首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Human chorionic gonadotropin undergoes a conformational transition in acid which at 4 °C is characterized by: (i) a reversible increase in the polarization of tyrosyl fluorescence, P, with a midpoint at pH 5, (ii) a slight decrease in the elution volume on Sephadex G-100 at pH 3 relative to pH 7, (iii) a slight decrease in s20,w. (iv) a small positive near uv difference spectrum (Δ? ~2%), and (v) the appearance of a positive CD feature at 235 nm. These observations are compatible with an acid-expanded form of the hormone in which the rotational freedom of one or more tyrosine residues is restricted and/or their proximity to potential quenching groups is altered. The increased value of P following acidification is stable at temperatures below 10 °C, but at higher temperatures it decreases with time to an extent which is dependent on the temperature. A substantial portion of this decrease occurs before subunit dissociation can be detected, reflecting the occurrence of a thermal transition with a midpoint near 26 °C. A similar transition was observed at neutral pH with a midpoint near 22 °C. These results suggest the occurrence of at least two conformationally distinct forms of hCG which may be sequentially encountered prior to subunit dissociation in acid. The kinetics will be either biphasic or strictly first order, depending on the temperature at which the hormone is acidified.  相似文献   

2.
Botulinum neurotoxin (NT) serotype A is a ~150-kDa dichain protein. Posttranslational nicking of the single-chain NT (residues Pro 1–Leu 1295) by the protease(s) endogenous to Clostridium botulinum excises 10 residues, leaving Pro 1–Lys 437 and Ala 448–Leu 1295 in the ~50-kDa light (L) and ~100-kDa heavy (H) chains, respectively, connected by a Cys 429–Cys 453 disulfide and noncovalent bonds [Krieglstein et al. (1994), J. Protein Chem. 13, 49–57]. The L chain is a metalloprotease, while the amino- and carboxy-terminal halves of the H chain have channel-forming and receptor-binding activities, respectively [Montecucco and Schiavo (1995), Q. Rev. Biophys. 28, 423–472]. Endoproteinase Glu-C and α-chymotrypsin were used for controlled digestion at pH 7.4 of the ~150-kDa dichain NT and the isolated ~100-kDa H chain (i.e., freed from the L chain) in order to map the cleavage sites and isolate the proteolytic fragments. The dichain NT appeared more resistant to cleavage by endoproteinase Glu-C than the isolated H chain. In contrast, the NT with its disulfide(s) reduced showed rapid digestion of both chains, including a cleavage between Glu 251 and Met 252 (resulting in ~30- and ~20-kDa fragments of the L chain) which was not noted unless the NT was reduced. Interestingly, an adjacent bond, Tyr 249–Tyr 250, was noted earlier [DasGupta and Foley (1989), Biochimie 71, 1193–1200] to undergo “self-cleavage” following reductive separation of the L chain from the H chain. The site Tyr–Tyr–Glu–Met (residues 249–252) appears to become exposed following reduction of Cys 429–Cys 453 disulfide. Identification of Glu 669–Ile 670 and Tyr 683–Ile 684 as protease-susceptible sites demonstrated for the first time that at least two peptide bonds in the segment of the H chain (residues 659–684), part of which (residues 659–681) is thought to interact with the endosomal membranes and forms channels [Oblatt-Montal et al., (1995), Protein Sci. 4, 1490–1497], are exposed on the surface of the NT. Two of the fragments of the H chain we generated and purified by chromatography are suitable for structure–function studies; the ~85- and ~45-kDa fragments beginning at residue Leu 544 and Ser 884, respectively (both extend presumably to Leu 1295) contain the channel-forming segment and receptor-binding segments, respectively. In determining partial amino acid sequences of 10 fragments, a total of 149 amino acids in the 1275-residue NT were chemically identified.  相似文献   

