首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Activation-induced cytidine deaminase (AID) plays critical roles in Ig class switch recombination and V(H) gene somatic hypermutation. We investigated the role of IL-4 in AID mRNA induction, the signaling transduction involved in IL-4-mediated AID induction, and the effect of CD45 on IL-4-dependent AID expression in human B cells. IL-4 was able to induce AID expression in human primary B cells and B cell lines, and IL-4-induced AID expression was further enhanced by CD40 signaling. IL-4-dependent AID induction was inhibited by a dominant-negative STAT6, indicating that IL-4 induced AID expression via the Janus kinase (JAK)/STAT6 signaling pathway. Moreover, triggering of CD45 with anti-CD45 Abs can inhibit IL-4-induced AID expression, and this CD45-mediated AID inhibition correlated with the ability of anti-CD45 to suppress IL-4-activated JAK1, JAK3, and STAT6 phosphorylations. Thus, in humans, IL-4 alone is sufficient to drive AID expression, and CD40 signaling is required for optimal AID production; IL-4-induced AID expression is mediated via the JAK/STAT signaling pathway, and can be negatively regulated by the JAK phosphatase activity of CD45. This study indicates that the JAK phosphatase activity of CD45 can be induced by anti-CD45 Ab treatment, and this principle may find clinical application in modulation of JAK activation in immune-mediated diseases.  相似文献   

3.
The non-receptor protein-tyrosine phosphatases (PTPs) 1B and T-cell phosphatase (TCPTP) have been implicated as negative regulators of multiple signaling pathways including receptor-tyrosine kinases. We have identified PTP1B and TCPTP as negative regulators of the hepatocyte growth factor receptor, the Met receptor-tyrosine kinase. In vivo, loss of PTP1B or TCPTP enhances hepatocyte growth factor-mediated phosphorylation of Met. Using substrate trapping mutants of PTP1B or TCPTP, we have demonstrated that both phosphatases interact with Met and that these interactions require phosphorylation of twin tyrosines (Tyr-1234/1235) in the activation loop of the Met kinase domain. Using confocal microscopy, we show that trapping mutants of both PTP1B and the endoplasmic reticulum-targeted TCPTP isoform, TC48, colocalize with Met and that activation of Met enables the nuclear-localized isoform of TCPTP, TC45, to exit the nucleus. Using small interfering RNA against PTP1B and TCPTP, we demonstrate that phosphorylation of Tyr-1234/1235 in the activation loop of the Met receptor is elevated in the absence of either PTP1B or TCPTP and further elevated upon loss of both phosphatases. This enhanced phosphorylation of Met corresponds to enhanced biological activity and cellular invasion. Our data demonstrate that PTP1B and TCPTP play distinct and non-redundant roles in the regulation of the Met receptor-tyrosine kinase.  相似文献   

4.
5.
6.
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group of diseases that have diverse clinical, pathological, and biological features. Here, it is shown that primary nodal and extranodal DLBCLs differ genomically and phenotypically. Using conventional comparative genomic hybridization (CGH), the authors assessed the chromosomal aberrations in 18 nodal, 13 extranodal, and 5 mixed DLBCLs. The results demonstrate significantly distinct chromosomal aberrations exemplified by gains of chromosomal arms 1p, 7p, 12q24.21-12q24.31, and 22q and chromosome X and loss of chromosome 4, 6q, and 18q22.3-23 in extranodal compared with nodal DLBCLs. Nodal DLBCLs showed an increased tendency for 18q amplification and BCL2 protein overexpression compared with extranodal and mixed tumors. Using a panel of five antibodies against GCET1, MUM1, CD10, BCL6, and FOXP1 proteins to subclassify DLBCLs according to the recent Choi algorithm, the authors showed that the genomic profiles observed between the nodal and extranodal DLBCLs were not due to the different proportions of GCB vs ABC in the two groups. Further delineation of these genomic differences was illuminated by the use of high-resolution 21K BAC array CGH performed on 12 independent new cases of extranodal DLBCL. The authors demonstrated for the first time a novel genome and proteome-based signatures that may differentiate the two lymphoma types.  相似文献   

