首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
目的研究生理剂量17β雌二醇(17-βestradiol,E2)对去甲肾上腺素(norepinephrine,NE)诱导的心肌细胞肥大和凋亡的影响。方法培养新生大鼠心肌细胞分别给予NE(50μmol)、E2(10nmol)、NE(50μmol) E2(10nmol)作用48h,通过心肌细胞蛋白质含量、[3H]亮氨酸掺入率检测心肌细胞肥大;透射电镜、DNA Ladder和流式细胞术检测心肌细胞凋亡。结果17β雌二醇可抑制去甲肾上腺素诱导的心肌细胞蛋白质含量、[3H]亮氨酸掺入率和心肌细胞凋亡率的增加,使凋亡心肌细胞特异性超微结构和DNA梯状带纹消失。结论17β雌二醇可抑制去甲肾上腺素所诱导的心肌细胞肥大和凋亡。  相似文献   

2.
本文旨在观察转染β1-肾上腺素受体(β1-adrenoceptor,β1-AR)基因对异丙肾上腺素(isoprenaline,ISO)损伤的大鼠心肌细胞收缩功能和存活的影响。采用胶原酶消化法分离培养原代大鼠心肌细胞,转染含β1-AR基因的腺病毒后,用ISO孵育24h致心肌细胞损伤,采用Westernblot检测心肌细胞β1-AR蛋白的含量,通过计数培养细胞中杆状细胞的百分率来检测心肌细胞存活率,用可视化边缘探测系统检测心肌细胞收缩功能变化。结果显示,与对照组相比,转染β1-AR基因的心肌细胞β1-AR蛋白含量明显增加(P0.01);转染β1-AR基因并用ISO损伤的心肌细胞内β1-AR蛋白含量亦明显增加(P0.01)。与对照组相比,转染β1-AR基因的心肌细胞存活率没有明显变化,ISO损伤的心肌细胞存活率明显下降(P0.01);而转染β1-AR基因并用ISO损伤的心肌细胞存活率与ISO组比进一步下降(P0.01)。与对照组相比,转染β1-AR基因的心肌细胞收缩幅度显著增大(P0.05),ISO损伤的心肌细胞收缩幅度明显下降(P0.01);而转染β1-AR基因并用ISO损伤的心肌细胞的收缩幅度与ISO组比没有明显变化。以上结果提示,β1-AR的表达增加对ISO损伤的大鼠心肌细胞的保护作用不明显。  相似文献   

3.
目的:观测κ阿片受体激动对去甲肾上腺素诱导心肌肥大的抑制作用,并与哌唑嗪、心得安作用进行比较。方法:结晶紫染色法测心肌细胞增殖程度;Lowry法测心肌细胞蛋白含量;计算机图象分析系统测心肌细胞体积;[3H]-亮氨酸掺入法测心肌细胞蛋白合成。结果:①低血清环境下,NE明显诱导心肌细胞蛋白含量、蛋白合成及体积的增加,但对增殖无影响。②哌唑嗪和心得安单独作用部分抑制NE诱导的心肌肥大;联合作用则完全抑制。③U50488H明显抑制NE诱导的心肌肥大;其抑制程度与哌唑嗪和心得安联合作用类似,明显高于二者单独作用。结论:NE通过激动α1-和β-肾上腺受体途径诱导心肌肥大。κ阿片受体激动显著抑制NE诱导的心肌肥大,这可能与干预α1-AR和β-AR途径有关。  相似文献   