3.
Disulfide bonds in alpha 2-macroglobulin (alpha 2M) were reduced with the thioredoxin system from Escherichia coli. Under the conditions selected, 3.5-4.1 disulfide bonds were cleaved in each alpha 2M molecule, as determined by the consumption of NADPH during the reaction and by the incorporation of iodo[3H]acetate into the reaction product. This extent of disulfide bond reduction, approximately corresponding to that expected from specific cleavage of all four interchain disulfide bonds of the protein, coincided with the nearly complete dissociation of the intact alpha 2M molecule to a species migrating as an alpha 2M subunit in gel electrophoresis, under both denaturing and nondenaturing conditions. The dissociation was accompanied by only small changes of the spectroscopic properties of the subunits, which thus retain a near-native conformation. Reaction of isolated subunits with methylamine or trypsin led to the appearance of approximately 0.55 mol of thiol group/mol of subunits, indicating that the thio ester bonds are largely intact. Moreover, the rate of cleavage of these bonds by methylamine was similar to that in the whole alpha 2M molecule. Although the bait region was specifically cleaved by nonstoichiometric amounts of trypsin, the isolated subunits had minimal proteinase binding ability. Reaction of subunits with methylamine or trypsin produced changes of farultraviolet circular dichroism and near-ultraviolet absorption similar to those induced in the whole alpha 2M molecule, although in contrast with whole alpha 2M no fluorescence change was observed. The methylamine- or trypsin-treated subunits reassociated to a tetrameric species, migrating as the "fast" form of whole alpha 2M in gradient gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The fluorescence of 1,8-anilinonaphthalene sulfonate (ANS) was enhanced in the presence of ovine lutropin (oLH). Fluorescence titration curves were sigmoidal with 50% saturation between 200 and 500 μm. Exclusion chromatography experiments indicated that the hormone self-associates to form dimers in the presence of excess ANS. By contrast, the isolated a and β subunits of oLH caused a much smaller enhancement of the fluorescence of ANS and did not self-associate in its presence. Dissociation of the intact hormone into its subunits was accompanied by 1) a loss in the ability to enhance ANS fluorescence, 2) the appearance of a negative differential absorption spectrum whose magnitude indicated the increased solvent-exposure of at least two tyrosines, and 3) a loss in conformational rigidity as evidenced by a decrease in polarization (P) of tyrosyl fluorescence from ~0.17 to ~0.13. Similar rates of dissociation were obtained by all three measurements and the first order rate constant at pH 3.6 and 37 °C under conditions of low ionic strength was k = 0.18 min?1; at high ionic strength, e.g., 0.5 m KC1, dissociation was incomplete even after prolonged incubation. Acid-dissociated subunits recombined readily in 0.5 m acetate buffer, pH 5.3, and the recovery of the intrinsic absorption and fluorescence properties as well as the ability to enhance ANS fluorescence ranged between 70 and 90%. Titration of the isolated α and β subunits with acid or GdmCl had little or no effect on P, suggesting that residual secondary or tertiary structure is either absent, very stable, or its disruption does not alter the rigidity of the tyrosyl environment. The relatively high P for oLH-β (0.17) suggests a conformation which is rigid compared with oLH-α (0.13). P for both subunits decreased smoothly with increasing temperature between 20 and 70 °C. By contrast, oLH exhibited a thermal transition near 50 °C characterized by a drop in P from a value near that of β to a value near that of a as the subunits dissociated. Because α has more tyrosines with a higher average quantum yield, its fluorescence would be expected to dominate that of the hormone or of an equimolar mixture of subunits. Thus, most of the conformation changes which accompany dissociation and recombination appear to occur in the α subunit.  相似文献   

5.
The dissociation of wheat glutenin into subunits was observed by treatment with a small amount of mercuric chloride under moderate conditions, suggesting that the cleavage of inter-polypeptide chain disulfide bonds in the glutenin might occur. The dissociation into the subunits was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The electrophoretic patterns of the glutenin treated with mercuric chloride were essentially similar to those of the glutenin treated with 2-mercaptoethanol. Silver nitrate also had the same effects as mercuric chloride, and p-chloromercuribenzoate and N-ethylmaleimide showed no effect on the dissociation of the glutenin. Complete dissociation was achieved when the glutenin solution containing 0.5% SDS and 0.01 m phosphate buffer (pH 7.0) was incubated with 10?3 m mercuric chloride (about four moles per mole of disulfide groups) at 30°C for 20 hr. Partial dissociation was also observed after 30 min incubation. Increasing temperature and SDS concentration promoted the rate of the dissociation of the glutenin by mercuric chloride.  相似文献   