7.
BACKGROUND: The immune response is regulated through a tightly controlled cytokine network. The counteracting balance between protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) activity regulates intracellular signaling in the immune system initiated by these extracellular polypeptides. Mice deficient for the T cell protein tyrosine phosphatase (TCPTP) display gross defects in the hematopoietic compartment, indicating a critical role for TCPTP in the regulation of immune homeostasis. To date, the molecular basis underlying this phenotype has not been reported. RESULTS: We have identified two members of the Janus family of tyrosine kinases (JAKs), JAK1 and JAK3, as bona fide substrates of TCPTP. Inherent substrate specificity in the TCPTP-JAK interaction is demonstrated by the inability of other closely related PTP family members to form an in vivo interaction with the JAKs in hematopoietic cells. In keeping with a negative regulatory role for TCPTP in cytokine signaling, expression of TCPTP in T cells abrogated phosphorylation of STAT5 following interleukin (IL)-2 stimulation. TCPTP-deficient lymphocytes treated with IL-2 had increased levels of tyrosine-phosphorylated STAT5, and thymocytes treated with interferon (IFN)-alpha or IFN-gamma had increased tyrosine-phosphorylated STAT1. Hyperphosphorylation of JAK1 and elevated expression of iNOS was observed in IFN-gamma-treated, TCPTP-deficient, bone marrow-derived macrophages. CONCLUSIONS: We have identified JAK1 and JAK3 as physiological substrates of TCPTP. These results indicate a negative regulatory role for TCPTP in cytokine signaling and provide insight into the molecular defect underlying the phenotype of TCPTP-deficient animals.  相似文献   

8.
In inflamed joints of rheumatoid arthritis, PGE(2) is highly expressed, and IL-10 and IL-6 are also abundant. PGE(2) is a well-known activator of the cAMP signaling pathway, and there is functional cross-talk between cAMP signaling and the Jak-STAT signaling pathway. In this study, we evaluated the modulating effect of PGE(2) on STAT signaling and its biological function induced by IL-10 and IL-6, and elucidated its mechanism in THP-1 cells. STAT phosphorylation was determined by Western blot, and gene expression was analyzed using real-time PCR. Pretreatment with PGE(2) significantly augmented IL-10-induced STAT3 and STAT1 phosphorylation, as well as suppressors of cytokine signaling 3 (SOCS3) and IL-1R antagonist gene expression. In contrast, PGE(2) suppressed IL-6-induced phosphorylation of STAT3 and STAT1. These PGE(2)-induced modulating effects were largely reversed by actinomycin D. Pretreatment with dibutyryl cAMP augmented IL-10-induced, but did not change IL-6-induced STAT3 phosphorylation. Misoprostol, an EP2/3/4 agonist, and butaprost, an EP2 agonist, augmented IL-10-induced STAT3 phosphorylation and SOCS3 gene expression, but sulprostone, an EP1/3 agonist, had no effect. H89, a protein kinase A inhibitor, and LY294002, a PI3K inhibitor, diminished PGE(2)-mediated augmentation of IL-10-induced STAT3 phosphorylation. In this study, we found that PGE(2) selectively regulates cytokine signaling via increased intracellular cAMP levels and de novo gene expression, and these modulating effects may be mediated through EP2 or EP4 receptors. PGE(2) may modulate immune responses by alteration of cytokine signaling in THP-1 cells.  相似文献   

9.
10.
11.
Using STAT6(-/-) BALB/c mice, we analyzed the role of STAT6-induced Th2 response in determining the outcome of murine cysticercosis caused by the helminth parasite Taenia crassiceps. After T. crassiceps infection, wild-type BALB/c mice developed a strong Th2-like response; produced high levels of IgG1, IgE, IL-4, as well as IL-13; and remained susceptible to T. crassiceps. In contrast, similarly infected STAT6(-/-) mice mounted a strong Th1-like response; produced high levels of IgG2a, IL-12, IFN-gamma, as well as nitric oxide; and efficiently controlled T. crassiceps infection. These findings demonstrate that Th2-like response induced via STAT6-mediated signaling pathway mediates susceptibility to T. crassiceps and, furthermore, that unlike the case in most helminths, immunity against T. crassiceps is mediated by a Th1-like rather than Th2-like response.  相似文献   

12.
13.
ALK positive diffuse large B-cell lymphomas (DLBCL) are a distinct lymphoma subtype associated with a poor outcome. Most of them feature a t(2;17) encoding a clathrin (CLTC)-ALK fusion protein. The contribution of deregulated ALK-activity in the pathogenesis and maintenance of these DLBCLs is not yet known. We established and characterized the first CLTC-ALK positive DLBCL cell line (LM1). LM1 formed tumors in NOD-SCID mice. The selective ALK inhibitor NVP-TAE684 inhibited growth of LM1 cells in vitro at nanomolar concentrations. NVP-TAE684 repressed ALK-activated signalling pathways and induced apoptosis of LM1 DLBCL cells. Inhibition of ALK-activity resulted in sustained tumor regression in the xenotransplant tumor model. These data indicate a role of CLTC-ALK in the maintenance of the malignant phenotype thereby providing a rationale therapeutic target for these otherwise refractory tumors.  相似文献   