4.
Xu M  Zhao YT  Song Y  Hao TP  Lu ZZ  Han QD  Wang SQ  Zhang YY 《生理学报》2007,59(2):175-182
为了验证心脏腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)是否为肾上腺素受体(adrenergic receptor,AR)的下游信号分子,本实验在大鼠心室肌源细胞和大鼠心脏中观察了α-AR对AMPK的激活作用,利用Western blot检测了AMPK-α总蛋白表达量及其172位苏氨酸磷酸化水平。雄性Sprague-Dawley大鼠皮下植入去甲肾上腺素(norepinephrine,NE),苯肾上腺素(phenylephrine,PE)或者溶剂载体[0.01%(W/V)维生素C]的缓释微泵(osmotic minipump)。NE或PE以每小时0.2 mg/kg的速率持续输注,7 d后用AMPK-α抗体免疫沉淀处理样本并测定AMPK的活性。结果显示,在细胞水平,NE引起的AMPK磷酸化水平增高具有时间依赖和剂量依赖特点, NE处理细胞10 min后AMPK磷酸化水平达到最高峰;NE引起的这种效应对β-AR的拮抗剂普萘洛尔(propranolol)不敏感,但是可以被α1-AR拮抗剂哌唑嗪(prazosin)所阻断。结果提示,α1-AR介导AMPK的磷酸化,但β-AR无此作用。AR激动剂持续灌注7 d后,AMPK的活性在NE(7.4倍)和PE(6.0倍)灌注组较对照组显著增高(P〈0.05,H=6)。PE持续灌注组大鼠与对照组相比无明显的心肌肥厚和组织纤维化变化。本文证明α1-AR激动剂可以增强AMPK的活性,揭示了心脏中α1-AR激动在调控AMPK活性方面的重要作用。深入了解α1-AR介导的AMPK激活可能在心衰治疗中具有重要的临床意义。  相似文献   

5.
Yin F  Lu ZZ  Han QD  Zhang YY 《生理学报》2003,55(3):251-254
为了明确β-肾上腺素受体(AR)亚型在新生大鼠心肌成纤维细胞中的分布及其在成纤维细胞增殖反应中的作用,采用放射配体结合实验和[3H]-thymidine掺人法检测了新生大鼠心肌成纤维细胞的β-AR密度和DNA合成速率。结果显示,在培养心肌细胞和心肌成纤维细胞中β-AR密度(Bmtax)和解离常数(Kp)无显著性差异;竞争抑制曲线分析结果提示,心肌成纤维细胞对CGP 20712A和ICI ll8551单位点拟合均显著优于两位点拟合(P<0.01),表现为对选择性β1-AR拮抗剂CGP 20712A的低亲和性(IC50值:10.1μmol/L)和对选择性β2-AR拮抗剂ICI 118551的高亲和性(IC50值:0.147μmol/L)。异丙肾上腺素(ISO)促心肌成纤维细胞增殖作用可被ICI 118551和心得安(非选择性β-AR拮抗剂)完全抑制,而CGP20812A则无此作用。上述结果提示,在培养心肌成纤维细胞中β-AR亚型占绝对优势,并且ISO引起的心肌成纤维细胞增殖反应是由β2-AR介导的。  相似文献   

6.
目的:观察乙醛脱氢酶2(ALDH2)对高糖诱导的H9C2心肌细胞存活及凋亡的影响,并探讨腺苷酸活化蛋白激酶(AMPK)/FOXO3a信号通路在高糖导致的心肌细胞凋亡中的调控作用。方法:以30 mmol/L葡萄糖诱导培养H9C2心肌细胞48 h,经ALDH2激动剂Alda-1及AMPK抑制剂Compound C干预后,用MTT法检测细胞的存活情况,TUNEL试剂盒检测细胞凋亡情况,Western blot检测ALDH2、磷酸化AMPK和FOXO3a蛋白的表达水平。结果:与对照组相比,高浓度葡萄糖培养H9C2心肌细胞后,细胞的存活率显著降低、凋亡指数明显升高,磷酸化AMPK的表达水平明显上调,ALDH2和磷酸化FOXO3a的蛋白表达显著降低(P0.05)。ALDH2的激动剂Alda-1处理可显著提高高糖诱导的H9C2心肌细胞的存活率、降低其凋亡率,减少磷酸化AMPK的蛋白表达,增加ALDH2的表达和FOXO3a蛋白的磷酸化;而进一步采用AMPK的抑制剂Compound C处理,可显著抑制Alda-1对高糖诱导的H9C2心肌细胞的这些影响。结论:ALDH2的激动剂Alda-1对高糖诱导的心肌细胞凋亡具有保护作用,可能与其激活AMPK,进而抑制心肌细胞FOXO3a的活性有关。  相似文献   