6.
Circular dichroic spectra have been obtained and resolved for the gonadotropins, ovine pituitary luteinizing hormone and human chorionic (urinary) gonadotropin, their subunits and glycopeptides. Much of the gonadotropin ellipticity above 250 nm can be attributed to the disulfide chromophore, although there are discernible contributions from tyrosyl and phenylalanyl residues as well. Of the two dissimilar subunits, the β-subunit makes the greatest contribution to the near-ultraviolet circular dichroic spectrum of the gonadotropins. From the position of the 0-0 tyrosyl band, i.e., 286–287 nm, one can ascertain that at least some of the tyrosyl residues of the gonadotropins are located in a hydrophobic environment. A positive circular dichroic extremum at 232.5 nm, present in luteinizing hormone but not in chorionic gonadotropin, can be ascribed to the α-subunit and probably results from tyrosines 21 and/or 30 in luteinizing hormone.An analysis of the circular dichroic difference spectrum above 230 nm, generated by subtracting the sum of the molecular ellipticities of the respective subunits from the molecular ellipticities of each gonadotropin, indicates that the local environment of disulfides and of tyrosyl residues is altered when gonadotropins dissociate. Circular dichroic difference spectra between the two α-subunits and between the two β-subunits indicated major contributions from- tyrosyl residues, presumably arising from tyrosyl substitutions.Between 200 and 230 nm, both gonadotropins exhibit negative circular dichroic extrema. The extremum occurs at 210 nm for luteinizing hormone and at 207.5 nm for chorionic gonadotropin. Each extremum can be described by two negative resolved bands, one at 215 nm and the other between 207 and 208.5 nm. The 215-nm resolved band is assigned to the peptide chromophore in a β-pleated sheet conformation and there is no evidence of α-helicity. The lower-wavelength resolved band is believed to have a significant contribution from the N-acetyl groups of glucosamine, galactosamine, and sialic acid, particularly since the glycopeptide fractions, prepared from each gonadotropin by digestion of the S-carboxymethyl derivatives with Pronase, exhibited a negative circular dichroic extremum at about 207 nm.The extent of β-structure in both gonadotropins is estimated to be about 28% whereas the separated subunits contain less β-structure, e.g., about 21 and 13% for the α- and β-subunits, respectively. The sum of the subunit β-structure, corrected for the respective molecular weight of each subunit, is about 17%. This is substantially less than that of the native hormone, thus indicating that significant conformational changes occur during gonadotropin dissociation to the biologically inactive subunits. Also, part of the gonadotropin β-structure may arise from intermolecular hydrogen bonding involving a pleated sheet arrangement between the subunits.  相似文献   

7.
Vicilin from pigeon pea (Cajanus cajan) seeds was purified and characterised. It has a M, of ca 180 000 and consists of two types of subunits having M,s of ca 72 000 and 57 000. The subunits are not linked by disulphide bonds. The vicilin of pigeon pea differs from that of Pisum or Vicia in the absence of small M, subunits.  相似文献   

8.
Human chorionic gonadotropin (hCG) is a heterodimeric glycoprotein hormone essential for the establishment and maintenance of pregnancy. The α- and β-subunits of hCG are highly cross-linked internally by disulfide bonds that seem to stabilize the tertiary structures required for the noncovalent association of the subunits to generate hormonal activity. This paper describes the results of our studies on the role of the disulfide bonds of hCG-β in heterodimer formation with the α-subunit. Six disulfide peptides incorporating each of the six disulfide bonds of hCG-β were screened, along with their linear counterparts, for their ability to competitively inhibit the recombination of α- and β-subunits. The disulfide peptides Cys (9–57), Cys (34–88) and Cys (38–90) were found to inhibit the α/β recombination whereas the remaining three disulfide peptides viz. Cys (23–72), Cys (26–110) and Cys (93–100) did not exhibit any inhibition activity. Interestingly, none of the linear peptides could inhibit the α/β recombination. Results clearly demonstrate that the disulfide bonds Cys9–Cys57, Cys34–Cys88 and Cys38–Cys90 of the β-subunit of hCG are crucial for heterodimer formation with the α-subunit thus providing experimental confirmation of the conclusions from the crystal structure of the hormone.  相似文献   