14.
目的:分析沙眼衣原体(Chlamydia trachomatis,Ct)持续感染对靶细胞TLR4/IL-6/STAT3信号通路的影响.方法:利用Hela细胞分别建立Ct急性感染及持续性感染模型,通过qRT-PCR、ELISA等方法比较Ct感染过程中靶细胞TLR4、STAT3、IL-6转录水平及细胞因子IL-6分泌量的变化.结果:Ct感染后靶细胞TLR4、IL-6、STAT3转录水平及细胞因子IL-6分泌量均呈现时间相关性上调,且持续性感染状态下比急性感染状态下的上调更为显著;IL-6/STAT3的表达量与TLR4转录水平正相关.结论:Ct持续感染过程中TLR4 的持续活化可大幅上调IL-6/STAT3信号通路表达,可能参与了Ct持续感染后慢性炎性损伤过程.  相似文献   

15.
16.
Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin and Src homology 2-like domains as well as a YXXQ motif in its C-terminal region. Our previous studies have demonstrated that STAP-2 binds to STAT3 and STAT5, and regulates their signaling pathways. In the present study, STAP-2 was found to positively regulate LPS/TLR4-mediated signals in macrophages. Disruption of STAP-2 resulted in impaired LPS/TLR4-induced cytokine production and NF-kappaB activation. Conversely, overexpression of STAP-2 enhanced these LPS/TLR4-induced biological activities. STAP-2, particularly its Src homology 2-like domain, bound to both MyD88 and IkappaB kinase (IKK)-alphabeta, but not TNFR-associated factor 6 or IL-1R-associated kinase 1, and formed a functional complex composed of MyD88-STAP-2-IKK-alphabeta. These interactions augmented MyD88- and/or IKK-alphabeta-dependent signals, leading to enhancement of the NF-kappaB activity. These results demonstrate that STAP-2 may constitute an alternative LPS/TLR4 pathway for NF-kappaB activation instead of the TNFR-associated factor 6-IL-1R-associated kinase 1 pathway.  相似文献   

17.
18.
Protein-tyrosine phosphatase 1B (PTP1B) and T cell protein-tyrosine phosphatase (TCPTP) are closely related intracellular phosphatases implicated in the control of glucose homeostasis. PTP1B and TCPTP can function coordinately to regulate protein tyrosine kinase signaling, and PTP1B has been implicated previously in the regulation of endoplasmic reticulum (ER) stress. In this study, we assessed the roles of PTP1B and TCPTP in regulating ER stress in the endocrine pancreas. PTP1B and TCPTP expression was determined in pancreases from chow and high fat fed mice and the impact of PTP1B and TCPTP over- or underexpression on palmitate- or tunicamycin-induced ER stress signaling assessed in MIN6 insulinoma β cells. PTP1B expression was increased, and TCPTP expression decreased in pancreases of mice fed a high fat diet, as well as in MIN6 cells treated with palmitate. PTP1B overexpression or TCPTP knockdown in MIN6 cells mitigated palmitate- or tunicamycin-induced PERK/eIF2α ER stress signaling, whereas PTP1B deficiency enhanced ER stress. Moreover, PTP1B deficiency increased ER stress-induced cell death, whereas TCPTP deficiency protected MIN6 cells from ER stress-induced death. ER stress coincided with the inhibition of Src family kinases (SFKs), which was exacerbated by PTP1B overexpression and largely prevented by TCPTP knockdown. Pharmacological inhibition of SFKs ameliorated the protective effect of TCPTP deficiency on ER stress-induced cell death. These results demonstrate that PTP1B and TCPTP play nonredundant roles in modulating ER stress in pancreatic β cells and suggest that changes in PTP1B and TCPTP expression may serve as an adaptive response for the mitigation of chronic ER stress.  相似文献   

19.
To study the mechanism by which protein tyrosine phosphatases (PTPs) regulate CD3-induced tyrosine phosphorylation, we investigated the distribution of PTPs in subdomains of plasma membrane. We report here that the bulk PTP activity associated with T cell membrane is present outside the lipid rafts, as determined by sucrose density gradient sedimentation. In Jurkat T cells, approximately 5--10% of Src homology 2 domain-containing tyrosine phosphatase (SHP-1) is constitutively associated with plasma membrane, and nearly 50% of SHP-2 is translocated to plasma membrane after vanadate treatment. Similar to transmembrane PTP, CD45, the membrane-associated populations of SHP-1 and SHP-2 are essentially excluded from lipid rafts, where other signaling molecules such as Lck, linker for activation of T cells, and CD3 zeta are enriched. We further demonstrated that CD3-induced tyrosine phosphorylation of these substrates is largely restricted to lipid rafts, unless PTPs are inhibited. It suggests that a restricted partition of PTPs among membrane subdomains may regulate protein tyrosine phosphorylation in T cell membrane. To test this hypothesis, we targeted SHP-1 into lipid rafts by using the N-terminal region of Lck (residues 1--14). The results indicate that the expression of Lck/SHP-1 chimera inside lipid rafts profoundly inhibits CD3-induced tyrosine phosphorylation of CD3 zeta/epsilon, IL-2 generation, and nuclear mobilization of NF-AT. Collectively, these results suggest that the exclusion of PTPs from lipid rafts may be a mechanism that potentiates TCR/CD3 activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号