7.
心脏疾病常伴有交感神经系统过度激活及循环系统内儿茶酚胺水平增高,通过激动β-肾上腺素受体引起心脏重塑.β-AR激动剂异丙基肾上腺素常用来制备心脏重塑模型.然而β-AR不同的激动模式,脉冲式的间断激动与慢性持续激动对心脏重塑和心脏功能下降的影响是否不同,尚未见报道.为此,本研究比较了ISO间断给药与持续给药对小鼠心脏重塑...  相似文献   

8.
目的:研究κ-阿片受体(κ-OR)激动剂U50488H在高浓度葡萄糖(25.5mmol/L)诱导的心肌细胞肥大中的作用及可能的信号转导通路。方法:以原代培养的新生大鼠心肌细胞为模型,应用25.5mmol/L的高浓度葡萄糖诱导心肌肥大,用Lowry法检测心肌细胞蛋白含量;用消化分离法及计算机图像分析系统检测心肌细胞体积;用Western蛋白印迹法测定细胞外信号调节激酶(ERK)磷酸化水平。结果:25.5mmol/L的高浓度葡萄糖使心肌细胞蛋白含量和体积明显增加,1μmol/L的U50488H能抑制高糖诱导的心肌肥大,使ERK磷酸化水平降低,与10μmol/L的ERK抑制剂U0126对心肌肥大的抑制程度相近,统计结果没有显著性差异。结论:U50488H抑制高糖诱导的心肌肥大与ERK信号有关。  相似文献   

9.
MKP-1在血管紧张素Ⅱ导致心肌肥大反应中的调控作用   总被引:1,自引:0,他引:1  
本研究主要从丝裂原活化蛋白激酶磷酸酶 1(MKP 1)角度 ,研究丝裂原活化蛋白激酶 (MAPK)信号途径在血管紧张素Ⅱ介导的新生大鼠心肌细胞肥大反应中的作用及调控机制。实验以心肌细胞蛋白合成速率、蛋白含量及细胞表面积作为心肌肥大反应的指标 ,以凝胶内MBP原位磷酸化测定MAPK活性 ,以免疫印迹法 (Westernboltting)分别测定MKP 1及磷酸化p44MAPK、p42MAPK蛋白表达。结果发现 :(1)AngⅡ (10 -7mol/L)处理 48h ,心肌细胞 3H 亮氨酸掺入率、蛋白含量及细胞表面积明显增加 ,AngⅡ增加 3H 亮氨酸掺入的作用可被血管紧张素Ⅱ 1型受体 (AT1受体 )拮抗剂CV11974(10 -6mol/L)明显抑制 (抑制 85 % ) ,被MAPK激酶 (MEK)特异性抑制剂PD0 980 5 9(5× 10 -5mol/L)部分抑制 (抑制 32 5 % ) ;(2 )CV11974或PD0 980 5 9可明显抑制AngⅡ介导的磷酸化MAPK蛋白表达及MAPK酶活性 (以γ 32 P ATP掺入表示 ) ;(3)以磷酸化MAPK蛋白表达反映MAPK活性 ,可见AngⅡ处理心肌细胞5min ,MAPK活性即开始增加 ,30min左右达到高峰 ,2h后基本恢复正常 ;而MKP 1蛋白表达 30min即见增加 ,持续 2h以上 ;(4 )用放线菌素D (actinomycinD)处理心肌细胞 30min可明显抑制MKP 1的表达 ,同时使AngⅡ致磷酸化MAPK蛋白表达时间延长至 2h以上。以上结果  相似文献   

10.
目的:研究紫铆花素对心肌缺血再灌注损伤的保护作用及其机制。方法:体外建立H9c2心肌细胞缺血再灌注模型,分为正常组、模型组、紫铆花素低、中和高剂量组(10,20和40μM)。检测细胞存活率,LDH释放水平,试剂盒检测MDA、SOD、IL-1和IL-6水平,蛋白印迹法检测Bax,Bcl-2蛋白的表达以及AMPK和GSK-3β磷酸化水平。结果:与模型组比较,紫铆花素能够提高细胞存活率,减少LDH水平,降低MDA、IL-1和IL-6,增加SOD水平。减少Bax,Caspase-3蛋白的表达,增加Bcl-2蛋白的表达,提高Bcl-2/Bax的比值(P0.05)。同时,紫铆花素能够剂量依赖性的促进AMPK和GSK-3β磷酸化。进一步研究发现,紫铆花素的保护作用以及对GSK-3β的促磷酸化被AMPK抑制剂Compound C抵消。结论:紫铆花素能减轻心肌缺血再灌注损伤,抑制心肌细胞凋亡,其作用机制可能通过激活AMPK/GSK-3β信号通路,减轻氧化应激水平有关。  相似文献   