9.
A cytochrome c from Humicola lanuginosa is unique among eukaryotic cytochromes c in having phenylalanine as Residue 74. This protein has certain properties which differ from those of other cytochromes c to which it is generally similar. The Humicola cytochrome c is as stable as horse heart cytochrome c in urea, but more stable than both horse heart and yeast cytochromes c in acidic and alkaline conditions. Spectrophotometric titration of the four tyrosyl residues of the Humicola protein was nonsigmoidal with a pKapp of 11.4. Solvent perturbation difference spectra indicate that 50% of the tyrosyl residues are exposed to solvent in the native protein, and that the single tryptophanyl and all four tyrosyl residues become exposed in 8 m urea. Certain unusual features in both the optical rotatory dispersion and circular dichroism spectra in the 290-250-nm region are tentatively attributed to the substitution of phenylalanine for tyrosine at position 74.  相似文献   

10.
Large-conductance Ca2+-activated K+ (BK) channels are composed of a pore-forming α and a variable number of auxiliary β subunits and play important roles in regulating excitability, action potential waveforms and firing patterns, particularly in neurons and endocrine and cardiovascular cells. The β2 subunits increase the diversity of gating and pharmacological properties. Its extracellular loop contains eight cysteine residues, which can pair to form a high-order structure, underlying the stability of the extracellular loop of β2 subunits and the functional effects on BK channels. However, how these cysteines form disulfide bonds still remains unclear. To address this, based on the fact that the rectification and association of BK α to β2 subunits are highly sensitive to disruption of the disulfide bonds in the extracellular loop of β2, we developed a rectification ratio based assay by combining the site-directed mutagenesis, electrophysiology and enzymatic cleavage. Three disulfide bonds: C1(C84)-C5(C113), C3(C101)-C7(C148) and C6(C142)-C8C(174) are successfully deduced in β2 subunit in complex with a BK α subunit, which are helpful to predict structural model of β2 subunits through computational simulation and to understand the interface between the extracellular domain of the β subunits and the pore-forming α subunit.  相似文献   

11.
Disulfide bonds play diverse structural and functional roles in proteins. In tear lipocalin (TL), the conserved sole disulfide bond regulates stability and ligand binding. Probing protein structure often involves thiol selective labeling for which removal of the disulfide bonds may be necessary. Loss of the disulfide bond may destabilize the protein so strategies to retain the native state are needed. Several approaches were tested to regain the native conformational state in the disulfide-less protein. These included the addition of trimethylamine N-oxide (TMAO) and the substitution of the Cys residues of disulfide bond with residues that can either form a potential salt bridge or others that can create a hydrophobic interaction. TMAO stabilized the protein relaxed by removal of the disulfide bond. In the disulfide-less mutants of TL, 1.0 M TMAO increased the free energy change (ΔG0) significantly from 2.1 to 3.8 kcal/mol. Moderate recovery was observed for the ligand binding tested with NBD-cholesterol. Because the disulfide bond of TL is solvent exposed, the substitution of the disulfide bond with a potential salt bridge or hydrophobic interaction did not stabilize the protein. This approach should work for buried disulfide bonds. However, for proteins with solvent exposed disulfide bonds, the use of TMAO may be an excellent strategy to restore the native conformational states in disulfide-less analogs of the proteins.  相似文献   

12.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides utilizes either NAD+ or NADP+ as coenzyme. Kinetic studies showed that NAD+ and NADP+ interact with different enzyme forms (Olive, C., Geroch, M. E., and Levy, H. R. (1971) J. Biol. Chem.246, 2047–2057). In the present study the techniques of fluorescence quenching and fluorescence enhancement were used to investigate the interaction between Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase and coenzymes. In addition, kinetic studies were performed to examine interaction between the enzyme and various coenzyme analogs. The maximum quenching of protein fluorescence is 5% for NADP+ and 50% for NAD+. The dissociation constant for NADP+, determined from fluorescence quenching measurements, is 3 μm, which is similar to the previously determined Km of 5.7 μm and Ki of 5 μm. The dissociation constant for NAD+ is 2.5 mm, which is 24 times larger than the previously determined Km of 0.106 mm. Glucose 1-phosphate, a substrate-competitive inhibitor, lowers the dissociation constant and maximum fluorescence quenching for NAD+ but not for NADP+. This suggests that glucose 6-phosphate may act similarly and thus play a role in enabling the enzyme to utilize NAD+ under physiological conditions. When NADPH binds to the enzyme its fluorescence is enhanced 2.3-fold. The enzyme was titrated with NADPH in the absence and presence of NAD+; binding of these two coenzymes is competitive. The dissociation constant for NADPH from these measurements is 24 μm; the previously determined Ki is 37.6 μm. The dissociation constant for NAD′ is 2.8 mm, in satisfactory agreement with the value obtained from protein fluorescence quenching measurements. Various compounds which resemble either the adenosine or the nicotinamide portion of the coenzyme structure are coenzyme-competitive inhibitors; 2′,5′-ADP, the most inhibitory analog tested, gives NADP+-competitive and NAD+-noncompetitive inhibition, consistent with the kinetic mechanism previously proposed. By using pairs of coenzyme-competitive inhibitors it was shown in kinetic studies that the two portions of the NAD+ structure cannot be accommodated on the enzyme simultaneously unies they are covalently linked. Fluorescence studies showed that there are both “buried” and “exposed” tryptophan residues in the enzyme structure.  相似文献   

