic hepatitis B virus (CHB) infection. Macrophages and infiltrating monocytes also participate in the development of liver damage and fibrosis in animal models. However, little is known regarding the immunopathogenic role of peripheral blood monocytes and intrahepatic macrophages.

Methodology/Principal Findings

The frequencies, phenotypes, and functions of peripheral blood and intrahepatic monocyte/macrophage subsets were analyzed in 110 HBeAg positive CHB patients, including 32 immune tolerant (IT) carriers and 78 immune activated (IA) patients. Liver biopsies from 20 IA patients undergoing diagnosis were collected for immunohistochemical analysis. IA patients displayed significant increases in peripheral blood monocytes and intrahepatic macrophages as well as CD16+ subsets, which were closely associated with serum alanine aminotransferase (ALT) levels and the liver histological activity index (HAI) scores. In addition, the increased CD16+ monocytes/macrophages expressed higher levels of the activation marker HLA-DR compared with CD16 monocytes/macrophages. Furthermore, peripheral blood CD16+ monocytes preferentially released inflammatory cytokines and hold higher potency in inducing the expansion of Th17 cells. Of note, hepatic neutrophils also positively correlated with HAI scores.

Conclusions

These distinct properties of monocyte/macrophage subpopulations participate in fostering the inflammatory microenvironment and liver damage in CHB patients and further represent a collaborative scenario among different cell types contributing to the pathogenesis of HBV-induced liver disease.  相似文献   

19.
Neutrophils are possibly involved in the pathogenesis of various lung diseases through the release of numerous mediators. In the present study, we studied the regulation of IL-8 gene induction and protein secretion in human blood neutrophils. Northern blot analysis revealed that LPS increased IL-8 mRNA levels in neutrophils, with a maximal fivefold increase by 2 h. IL-8 mRNA levels returned to baseline value within 12 h. In contrast, LPS-stimulated monocytes demonstrated a sustained increase of IL-8 mRNA levels for more than 24 h. TNF-α, IL-1β, and phorbol myristate acetate also increased IL-8 mRNA levels in neutrophils. Immunohistochemical analysis confirmed that IL-8 was localized within stimulated neutrophils. IL-8 secretion by neutrophils and monocytes was quantified using a specific ELISA for IL-8. Resting neutrophils secreted minimal IL-8 activity. However when cells were stimualted with LPS, TNF-α, or IL-1bT, neutrophils secreted IL-8. IL-8 secretion was most marked during the first 2 h after stimulation and decreased thereafter. In contrast, monocytes maintained a high rate of IL-8 secretion over 12 h. Although a single monocyte secreted 70-fold more IL-8 than did a single neutrophil after 4 h of incubation, the high abundance of neutrophils in peripheral blood made the neutrophil-secreted IL-8 more significant. During the first 2 h, neutrophils secreted ~40% of the IL-8 released by monocytes in the same volume of blood. This ratio decreased to 9% after 12 h. Neutrophil-secreted IL-8 may play an autocrine or paracrine role during the initial stage of inflammation. © 1993 Wiley-Liss, Inc.  相似文献   

20.

Background

In addition to activated T cells, the immune checkpoint inhibitor “V domain-containing Ig suppressor of T-cell activation” (VISTA) is expressed by myeloid cell types, including macrophages and neutrophils. The importance of VISTA expression by myeloid cells to antibody-induced arthritis and its potential for relevance in human disease was evaluated.

Methods

VISTA was immunolocalized in normal and arthritic human synovial tissue sections and synovial tissue lysates were subjected to western blot analysis. The collagen antibody-induced arthritis model (CAIA) was performed with DBA/1 J mice treated with antibodies against VISTA and with VISTA-deficient mice (V-KO). Total mRNA from arthritic joints, spleens, and cultured macrophages was analyzed with NanoString arrays. Cytokines secreted by splenic inflammatory macrophages were determined. In-vitro chemotaxis and signal transduction assays were performed with cultured macrophages.

Results

VISTA protein was localized to synovial membrane cells, neutrophils, and scattered cells in lymphocyte-rich foci and was detected by western blot analysis in normal synovium and synovium from rheumatoid arthritis patients. Deficiency of VISTA or treatment of mice with anti-VISTA monoclonal antibodies attenuated CAIA. Joint damage and MMP-3 expression were significantly reduced in V-KO mice. Surface expression of C5a receptor was reduced on monocytes, neutrophils, and cultured macrophages from V-KO. Upon Fc receptor engagement in vitro, gene expression by V-KO macrophages was altered profoundly compared to WT, including a significant induction of IL-1 receptor antagonist (IL1rn).

Conclusions

VISTA expression supports immune-complex inflammation in CAIA and VISTA is expressed in human synovium. VISTA supports optimal responses to C5a and modulates macrophage responses to immune complexes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号