11.
Angiotensin II induces cardiomyocyte hypertrophy, but its consequences on cardiomyocyte metabolism and energy supply are not completely understood. Here we investigate the effect of angiotensin II on glucose and fatty acid utilization and the modifying role of AMP-activated protein kinase (AMPK), a key regulator of metabolism and proliferation. Treatment of H9C2 cardiomyocytes with angiotensin II (Ang II, 1 microm, 4 h) increased [(3)H]leucine incorporation, up-regulated the mRNA expression of the hypertrophy marker genes MLC, ANF, BNP, and beta-MHC, and decreased the phosphorylation of the negative mTOR-regulator tuberin (TSC-2). Rat neonatal cardiomyocytes showed similar results. Western blot analysis revealed a time- and concentration-dependent down-regulation of AMPK-phosphorylation in the presence of angiotensin II, whereas the protein expression of the catalytic alpha-subunit remained unchanged. This was paralleled by membrane translocation of glucose-transporter type 4 (GLUT4), increased uptake of [(3)H]glucose and transient down-regulation of phosphorylation of acetyl-CoA carboxylase (ACC), whereas fatty acid uptake remained unchanged. Similarly, short-term transaortic constriction in mice resulted in down-regulation of P-AMPK and P-ACC but up-regulation of GLUT4 membrane translocation in the heart. Preincubation of cardiomyocytes with the AMPK stimulator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 1 mM, 4 h) completely prevented the angiotensin II-induced cardiomyocytes hypertrophy. In addition, AICAR reversed the metabolic effects of angiotensin II: GLUT4 translocation was reduced, but ACC phosphorylation and TSC phosphorylation were elevated. In summary, angiotensin II-induced hypertrophy of cardiomyocytes is accompanied by decreased activation of AMPK, increased glucose uptake, and decreased mTOR inhibition. Stimulation with the AMPK activator AICAR reverses these metabolic changes, increases fatty acid utilization, and inhibits cardiomyocyte hypertrophy.  相似文献   

12.
Diabetic hearts are known to be more susceptible to ischemic disease. Biguanides, like metformin, are known antidiabetic drugs that lower blood glucose concentrations by decreasing hepatic glucose production and increasing glucose disposal in muscle. Part of these metabolic effects is thought to be mediated by the activation of AMP-activated protein kinase (AMPK). In this work, we studied the relationship between AMPK activation and glucose uptake stimulation by biguanides and oligomycin, another AMPK activator, in both insulin-sensitive and insulin-resistant cardiomyocytes. In insulin-sensitive cardiomyocytes, insulin, biguanides and oligomycin were able to stimulate glucose uptake with the same efficiency. Stimulation of glucose uptake by insulin or biguanides was correlated to protein kinase B (PKB) or AMPK activation, respectively, and were additive. In insulin-resistant cardiomyocytes, where insulin stimulation of glucose uptake was greatly reduced, biguanides or oligomycin, in the absence of insulin, induced a higher stimulation of glucose uptake than that obtained in insulin-sensitive cells. This stimulation was correlated with the activation of both AMPK and PKB and was sensitive to the phosphatidylinositol-3-kinase/PKB pathway inhibitors. Finally, an adenoviral-mediated expression of a constitutively active form of AMPK increased both PKB phosphorylation and glucose uptake in insulin-resistant cardiomyocytes. We concluded that AMPK activators, like biguanides and oligomycin, are able to restore glucose uptake stimulation, in the absence of insulin, in insulin-resistant cardiomyocytes via the additive activation of AMPK and PKB. Our results suggest that AMPK activation could restore normal glucose metabolism in diabetic hearts and could be a potential therapeutic approach to treat insulin resistance.  相似文献   