13.
The high molecular weight glutenin subunits are considered one of the most important components of wheat (Triticum aestivum) gluten, but their structure and interactions with other gluten proteins are still unknown. Understanding the role of these proteins in gluten formation may be aided by analyses of the conformation and interactions of individual wild-type and modified subunits expressed in heterologous systems. In the present report, the bacterium Escherichia coli was used to synthesize four naturally occurring X- and Y-type wheat high molecular weight glutenin subunits of the Glu-1D locus, as well as four bipartite chimeras of these proteins. Naturally occurring subunits synthesized in the bacteria exhibited sodium dodecyl sulfate-polyacrylamide gel electrophoresis migration properties identical to those of high molecular weight glutenin subunits extracted from wheat grains. Wild-type and chimeric subunits migrated in sodium dodecyl sulfate gels differently than expected based on their molecular weights due to conformational properties of their N- and C-terminal regions. Results from cycles of reductive cleavage and oxidative reformation were consistent with the formation of both inter- and intramolecular disulfide bonds in patterns and proportions that differed among specific high molecular weight glutenin species. Comparison of the chimeric and wild-type proteins indicated that the two C-terminal cysteines of the Y-type subunits are linked by intramolecular disulfide bonds, suggesting that the role of these cysteines in glutenin polymerization may be limited.  相似文献   

14.
Homoserine dehydrogenase (HSD; 305 amino acid residues) catalyzes an NAD(P)-dependent reversible reaction between l-homoserine and aspartate 4-semialdehyde and is involved in the aspartate pathway. HSD from the hyperthermophilic archaeon Sulfolobus tokodaii was markedly activated (2.5-fold) by the addition of 0.8 mM dithiothreitol. The crystal structure of the homodimer indicated that the activation was caused by cleavage of the disulfide bond formed between two cysteine residues (C303) in the C-terminal regions of the two subunits.  相似文献   

15.
Human chorionic gonadotropin (hCG) is a heterodimeric glycoprotein hormone essential for the establishment and maintenance of pregnancy. The alpha- and beta-subunits of hCG are highly cross-linked internally by disulfide bonds which seem to stabilize the tertiary structures required for the noncovalent association of the subunits to generate hormonal activity. The purpose of this study was to delineate the role of the disulfide bonds of hCGbeta in receptor binding of the hormone. Six disulfide peptides incorporating each of the six disulfide bonds of hCGbeta were synthesized and screened, along with their linear counterparts, for their ability to competitively inhibit the binding of [125I] hCG to sheep ovarian corpora luteal LH/CG receptor. Disulfide peptide Cys (9-57) was found to be approximately 4-fold more potent than the most active of its linear counterparts in inhibiting radiolabeled hCG from binding to its receptor. Similarly, disulfide peptide Cys (23-72) exhibited receptor binding inhibition activity, whereas the constituent linear peptides were found to be inactive. The results suggest the involvement of the disulfide bonds Cys(9)-Cys(57) and Cys(23)-Cys(72) of the beta-subunit of hCG in receptor binding of the hormone. This study is the first of its kind to use disulfide peptides rather than linear peptides to map the receptor binding regions of hCG.  相似文献   

16.
Arsenic (III) methyltransferase (AS3MT) is a cysteine (Cys)-rich enzyme that catalyzes the biomethylation of arsenic. To investigate how these crucial Cys residues promote catalysis, we used matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) to analyze Cys residues in recombinant human arsenic (III) methyltransferase (hAS3MT). We detected two disulfide bonds, Cys250-Cys32 and Cys368-Cys369, in hAS3MT. The Cys250-Cys32 disulfide bond was reduced by glutathione (GSH) or other disulfide bond reductants before the enzymatic methylation of arsenite (iAs3+). In addition to exposing residues around the active sites, cleavage of the Cys250-Cys32 pair modulated the conformation of hAS3MT. This adjustment may stabilize the binding of S-Adenosyl-L-methionine (AdoMet) and favor iAs3+ binding to hAS3MT. Additionally, we observed the intermediate of Cys250-S-adenosylhomocysteine (AdoHcy), suggesting that Cys250 is involved in the transmethylation. In recovery experiments, we confirmed that trivalent arsenicals were substrates for hAS3MT, methylation of arsenic occurred on the enzyme, and an intramolecular disulfide bond might be formed after iAs3+ was methylated to dimethylarsinous acid (DMA3+). In this work, we clarified both the functional roles of GSH and the crucial Cys residues in iAs3+ methylation catalyzed by hAS3MT.  相似文献   

17.
X-ray diffraction studies have shown that hemoglobin has two predominant interfaces in the tetramer at which dissociation to dimers could occur. These interfaces have been designed as alpha1-beta1 and alpha1-beta2. There are 2 tyrosyl residues and 1 tryptophanyl residue in the alpha1-beta2- interface but only 1 tyrosyl residue in the alpha1-beta1 interface exposed to the solvent are perturbed. The ultraviolet difference spectrum between ferrihemoglobin dissociated in 1 M NaClO4 and undissociated hemoglobin revealed two negative peaks, one at 292.5 nm and another at 285 nm. This difference spectrum is due to tyrosyl and tryptophanyl residues which reside on the plane of cleavage and were exposed to 1 M NaClO4 upon dissociation. Hence, dissociation must have occurred along the alpha1-beta2 interface to yield alpha1 beta1 dimers. The deltaF degrees value extrapolated to zero salt concentration calculated on the basis of difference spectroscopy and sedimentation velocity experiments is 8.6 plus or minus 0.7 kcal per mol at pH 7.1 (K equals 4.5 times 10-7.  相似文献   

18.
Wheat (Triticum spp.) grains contain large protein polymers constituted by two main classes of polypeptides: the high-molecular-weight glutenin subunits and the low-molecular-weight glutenin subunits (LMW-GS). These polymers are among the largest protein molecules known in nature and are the main determinants of the superior technological properties of wheat flours. However, little is known about the mechanisms controlling the assembly of the different subunits and the way they are arranged in the final polymer. Here, we have addressed these issues by analyzing the formation of interchain disulfide bonds between identical and different LMW-GS and by studying the assembly of mutants lacking individual intrachain disulfides. Our results indicate that individual cysteine residues that remain available for disulfide bond formation in the folded monomer can form interchain disulfide bonds with a variety of different cysteine residues present in a companion subunit. These results imply that the coordinated expression of many different LMW-GS in wheat endosperm cells can potentially lead to the formation of a large set of distinct polymeric structures, in which subunits can be arranged in different configurations. In addition, we show that not all intrachain disulfide bonds are necessary for the generation of an assembly-competent structure and that the retention of a LMW-GS in the early secretory pathway is not dependent on polymer formation.The unique ability of wheat (Triticum spp.) flour to form a dough that has the rheological properties required for the production of leavened bread and other foods is largely due to the characteristics of the proteins that accumulate in wheat endosperm cells during seed development (Gianibelli et al., 2001). Among these endosperm proteins, a major role is played by prolamines, a large group of structurally different proteins sharing the characteristic of being particularly high in Pro and Gln.On the basis of their polymerization status, wheat prolamines can be subdivided into two groups, the gliadins and the glutenins. While gliadins are monomeric, glutenins are heterogeneous mixtures of polymers where individual subunits are held together by interchain disulfide bonds (Galili et al., 1996; Tatham and Shewry, 1998). The subunits participating to the formation of these large polymers have been classified into four groups according to their electrophoretic mobility (Gianibelli et al., 2001). The A group is constituted by the so-called high-molecular-weight glutenin subunits (HMW-GS), while polypeptides in groups B, C, and D are collectively termed low-molecular-weight glutenin subunits (LMW-GS). While only three to five HMW-GS are expressed in common wheat endosperm, LMW-GS include a very large number of different polypeptides.Different models of glutenin assembly have been proposed (see Gianibelli et al., 2001 for a review), but the determination of their precise structure and Mr distribution has been hampered by their large size and complex subunit composition. Crucially, because disulfide bonds appear to be the major factor affecting polymer stability, it would be very useful to know whether the pairing between specific Cys residues, rather than random assembly, controls glutenin polymer formation. Indeed, data obtained with HMW-GS indicate that the formation of certain types of intermolecular disulfide bonds is particularly favored (Tao et al., 1992; Shimoni et al., 1997). In the case of LMW-GS, at least two functionally distinct types of subunits can be distinguished. Subunits of the first type, to which the majority of B-type subunits belong, would act as chain extenders, because they contain two Cys residues that remain available for the formation of interchain disulfide bonds. Subunits of the second type, containing a single Cys residue able to form an interchain disulfide bond, would instead act as chain terminators (Kasarda, 1989). Most of the members of this second group are indeed modified gliadins that participate to polymer formation thanks to the presence of extra Cys residues (D''Ovidio and Masci, 2004). Given the complexity of the situation found in wheat endosperm, where many different subunits are synthesized at the same time and can participate in the formation of complex high-Mr polymers, the study of glutenin polymer formation can take advantage of the use of heterologous expression systems where the behavior of individual subunits can be more easily monitored. For instance, the expression of HMW-GS in transgenic tobacco (Nicotiana tabacum) has provided insights into the rules governing the assembly of some of the subunits belonging to this class (Shani et al., 1994; Shimoni et al., 1997). In this work, we have used heterologous expression of wild-type and modified LMW-GS in tobacco protoplasts to study the assembly of this class of gluten polypeptides. Our results confirm that disulfide bonds are crucial for the assembly of these proteins and indicate that a relaxed specificity in Cys pairing from different subunits can drive the formation of complex glutenin polymers.  相似文献   