13.
Skeletal muscle insulin resistance may be aggravated by intramyocellular accumulation of fatty acid-derived metabolites that inhibit insulin signaling. We tested the hypothesis that enhanced fatty acid oxidation in myocytes should protect against fatty acid-induced insulin resistance by limiting lipid accumulation. L6 myotubes were transduced with adenoviruses encoding carnitine palmitoyltransferase I (CPT I) isoforms or beta-galactosidase (control). Two to 3-fold overexpression of L-CPT I, the endogenous isoform in L6 cells, proportionally increased oxidation of the long-chain fatty acids palmitate and oleate and increased insulin stimulation of [(14)C]glucose incorporation into glycogen by 60% while enhancing insulin-stimulated phosphorylation of p38MAPK. Incubation of control cells with 0.2 mm palmitate for 18 h caused accumulation of triacylglycerol, diacylglycerol, and ceramide (but not long-chain acyl-CoA) and decreased insulin-stimulated [(14)C]glucose incorporation into glycogen (60%), [(3)H]deoxyglucose uptake (60%), and protein kinase B phosphorylation (20%). In the context of L-CPT I overexpression, palmitate preincubation produced a relative decrease in insulin-stimulated incorporation of [(14)C]glucose into glycogen (60%) and [(3)H]deoxyglucose uptake (40%) but did not inhibit phosphorylation of protein kinase B. Due to the enhancement of insulin-stimulated glucose metabolism induced by L-CPT I overexpression itself, net insulin-stimulated incorporation of [(14)C]glucose into glycogen and [(3)H]deoxyglucose uptake in L-CPT I-transduced, palmitate-treated cells were significantly greater than in palmitate-treated control cells (71 and 75% greater, respectively). However, L-CPT I overexpression failed to decrease intracellular triacylglycerol, diacylglycerol, ceramide, or long-chain acyl-CoA. We propose that accelerated beta-oxidation in muscle cells exerts an insulin-sensitizing effect independently of changes in intracellular lipid content.  相似文献   

14.
High uric acid (HUA) is associated with insulin resistance (IR) in cardiomyocytes. We investigated whether metformin protects against HUA-induced IR in cardiomyocytes. We exposed primary cardiomyocytes to HUA, and cellular glucose uptake was quantified by measuring the uptake of 2-NBDG, a fluorescent glucose analog. Western blot was used to examine the levels of signalling protein. Membrane of glucose transporter type 4 (GLUT4) was analysed by immunofluorescence. We monitored the impact of metformin on HUA-induced IR and in myocardial tissue of an acute hyperuricaemia mouse model established by potassium oxonate treatment. Treatment with metformin protected against HUA-reduced glucose uptake induced by insulin in cardiomyocytes. HUA directly inhibited the phosphorylation of Akt and the translocation of GLUT4 induced by insulin, which was blocked by metformin. Metformin promoted phosphorylation of AMP-activated protein kinase (AMPK) and restored the insulin-stimulated glucose uptake in HUA-induced IR cardiomyocytes. As a result of these effects, in a mouse model of acute hyperuricaemia, metformin improved insulin tolerance and glucose tolerance, accompanied by increased AMPK phosphorylation, Akt phosphorylation and translocation of GLUT4 in myocardial tissues. As expected, AICAR, another AMPK activator, had similar effects to metformin, demonstrating the important role of AMPK activation in protecting against IR induced by HUA in cardiomyocytes. Metformin protects against IR induced by HUA in cardiomyocytes and improves insulin tolerance and glucose tolerance in an acute hyperuricaemic mouse model, along with the activation of AMPK. Consequently, metformin may be an important potential new treatment strategy for hyperuricaemia-related cardiovascular disease.  相似文献   

15.
16.
Liu J  Wu LL  Li L  Zhang L  Song ZE 《Regulatory peptides》2005,127(1-3):11-18
Platelet-derived growth factor (PDGF) is a dimeric molecule consisting of disulfide-bonded A- and B-polypeptide chains. Homodimeric (PDGF-AA, PDGF-BB) as well as heterodimeric (PDGF-AB) isoforms exert their effects on target cells by binding with different specificities to two structurally related protein tyrosine kinase receptors, denoted alpha- and beta-receptors. PDGF stimulates growth in various cell types, but little is known about its effect on mammalian cardiomyocytes. Therefore, growth-promoting effect of PDGF on rat cardiomyocytes was investigated. Primary culture of neonatal rat ventricular myocytes was prepared and cellular growth was estimated by [3H]-leucine incorporation assay. Tyrosine-phosphorylated PDGF-beta receptor of cardiomyocytes was determined by immunoblotting analysis after immunoprecipitation. PDGF-beta receptor, extracellular signal-regulated kinase (ERK) 1/2 and phosphorylated ERK1/2 of cardiomyocytes were measured by immunoblotting analysis. [3H]-leucine incorporation into the cultured myocytes was increased in a time- and dose-dependent manner after PDGF-BB stimulation. Phosphorylation of PDGF-beta receptor and ERK1/2 in cardiomyocytes was increased after short-term stimulation of PDGF-BB. Protein expression of PDGF-beta receptor and ERK1/2 was increased after long-term stimulation of PDGF-BB. [(3)H]-leucine incorporation into the cultured myocytes induced by PDGF-BB was partly blocked by mitogen-activated ERK-activating kinase (MEK) inhibitor PD98059, phospholipase C (PLC) inhibitor U73122, and protein kinase C (PKC) inhibitor staurosporin aglycone, respectively. Therefore, PDGF beta receptor, ERK1/2, PLC and PKC are involved in the signal transduction of PDGF-induced growth response of rat cardiac myocytes.  相似文献   

17.
AMP-activated protein kinase (AMPK) independently increases glucose and long-chain fatty acid (LCFA) utilization in isolated cardiac muscle preparations. Recent studies indicate this may be due to AMPK-induced phosphorylation and activation of nitric oxide synthase (NOS). Given this, the aim of the present study was to assess the effects of AMPK stimulation by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 10 mg.kg(-1).min(-1)) on glucose and LCFA utilization in cardiac muscle and to determine the NOS dependence of any observed effects. Catheters were chronically implanted in a carotid artery and jugular vein of Sprague-Dawley rats. After 4 days of recovery, conscious, unrestrained rats were given either water or water containing 1 mg/ml nitro-L-arginine methyl ester (L-NAME) for 2.5 days. After an overnight fast, rats underwent one of four protocols: saline, AICAR, AICAR + L-NAME, or AICAR + Intralipid (20%, 0.02 ml.kg(-1).min(-1)). Glucose was clamped at approximately 6.5 mM in all groups, and an intravenous bolus of 2-deoxy-[(3)H]glucose and [(125)I]-15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid was administered to obtain indexes of glucose and LCFA uptake and clearance. Despite AMPK activation, as evidenced by acetyl-CoA carboxylase (Ser(221)) and AMPK phosphorylation (Thr(172)), AICAR increased cardiac LCFA but not glucose clearance. L-NAME + AICAR established that this effect was not due to NOS activation, and AICAR + Intralipid showed that increased cardiac LCFA clearance was not LCFA-concentration dependent. These results demonstrate that, in vivo, AMPK stimulation increases LCFA but not glucose clearance by a NOS-independent mechanism.  相似文献   

18.
A prolonged or excessive adrenergic activation leads to myocyte loss and heart dysfunction; however, how it contributes to heart failure remains poorly defined. Here we show that isoproterenol (ISO) induced aberrant endoplasmic reticulum (ER) stress and apoptotic cell death, which was inhibited by activating the AMP-activated protein kinase (AMPK) in vitro and in vivo. Persistent ISO stimulation suppressed the AMPK phosphorylation and function, resulting in enhanced ER stress and the subsequent cell apoptosis in cardiomyocytes in vitro and in vivo. AMPK activation decreased the aberrant ER stress, apoptosis, and brain natriuretic peptide (BNP) release in ISO-treated cardiomyocytes, which was blocked by AMPK inhibitor Compound C. Importantly, increased ER stress and apoptosis were observed in ISO-treated cardiomyocytes isolated from AMPKα2?/? mice. Inhibition of ER stress attenuated the apoptosis but failed to reverse AMPK inhibition in ISO-treated cardiomyocytes. Moreover, metformin administration activated AMPK and reduced both ER stress and apoptosis in ISO-induced rat heart failure in vivo. We conclude that ISO, via AMPK inactivation, causes aberrant ER stress, cardiomyocyte injury, BNP release, apoptosis, and hence heart failure in vivo, all of which are inhibited by AMPK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号