19.
The effect of chemical modification of amino acid residues essential for sugar binding in the α-D-galactoside specific jack fruit (Artocarpus integrifolia) seed lectin and the protection of the residues by specific sugar from modification were studied. Citraconylation or maleylation of 75 % of its lysyl residues or acetylation of 70 % of the tyrosyl residues completely abolished sugar binding and agglutination without dissociation of subunits. 1-O-methyl α-D-galactoside could protect its essential lysyl and tyrosyl groups from modification. Tryptophan could not be detected in the protein. Difference absorption spectra on binding of the above sugar confirmed the role of tyrosine residues and showed an association constantK = 0.4 × 103 M−1. Data suggests that the lectin could be immobilized without any loss of sugar binding activity  相似文献   

20.
The acetoacetyl-CoA-thiolase, a product of the acetoacetate degradation operon (ato) was purified to homogeneity as judged by polyacrylamide-gel electrophoresis at pH 4.5, 7.0, and 8.3. The enzyme has a molecular weight of 166,000 and is composed of four identical subunits. The subunit molecular weight is 41,500. Histidine was the sole N-terminal amino acid detected by dansylation. The thiolase contains eight free sulhydryl residues and four intrachain disulfide bonds per mole. The ato thiolase catalyzes the CoA- dependent cleavage of acetoacetyl-CoA and the acetylation of acetyl-CoA to form acetoacetyl-CoA. The maximal velocity in the direction of acetoacetyl-CoA cleavage was 840 nmol min? (enzyme unit)?1 and the maximal velocity in the direction of acetoacetyl CoA formation was 38 nmol min?1 (enzyme unit)?1. Like other thiolases, the ato thiolase was inactivated by sulfhydryl reagents. The enzyme was protected from inactivation by sulfhydryl reagents in the presence of the acyl-CoA substrates, acetyl-CoA and acetoacetyl-CoA; however, no protection was obtained when the enzyme was incubated with the acetyl-CoA analog, acetylaminodesthio-CoA. Consistent with these results was the demonstration of an acetyl-enzyme compound when the thiolase was incubated with [1-14C]acetyl-CoA. The sensitivity of the acetyl-enzyme bond to borohydride reduction and the protection afforded by acyl-CoA substrates against enzyme inactivation by sulfhydryl reagents indicated that acetyl groups are bound to the enzyme by a thiolester bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号